Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 10 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -D DS20-LB -- LoRaWANUltrasonicLiquid LevelSensor User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023061 3133716-2.png||height="717" width="717"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,24 +19,24 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN Ultrasonicliquid levelSensor ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino D DS20-LB is a (% style="color:blue" %)**LoRaWANUltrasonicliquidlevelsensor**(%%) for Internet of Things solution. Ituses (%style="color:blue"%)**none-contact method**(%%)tomeasure the(%style="color:blue" %)**heightofliquid**(%%)ina containerwithoutopeningthecontainer,andsendthevalueviaLoRaWANnetworktoIoTServer.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -The D DS20-LBsensorisinstalleddirectly belowthecontainertodetect theheightoftheliquidlevel. Userdoesn't needtoopen aholeon the containerto betested.Thenone-contactmeasurementmakesthemeasurement safety, easierand possibleforsome strict situation.26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 28 29 - DDS20-LBuses (% style="color:blue" %)**ultrasonicsensingtechnology**(%%)fordistancemeasurement.DDS20-LB is ofhighaccuracy tomeasurevarious liquidsuch as: (% style="color:blue" %)**toxicsubstances**(%%), (%style="color:blue"%)**strong acids**(%%), (% style="color:blue"%)**strongalkalis**(%%) and(%style="color:blue" %)**variouspureliquids**(%%) inhigh-temperature andhigh-pressureairtightcontainers.28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 30 30 31 -The LoRa wireless technology used in D DS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 32 33 -D DS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 -D DS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 37 -Each D DS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 38 38 39 -[[image:image-2023061 3140115-3.png||height="453" width="800"]]38 +[[image:image-20230615152941-1.png||height="459" width="800"]] 40 40 41 41 42 42 == 1.2 Features == ... ... @@ -45,16 +45,14 @@ 45 45 * LoRaWAN 1.0.3 Class A 46 46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 47 47 * Ultra-low power consumption 48 -* Liquid Level Measurement by Ultrasonic technology 49 -* Measure through container, No need to contact Liquid 50 -* Valid level range 20mm - 2000mm 51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 52 -* Cable Length : 25cm 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 53 53 * Support Bluetooth v5.1 and LoRaWAN remote configure 54 54 * Support wireless OTA update firmware 55 55 * AT Commands to change parameters 56 56 * Downlink to change configure 57 -* IP66 Waterproof Enclosure 58 58 * 8500mAh Battery for long term use 59 59 60 60 == 1.3 Specification == ... ... @@ -65,6 +65,23 @@ 65 65 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 66 66 * Operating Temperature: -40 ~~ 85°C 67 67 65 +(% style="color:#037691" %)**Probe Specification:** 66 + 67 +* Storage temperature:-20℃~~75℃ 68 +* Operating temperature : -20℃~~60℃ 69 +* Measure Distance: 70 +** 0.1m ~~ 12m @ 90% Reflectivity 71 +** 0.1m ~~ 4m @ 10% Reflectivity 72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 74 +* Ambient light immunity : 70klux 75 +* Enclosure rating : IP65 76 +* Light source : LED 77 +* Central wavelength : 850nm 78 +* FOV : 3.6° 79 +* Material of enclosure : ABS+PC 80 +* Wire length : 25cm 81 + 68 68 (% style="color:#037691" %)**LoRa Spec:** 69 69 70 70 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -85,318 +85,293 @@ 85 85 * Sleep Mode: 5uA @ 3.3v 86 86 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 87 87 88 -== 1.4 Suitable Container& Liquid==102 +== 1.4 Applications == 89 89 90 90 91 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 92 -* Container shape is regular, and surface is smooth. 93 -* Container Thickness: 94 -** Pure metal material. 2~~8mm, best is 3~~5mm 95 -** Pure non metal material: <10 mm 96 -* Pure liquid without irregular deposition.(% style="display:none" %) 105 +* Horizontal distance measurement 106 +* Parking management system 107 +* Object proximity and presence detection 108 +* Intelligent trash can management system 109 +* Robot obstacle avoidance 110 +* Automatic control 111 +* Sewer 97 97 113 +(% style="display:none" %) 98 98 99 -== 1.5 InstallDDS20-LB==115 +== 1.5 Sleep mode and working mode == 100 100 101 101 102 -(% style="color:blue" %)**S tep1**(%%):Choose the installation point.118 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 103 103 104 - DDS20-LB(% style="color:red" %)**MUST**(%%)beinstalledon thecontainerbottommiddle position.120 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 105 105 106 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 107 107 123 +== 1.6 Button & LEDs == 108 108 109 -((( 110 -(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 111 -))) 112 112 113 -((( 114 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 126 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 127 + 128 + 129 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 130 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 131 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 132 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 133 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 115 115 ))) 135 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 136 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 137 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 138 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 139 +))) 140 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 116 116 117 - [[image:image-20230613143052-5.png]]142 +== 1.7 BLE connection == 118 118 119 119 120 - Nopolish needed if the containeris shine metalsurfacewithoutpaint or non-metalcontainer.145 +LDS12-LB support BLE remote configure. 121 121 122 - [[image:image-20230613143125-6.png]]147 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 123 123 149 +* Press button to send an uplink 150 +* Press button to active device. 151 +* Device Power on or reset. 124 124 125 -((( 126 -(% style="color:blue" %)**Step3: **(%%)Test the installation point. 127 -))) 153 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 128 128 129 -((( 130 -Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 131 -))) 132 132 133 -((( 134 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 135 -))) 156 +== 1.8 Pin Definitions == 136 136 137 -((( 138 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 139 -))) 140 140 159 +[[image:image-20230805144259-1.png||height="413" width="741"]] 141 141 142 -((( 143 -(% style="color:red" %)**LED Status:** 144 -))) 161 +== 1.9 Mechanical == 145 145 146 -* ((( 147 -Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 148 -))) 149 149 150 -* ((( 151 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 152 -))) 153 -* ((( 154 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 155 -))) 164 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 156 156 157 -((( 158 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 159 -))) 160 160 167 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 161 161 162 -((( 163 -(% style="color:red" %)**Note 2:** 164 -))) 165 165 166 -((( 167 -(% style="color:red" %)**Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 168 -))) 170 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 169 169 170 170 171 -((( 172 -(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 173 -))) 173 +(% style="color:blue" %)**Probe Mechanical:** 174 174 175 -((( 176 -Prepare Eproxy AB glue. 177 -))) 178 178 179 -((( 180 -Put Eproxy AB glue in the sensor and press it hard on the container installation point. 181 -))) 176 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 182 182 183 -((( 184 -Reset DDS20-LB and see if the BLUE LED is slowly blinking. 185 -))) 186 186 187 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]][[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]179 += 2. Configure LDS12-LB to connect to LoRaWAN network = 188 188 181 +== 2.1 How it works == 189 189 190 -((( 191 -(% style="color:red" %)**Note 1:(%%) (% style="color:blue" %)Eproxy AB glue**(%%) needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 192 -))) 193 193 194 -((( 195 -(% style="color:red" %)**Note 2:(%%) (% style="color:blue" %)Eproxy AB glue**(%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 196 -))) 184 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 197 197 186 +(% style="display:none" %) (%%) 198 198 199 -== 1.6Applications ==188 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 200 200 201 201 202 - *Smartliquidcontrol solution.191 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 203 203 204 - *Smartliquefiedgassolution.193 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 205 205 195 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 206 206 207 207 208 -= =1.7Precautions==198 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 209 209 200 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 210 210 211 - * At roomtemperature, containers of differentmaterials, such as steel,glass, iron, ceramics, non-foamedplastics andother dense materials,have differentdetection blindareas and detection limitheights.202 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 212 212 213 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 214 214 215 - *Whenthedetectedliquid level exceedstheeffective detectionvalue ofthesensor,andtheliquid leveloftheliquidto bemeasured shakesortilts,thedetected liquid height is unstable.(%style="display:none" %)205 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 216 216 217 217 218 - ==1.8 Sleep mode and workingmode==208 +(% style="color:blue" %)**Register the device** 219 219 210 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 220 220 221 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 222 222 223 -(% style="color:blue" %)** Working Mode:** (%%)In this mode,Sensor will work as LoRaWANSensorto Join LoRaWANnetwork andsend out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLEmode), in IDLEmode, sensor has the same power consumption as Deep Sleep mode.213 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 224 224 215 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 225 225 226 -== 1.9 Button & LEDs == 227 227 218 +(% style="color:blue" %)**Add APP EUI in the application** 228 228 229 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 230 230 221 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 231 231 232 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 233 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 234 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 235 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 236 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 237 -))) 238 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 239 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 240 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 241 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 242 -))) 243 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 244 244 245 - ==1.10 BLE connection==224 +(% style="color:blue" %)**Add APP KEY** 246 246 226 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 247 247 248 -DDS20-LB support BLE remote configure. 249 249 250 - BLEcan be usedto configurethe parameter of sensor or see theconsoleoutputfromsensor. BLE will be only activate onbelow case:229 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 251 251 252 -* Press button to send an uplink 253 -* Press button to active device. 254 -* Device Power on or reset. 255 255 256 - Ifthereis no activity connectiononBLEin 60seconds,sensorwill shutdown BLE module toenterlow power mode.232 +Press the button for 5 seconds to activate the LDS12-LB. 257 257 234 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 258 258 259 - ==1.11 PinDefinitions==236 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 260 260 261 -[[image:image-20230523174230-1.png]] 262 262 239 +== 2.3 Uplink Payload == 263 263 264 -== 1.12Mechanical==241 +=== 2.3.1 Device Status, FPORT~=5 === 265 265 266 266 267 - [[image:Main.UserManualforLoRaWAN EndNodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]244 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 268 268 246 +The Payload format is as below. 269 269 270 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 248 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 249 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 250 +**Size(bytes)** 251 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 252 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 271 271 254 +Example parse in TTNv3 272 272 273 -[[image: Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]256 +[[image:image-20230805103904-1.png||height="131" width="711"]] 274 274 258 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 275 275 276 -(% style="color:blue" %)** Probe Mechanical:**260 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 277 277 278 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]262 +(% style="color:blue" %)**Frequency Band**: 279 279 264 +0x01: EU868 280 280 281 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]266 +0x02: US915 282 282 268 +0x03: IN865 283 283 284 - = 2. Configure DDS20-LBto connect to LoRaWAN network =270 +0x04: AU915 285 285 286 - ==2.1 How it works ==272 +0x05: KZ865 287 287 274 +0x06: RU864 288 288 289 - The DDS20-LB is configured as (% style="color:#037691"%)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.276 +0x07: AS923 290 290 291 - (% style="display:none"%) (%%)278 +0x08: AS923-1 292 292 293 - ==2.2Quick guide to connect to LoRaWAN server (OTAA) ==280 +0x09: AS923-2 294 294 282 +0x0a: AS923-3 295 295 296 - Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWANgateway in this example.284 +0x0b: CN470 297 297 298 - The LPS8v2 is already set toconnected to [[TTN network >>url:https://console.cloud.thethings.network/]],so what we need to now is configure the TTN server.286 +0x0c: EU433 299 299 300 - [[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none"%)288 +0x0d: KR920 301 301 290 +0x0e: MA869 302 302 303 -(% style="color:blue" %)**S tep 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.292 +(% style="color:blue" %)**Sub-Band**: 304 304 305 - EachDDS20-LB is shippedwithasticker with the default deviceEUIasbelow:294 +AU915 and US915:value 0x00 ~~ 0x08 306 306 307 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png"height="233"width="502"]]296 +CN470: value 0x0B ~~ 0x0C 308 308 298 +Other Bands: Always 0x00 309 309 310 - Youcan enter thiskey intheLoRaWAN Server portal.Below is TTN screenshot:300 +(% style="color:blue" %)**Battery Info**: 311 311 302 +Check the battery voltage. 312 312 313 - (% style="color:blue"%)**Registerthedevice**304 +Ex1: 0x0B45 = 2885mV 314 314 315 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]306 +Ex2: 0x0B49 = 2889mV 316 316 317 317 318 - (% style="color:blue"%)**AddAPP EUIandDEVEUI**309 +=== 2.3.2 Uplink Payload, FPORT~=2 === 319 319 320 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 321 321 312 +((( 313 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 322 322 323 - (% style="color:blue"%)**AddAPPEUIin the application**315 +periodically send this uplink every 20 minutes, this interval [[can be changed>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H3.3.1SetTransmitIntervalTime]]. 324 324 317 +Uplink Payload totals 11 bytes. 318 +))) 325 325 326 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 320 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 321 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 322 +**Size(bytes)** 323 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 324 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 325 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 326 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 327 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 328 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 329 +[[Message Type>>||anchor="HMessageType"]] 330 +))) 327 327 332 +[[image:image-20230805104104-2.png||height="136" width="754"]] 328 328 329 -(% style="color:blue" %)**Add APP KEY** 330 330 331 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]335 +==== (% style="color:blue" %)**Battery Info**(%%) ==== 332 332 333 333 334 - (% style="color:blue"%)**Step2:**(%%) Activate onDDS20-LB338 +Check the battery voltage for LDS12-LB. 335 335 340 +Ex1: 0x0B45 = 2885mV 336 336 337 - Pressthebuttonfor 5 seconds to activate the DDS20-LB.342 +Ex2: 0x0B49 = 2889mV 338 338 339 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 340 340 341 - Afterjoinsuccess, itwill start toupload messagestoTTN and you can seehemessagesin the panel.345 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ==== 342 342 343 343 344 - ==2.3UplinkPayload==348 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 345 345 346 346 347 -((( 348 -DDS20-LB will uplink payload via LoRaWAN with below payload format: 349 -))) 351 +**Example**: 350 350 351 -((( 352 -Uplink payload includes in total 8 bytes. 353 -))) 353 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 354 354 355 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 356 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 357 -**Size(bytes)** 358 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 359 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 360 -[[Distance>>||anchor="H2.3.2A0Distance"]] 361 -(unit: mm) 362 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 363 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 364 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 355 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 365 365 366 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 367 367 358 +==== (% style="color:blue" %)**Distance**(%%) ==== 368 368 369 -=== 2.3.1 Battery Info === 370 370 361 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 371 371 372 -Check the battery voltage for DDS20-LB. 373 373 374 -Ex 1: 0x0B45 = 2885mV364 +**Example**: 375 375 376 - Ex2:0x0B49=2889mV366 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 377 377 378 378 379 -=== 2.3.2Distance ===369 +==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 380 380 381 381 382 -((( 383 -Get the distance. Flat object range 30mm - 4500mm. 384 -))) 372 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 385 385 386 -((( 387 -For example, if the data you get from the register is **0x0B 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 388 388 389 -(% style="color:blue" %)**0B05(H) = 2821 (D) = 2821 mm.** 390 -))) 375 +**Example**: 391 391 392 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 393 -* If the sensor value lower than 0x001E (30mm), the sensor value will be 0x00. 377 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 394 394 395 - ===2.3.3 InterruptPin===379 +Customers can judge whether they need to adjust the environment based on the signal strength. 396 396 397 397 382 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 383 + 384 + 398 398 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 399 399 387 +Note: The Internet Pin is a separate pin in the screw terminal. See GPIO_EXTI of [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 388 + 400 400 **Example:** 401 401 402 402 0x00: Normal uplink packet. ... ... @@ -404,54 +404,116 @@ 404 404 0x01: Interrupt Uplink Packet. 405 405 406 406 407 -=== 2.3.4DS18B20 Temperaturesensor===396 +==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 408 408 409 409 410 - This is optional, usercanconnectxternal DS18B20 sensorto the+3.3v, 1-wire and GND pin . andthis fieldwill reporttemperature.399 +Characterize the internal temperature value of the sensor. 411 411 412 -**Example**: 401 +**Example: ** 402 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 403 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 413 413 414 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 415 415 416 - If payload is: FF3FH : (FF3F & FC00==1),temp=(FF3FH - 65536)/10 = -19.3 degrees.406 +==== (% style="color:blue" %)**Message Type**(%%) ==== 417 417 418 418 419 -=== 2.3.5 Sensor Flag === 420 - 421 - 422 422 ((( 423 - 0x01:DetectUltrasonicSensor410 +For a normal uplink payload, the message type is always 0x01. 424 424 ))) 425 425 426 426 ((( 427 - 0x00: No UltrasonicSensor414 +Valid Message Type: 428 428 ))) 429 429 417 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 418 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 419 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 420 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 430 430 431 -=== 2.3.6 Decode payload in The Things Network === 432 432 423 +=== 2.3.3 Historical Water Flow Status, FPORT~=3 === 433 433 434 - WhileusingTTNnetwork,youcanaddthepayloadformatecodethepayload.425 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>url:http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L-LB_LoRaWAN_Flow_Sensor_User_Manual/#H2.5DatalogFeature]]. 435 435 436 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]427 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time water flow status. 437 437 438 -The payload decoder function for TTN V3 is here: 439 439 440 -((( 441 - DDS20-LBTTNV3PayloadDecoder:ps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]430 +* ((( 431 +Each data entry is 11 bytes and has the same structure as [[real time water flow status>>url:http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L-LB_LoRaWAN_Flow_Sensor_User_Manual/#H2.3.3A0WaterFlowValue2CUplinkFPORT3D2]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 442 442 ))) 443 443 434 +For example, in the US915 band, the max payload for different DR is: 444 444 445 - ==2.4UplinkInterval==436 +**a) DR0:** max is 11 bytes so one entry of data 446 446 438 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 447 447 448 - TheDDS20-LB by defaultuplink the sensor dataevery 20 minutes.Usercan changethis interval by AT Command or LoRaWAN Downlink Command. See thislink: [[ChangeUplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]440 +**c) DR2:** total payload includes 11 entries of data 449 449 442 +**d) DR3:** total payload includes 22 entries of data. 450 450 451 - ==2.5ShowData inDataCakeIoTServer==444 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 452 452 453 453 447 +**Downlink:** 448 + 449 +0x31 64 CC 68 0C 64 CC 69 74 05 450 + 451 +[[image:image-20230805144936-2.png||height="113" width="746"]] 452 + 453 +**Uplink:** 454 + 455 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 456 + 457 + 458 +**Parsed Value:** 459 + 460 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 461 + 462 + 463 +[360,176,30,High,True,2023-08-04 02:53:00], 464 + 465 +[355,168,30,Low,False,2023-08-04 02:53:29], 466 + 467 +[245,211,30,Low,False,2023-08-04 02:54:29], 468 + 469 +[57,700,30,Low,False,2023-08-04 02:55:29], 470 + 471 +[361,164,30,Low,True,2023-08-04 02:56:00], 472 + 473 +[337,184,30,Low,False,2023-08-04 02:56:40], 474 + 475 +[20,4458,30,Low,False,2023-08-04 02:57:40], 476 + 477 +[362,173,30,Low,False,2023-08-04 02:58:53], 478 + 479 + 480 +History read from serial port: 481 + 482 +[[image:image-20230805145056-3.png]] 483 + 484 + 485 +=== 2.3.3 Decode payload in The Things Network === 486 + 487 + 488 +While using TTN network, you can add the payload format to decode the payload. 489 + 490 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 491 + 492 + 454 454 ((( 494 +The payload decoder function for TTN is here: 495 +))) 496 + 497 +((( 498 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 499 +))) 500 + 501 + 502 +== 2.4 Show Data in DataCake IoT Server == 503 + 504 + 505 +((( 455 455 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 456 456 ))) 457 457 ... ... @@ -473,7 +473,7 @@ 473 473 474 474 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 475 475 476 -(% style="color:blue" %)**Step 4**(%%)**: Search the D DS20-LB and add DevEUI.**527 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 477 477 478 478 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 479 479 ... ... @@ -483,23 +483,22 @@ 483 483 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 484 484 485 485 537 +== 2.5 Datalog Feature == 486 486 487 -== 2.6 Datalog Feature == 488 488 540 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 489 489 490 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes. 491 491 543 +=== 2.5.1 Ways to get datalog via LoRaWAN === 492 492 493 -=== 2.6.1 Ways to get datalog via LoRaWAN === 494 494 546 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 495 495 496 -Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 497 - 498 498 * ((( 499 -a) D DS20-LB will do an ACK check for data records sending to make sure every data arrive server.549 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 500 500 ))) 501 501 * ((( 502 -b) D DS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.552 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 503 503 ))) 504 504 505 505 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -507,10 +507,10 @@ 507 507 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 508 508 509 509 510 -=== 2. 6.2 Unix TimeStamp ===560 +=== 2.5.2 Unix TimeStamp === 511 511 512 512 513 -D DS20-LB uses Unix TimeStamp format based on563 +LDS12-LB uses Unix TimeStamp format based on 514 514 515 515 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 516 516 ... ... @@ -524,23 +524,23 @@ 524 524 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 525 525 526 526 527 -=== 2. 6.3 Set Device Time ===577 +=== 2.5.3 Set Device Time === 528 528 529 529 530 530 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 531 531 532 -Once D DS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).582 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 533 533 534 534 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 535 535 536 536 537 -=== 2. 6.4 Poll sensor value ===587 +=== 2.5.4 Poll sensor value === 538 538 539 539 540 540 Users can poll sensor values based on timestamps. Below is the downlink command. 541 541 542 542 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 543 -|(% colspan="4" style="background-color:# d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**593 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 544 544 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 545 545 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 546 546 ... ... @@ -557,24 +557,108 @@ 557 557 ))) 558 558 559 559 ((( 560 -Uplink Internal =5s,means D DS20-LB will send one packet every 5s. range 5~~255s.610 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 561 561 ))) 562 562 563 563 564 -== 2. 7Frequency Plans ==614 +== 2.6 Frequency Plans == 565 565 566 566 567 -The D DS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.617 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 568 568 569 569 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 570 570 571 571 572 -= 3.ConfigureDDS20-LB=622 +== 2.7 LiDAR ToF Measurement == 573 573 624 +=== 2.7.1 Principle of Distance Measurement === 625 + 626 + 627 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 628 + 629 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 630 + 631 + 632 +=== 2.7.2 Distance Measurement Characteristics === 633 + 634 + 635 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 636 + 637 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 638 + 639 + 640 +((( 641 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 642 +))) 643 + 644 +((( 645 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 646 +))) 647 + 648 +((( 649 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 650 +))) 651 + 652 + 653 +((( 654 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 655 +))) 656 + 657 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 658 + 659 +((( 660 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 661 +))) 662 + 663 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 664 + 665 +((( 666 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 667 +))) 668 + 669 + 670 +=== 2.7.3 Notice of usage === 671 + 672 + 673 +Possible invalid /wrong reading for LiDAR ToF tech: 674 + 675 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 676 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 677 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 678 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 679 + 680 +=== 2.7.4 Reflectivity of different objects === 681 + 682 + 683 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 684 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 685 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 686 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 687 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 688 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 689 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 690 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 691 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 692 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 693 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 694 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 695 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 696 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 697 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 698 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 699 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 700 +Unpolished white metal surface 701 +)))|(% style="width:93px" %)130% 702 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 703 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 704 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 705 + 706 += 3. Configure LDS12-LB = 707 + 574 574 == 3.1 Configure Methods == 575 575 576 576 577 -D DS20-LB supports below configure method:711 +LDS12-LB supports below configure method: 578 578 579 579 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 580 580 ... ... @@ -596,10 +596,10 @@ 596 596 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 597 597 598 598 599 -== 3.3 Commands special design for D DS20-LB ==733 +== 3.3 Commands special design for LDS12-LB == 600 600 601 601 602 -These commands only valid for D DS20-LB, as below:736 +These commands only valid for LDS12-LB, as below: 603 603 604 604 605 605 === 3.3.1 Set Transmit Interval Time === ... ... @@ -614,7 +614,7 @@ 614 614 ))) 615 615 616 616 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 617 -|=(% style="width: 156px;background-color:# D9E2F3;#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;#0070c0" %)**Function**|=(% style="background-color:#D9E2F3;#0070c0" %)**Response**751 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 618 618 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 619 619 30000 620 620 OK ... ... @@ -642,6 +642,9 @@ 642 642 ))) 643 643 * ((( 644 644 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 779 + 780 + 781 + 645 645 ))) 646 646 647 647 === 3.3.2 Set Interrupt Mode === ... ... @@ -654,7 +654,7 @@ 654 654 (% style="color:blue" %)**AT Command: AT+INTMOD** 655 655 656 656 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 657 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**794 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 658 658 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 659 659 0 660 660 OK ... ... @@ -678,10 +678,39 @@ 678 678 679 679 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 680 680 818 +=== 3.3.3 Set Power Output Duration === 819 + 820 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 821 + 822 +~1. first enable the power output to external sensor, 823 + 824 +2. keep it on as per duration, read sensor value and construct uplink payload 825 + 826 +3. final, close the power output. 827 + 828 +(% style="color:blue" %)**AT Command: AT+3V3T** 829 + 830 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 831 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 832 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 833 +OK 834 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 835 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 836 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 837 + 838 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 839 +Format: Command Code (0x07) followed by 3 bytes. 840 + 841 +The first byte is 01,the second and third bytes are the time to turn on. 842 + 843 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 844 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 845 +* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 846 + 681 681 = 4. Battery & Power Consumption = 682 682 683 683 684 -D DS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.850 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 685 685 686 686 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 687 687 ... ... @@ -690,7 +690,7 @@ 690 690 691 691 692 692 (% class="wikigeneratedid" %) 693 -User can change firmware D DS20-LB to:859 +User can change firmware LDS12-LB to: 694 694 695 695 * Change Frequency band/ region. 696 696 ... ... @@ -698,49 +698,48 @@ 698 698 699 699 * Fix bugs. 700 700 701 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/p h4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**867 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 702 702 703 703 Methods to Update Firmware: 704 704 705 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 871 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 706 706 707 707 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 708 708 709 709 = 6. FAQ = 710 710 711 -== 6.1 DS20-LB? ==877 +== 6.1 What is the frequency plan for LDS12-LB? == 712 712 713 713 714 -D DS20-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]880 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 715 715 716 716 717 -= =6.2Can IuseDDS20-LB in condensationenvironment?==883 += 7. Trouble Shooting = 718 718 885 +== 7.1 AT Command input doesn't work == 719 719 720 -DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0. 721 721 888 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 722 722 723 -= 7. Trouble Shooting = 724 724 725 -== 7. 1Why Ican'tjoinTTNV3inUS915/AU915bands?==891 +== 7.2 Significant error between the output distant value of LiDAR and actual distance == 726 726 727 727 728 -It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 894 +((( 895 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 896 +))) 729 729 898 +((( 899 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 900 +))) 730 730 731 -== 7.2 AT Command input doesn't work == 732 732 733 - 734 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 735 - 736 - 737 -== 7.3 Why i always see 0x0000 or 0 for the distance value? == 738 - 739 - 740 740 ((( 741 -LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallLDDS20"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 904 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 905 +))) 742 742 743 -If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 907 +((( 908 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 744 744 ))) 745 745 746 746 ... ... @@ -747,7 +747,7 @@ 747 747 = 8. Order Info = 748 748 749 749 750 -Part Number: (% style="color:blue" %)**D DS20-LB-XXX**915 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 751 751 752 752 (% style="color:red" %)**XXX**(%%): **The default frequency band** 753 753 ... ... @@ -767,15 +767,12 @@ 767 767 768 768 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 769 769 770 - 771 - 772 - 773 773 = 9. Packing Info = 774 774 775 775 776 776 (% style="color:#037691" %)**Package Includes**: 777 777 778 -* D DS20-LB LoRaWANUltrasonicLiquid LevelSensor x 1940 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 779 779 780 780 (% style="color:#037691" %)**Dimension and weight**: 781 781 ... ... @@ -787,9 +787,6 @@ 787 787 788 788 * Weight / pcs : g 789 789 790 - 791 - 792 - 793 793 = 10. Support = 794 794 795 795
- image-20230614153353-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +112.1 KB - Content
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +30.7 KB - Content