Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 5 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -D DS20-LB -- LoRaWANUltrasonicLiquid LevelSensor User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023061 3133716-2.png||height="717" width="717"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,24 +19,24 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN Ultrasonicliquid levelSensor ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino D DS20-LB is a (% style="color:blue" %)**LoRaWANUltrasonicliquidlevelsensor**(%%) for Internet of Things solution. Ituses (%style="color:blue"%)**none-contact method**(%%)tomeasure the(%style="color:blue" %)**heightofliquid**(%%)ina containerwithoutopeningthecontainer,andsendthevalueviaLoRaWANnetworktoIoTServer.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -The D DS20-LBsensorisinstalleddirectly belowthecontainertodetect theheightoftheliquidlevel. Userdoesn't needtoopen aholeon the containerto betested.Thenone-contactmeasurementmakesthemeasurement safety, easierand possibleforsome strict situation.26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 28 29 - DDS20-LBuses (% style="color:blue" %)**ultrasonicsensingtechnology**(%%)fordistancemeasurement.DDS20-LB is ofhighaccuracy tomeasurevarious liquidsuch as: (% style="color:blue" %)**toxicsubstances**(%%), (%style="color:blue"%)**strong acids**(%%), (% style="color:blue"%)**strongalkalis**(%%) and(%style="color:blue" %)**variouspureliquids**(%%) inhigh-temperature andhigh-pressureairtightcontainers.28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 30 30 31 -The LoRa wireless technology used in D DS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 32 33 -D DS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 -D DS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 37 -Each D DS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 38 38 39 -[[image:image-2023061 3140115-3.png||height="453" width="800"]]38 +[[image:image-20230615152941-1.png||height="459" width="800"]] 40 40 41 41 42 42 == 1.2 Features == ... ... @@ -45,16 +45,14 @@ 45 45 * LoRaWAN 1.0.3 Class A 46 46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 47 47 * Ultra-low power consumption 48 -* Liquid Level Measurement by Ultrasonic technology 49 -* Measure through container, No need to contact Liquid 50 -* Valid level range 20mm - 2000mm 51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 52 -* Cable Length : 25cm 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 53 53 * Support Bluetooth v5.1 and LoRaWAN remote configure 54 54 * Support wireless OTA update firmware 55 55 * AT Commands to change parameters 56 56 * Downlink to change configure 57 -* IP66 Waterproof Enclosure 58 58 * 8500mAh Battery for long term use 59 59 60 60 == 1.3 Specification == ... ... @@ -65,6 +65,23 @@ 65 65 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 66 66 * Operating Temperature: -40 ~~ 85°C 67 67 65 +(% style="color:#037691" %)**Probe Specification:** 66 + 67 +* Storage temperature:-20℃~~75℃ 68 +* Operating temperature : -20℃~~60℃ 69 +* Measure Distance: 70 +** 0.1m ~~ 12m @ 90% Reflectivity 71 +** 0.1m ~~ 4m @ 10% Reflectivity 72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 74 +* Ambient light immunity : 70klux 75 +* Enclosure rating : IP65 76 +* Light source : LED 77 +* Central wavelength : 850nm 78 +* FOV : 3.6° 79 +* Material of enclosure : ABS+PC 80 +* Wire length : 25cm 81 + 68 68 (% style="color:#037691" %)**LoRa Spec:** 69 69 70 70 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -85,331 +85,296 @@ 85 85 * Sleep Mode: 5uA @ 3.3v 86 86 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 87 87 88 -== 1.4 Suitable Container& Liquid==102 +== 1.4 Applications == 89 89 90 90 91 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 92 -* Container shape is regular, and surface is smooth. 93 -* Container Thickness: 94 -** Pure metal material. 2~~8mm, best is 3~~5mm 95 -** Pure non metal material: <10 mm 96 -* Pure liquid without irregular deposition.(% style="display:none" %) 105 +* Horizontal distance measurement 106 +* Parking management system 107 +* Object proximity and presence detection 108 +* Intelligent trash can management system 109 +* Robot obstacle avoidance 110 +* Automatic control 111 +* Sewer 97 97 113 +(% style="display:none" %) 98 98 99 -== 1.5 InstallDDS20-LB==115 +== 1.5 Sleep mode and working mode == 100 100 101 101 102 -(% style="color:blue" %)**S tep1**(%%):Choose the installation point.118 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 103 103 104 - DDS20-LB(% style="color:red" %)**MUST**(%%)beinstalledon thecontainerbottommiddle position.120 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 105 105 106 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 107 107 123 +== 1.6 Button & LEDs == 108 108 109 -((( 110 -(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 111 -))) 112 112 113 -((( 114 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 115 -))) 126 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 116 116 117 -[[image:image-20230613143052-5.png]] 118 118 129 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 130 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 131 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 132 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 133 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 134 +))) 135 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 136 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 137 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 138 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 139 +))) 140 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 119 119 120 - Nopolishneededif thecontainer is shine metal surface without paintornon-metalcontainer.142 +== 1.7 BLE connection == 121 121 122 -[[image:image-20230613143125-6.png]] 123 123 145 +LDS12-LB support BLE remote configure. 124 124 125 -((( 126 -(% style="color:blue" %)**Step3: **(%%)Test the installation point. 127 -))) 147 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 128 128 129 - (((130 -P oweron DDS20-LB, check if the blue LED ison, If theblue LED is on, meansthe sensor works. Then putultrasoniccoupling pasteonthe sensorand putt tightly on the installation point.131 - )))149 +* Press button to send an uplink 150 +* Press button to active device. 151 +* Device Power on or reset. 132 132 153 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 133 133 134 -((( 135 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 136 -))) 137 137 138 - [[image:1655256160324-178.png||height="151"width="419"]][[image:image-20220615092327-13.png||height="146" width="260"]]156 +== 1.8 Pin Definitions == 139 139 158 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 140 140 141 -((( 142 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 143 -))) 144 144 161 +== 1.9 Mechanical == 145 145 146 -((( 147 -(% style="color:red" %)**LED Status:** 148 -))) 149 149 150 -* ((( 151 -Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 152 -))) 164 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 153 153 154 -* ((( 155 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 156 -))) 157 -* ((( 158 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 159 -))) 160 160 161 -((( 162 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 163 -))) 167 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 164 164 165 165 166 -((( 167 -(% style="color:red" %)**Note 2:** 168 -))) 170 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 169 169 170 -((( 171 -(% style="color:red" %)**Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 172 -))) 173 173 173 +(% style="color:blue" %)**Probe Mechanical:** 174 174 175 -((( 176 -(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 177 -))) 178 178 179 -((( 180 -Prepare Eproxy AB glue. 181 -))) 176 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 182 182 183 -((( 184 -Put Eproxy AB glue in the sensor and press it hard on the container installation point. 185 -))) 186 186 187 -((( 188 -Reset DDS20-LB and see if the BLUE LED is slowly blinking. 189 -))) 179 += 2. Configure LDS12-LB to connect to LoRaWAN network = 190 190 191 - [[image:image-20220615091045-8.png||height="203" width="341"]][[image:image-20220615091045-9.png||height="200"width="284"]]181 +== 2.1 How it works == 192 192 193 193 194 -((( 195 -(% style="color:red" %)**Note 1:** 196 -))) 184 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 197 197 198 -((( 199 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 200 -))) 186 +(% style="display:none" %) (%%) 201 201 188 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 202 202 203 -((( 204 -(% style="color:red" %)**Note 2:** 205 -))) 206 206 207 -((( 208 -(% style="color:red" %)**Eproxy AB glue**(%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 209 -))) 191 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 210 210 193 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 211 211 212 - ==1.6 Applications==195 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 213 213 214 214 215 - *Smartiquidcontrolsolution.198 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 216 216 217 - *Smartliquefiedgassolution.200 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 218 218 202 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 219 219 220 220 221 - ==1.7Precautions==205 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 222 222 223 223 224 - *Atroom temperature,containersof different materials, such as steel,glass,iron, ceramics, non-foamed plastics and otherdense materials,have different detection blind areas and detection limit heights.208 +(% style="color:blue" %)**Register the device** 225 225 226 - * Fortainersof thesame materialatroom temperature, thedetectionblind zoned detection limit height areso differentfor the thickness of the container.210 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 227 227 228 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %) 229 229 213 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 230 230 231 - == 1.8 Sleepworking mode215 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 232 232 233 233 234 -(% style="color:blue" %)** Deep Sleep Mode: **(%%)Sensordoesn'thave any LoRaWANactivate.Thismode is used for storage and shipping to save battery life.218 +(% style="color:blue" %)**Add APP EUI in the application** 235 235 236 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 237 237 221 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 238 238 239 -== 1.9 Button & LEDs == 240 240 224 +(% style="color:blue" %)**Add APP KEY** 241 241 242 -[[image: Main.User.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]226 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 243 243 244 244 245 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 246 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 247 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 248 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 249 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 250 -))) 251 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 252 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 253 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 254 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 255 -))) 256 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 229 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 257 257 258 -== 1.10 BLE connection == 259 259 232 +Press the button for 5 seconds to activate the LDS12-LB. 260 260 261 - DDS20-LBsupportBLEremote configure.234 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 262 262 263 - BLEcanbe usedtoconfiguretheparameterofsensororsee theconsole output fromnsor.BLE will be onlyactivateonbelow case:236 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 264 264 265 -* Press button to send an uplink 266 -* Press button to active device. 267 -* Device Power on or reset. 268 268 269 - Ifthereisnoactivityconnection on BLE in 60 seconds, sensor will shut down BLE moduleto enter low power mode.239 +== 2.3 Uplink Payload == 270 270 271 271 272 -== 1.11PinDefinitions ==242 +=== 2.3.1 Device Status, FPORT~=5 === 273 273 274 -[[image:image-20230523174230-1.png]] 275 275 245 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 276 276 277 - ==1.12Mechanical==247 +The Payload format is as below. 278 278 249 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 250 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 251 +**Size(bytes)** 252 +)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2** 253 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 279 279 280 - [[image:Main.User Manual for LoRaWANEnd Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]255 +Example parse in TTNv3 281 281 257 +**Sensor Model**: For LDS12-LB, this value is 0x24 282 282 283 - [[image:Main.UserManualforLoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]259 +**Firmware Version**: 0x0100, Means: v1.0.0 version 284 284 261 +**Frequency Band**: 285 285 286 - [[image:Main.UserManual for LoRaWANEnd Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]263 +0x01: EU868 287 287 265 +0x02: US915 288 288 289 - (% style="color:blue"%)**Probe Mechanical:**267 +0x03: IN865 290 290 291 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]269 +0x04: AU915 292 292 271 +0x05: KZ865 293 293 294 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]273 +0x06: RU864 295 295 275 +0x07: AS923 296 296 297 - =2. Configure DDS20-LB to connect to LoRaWAN network =277 +0x08: AS923-1 298 298 299 - ==2.1 How it works ==279 +0x09: AS923-2 300 300 281 +0x0a: AS923-3 301 301 302 - The DDS45-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) modebydefault. It has OTAA keys to join LoRaWANnetwork. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS45-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20minutes.283 +0x0b: CN470 303 303 304 - (% style="display:none"%) (%%)285 +0x0c: EU433 305 305 306 - == 2.2 Quick guideto connect to LoRaWAN server (OTAA) ==287 +0x0d: KR920 307 307 289 +0x0e: MA869 308 308 309 - Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.291 +**Sub-Band**: 310 310 311 - TheLPS8v2 isalready set to connectedto [[TTN network >>url:https://console.cloud.thethings.network/]],sowhatwe need to now is configure the TTN server.293 +AU915 and US915:value 0x00 ~~ 0x08 312 312 313 - [[image:image-20230613140140-4.png||height="453"width="800"]](%style="display:none"%)295 +CN470: value 0x0B ~~ 0x0C 314 314 297 +Other Bands: Always 0x00 315 315 316 - (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with theOTAA keysfrom DDS45-LB.299 +**Battery Info**: 317 317 318 - EachDDS45-LB is shipped with a stickerwiththedefaultdeviceEUIas below:301 +Check the battery voltage. 319 319 320 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png"height="233"width="502"]]303 +Ex1: 0x0B45 = 2885mV 321 321 305 +Ex2: 0x0B49 = 2889mV 322 322 323 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 324 324 308 +=== 2.3.2 Uplink Payload, FPORT~=2 === 325 325 326 -(% style="color:blue" %)**Register the device** 327 327 328 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 311 +((( 312 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 313 +))) 329 329 315 +((( 316 +Uplink payload includes in total 11 bytes. 317 +))) 330 330 331 -(% style="color:blue" %)**Add APP EUI and DEV EUI** 319 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %) 320 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 321 +**Size(bytes)** 322 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1** 323 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)((( 324 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 325 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)((( 326 +[[Interrupt flag>>]] 332 332 333 -[[ image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]328 +[[&>>]] 334 334 330 +[[Interrupt_level>>]] 331 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)((( 332 +[[Message Type>>||anchor="H2.3.7MessageType"]] 333 +))) 335 335 336 - (% style="color:blue"%)**AddPP EUIinthepplication**335 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 337 337 338 338 339 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]338 +==== 2.3.2.a Battery Info ==== 340 340 341 341 342 - (%style="color:blue"%)**Add APP KEY**341 +Check the battery voltage for LDS12-LB. 343 343 344 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]343 +Ex1: 0x0B45 = 2885mV 345 345 345 +Ex2: 0x0B49 = 2889mV 346 346 347 -(% style="color:blue" %)**Step 2:**(%%) Activate on DDS45-LB 348 348 348 +==== 2.3.2.b DS18B20 Temperature sensor ==== 349 349 350 -Press the button for 5 seconds to activate the DDS45-LB. 351 351 352 - (%style="color:green" %)**Greenled**(%%)will fastblink5 times, devicewillenter(%style="color:blue"%)**OTA mode**(%%)for3seconds.Andthenstartto JOIN LoRaWANnetwork.(% style="color:green"%)**Greenled**(%%)willsolidly turnon for5 seconds after joined in network.351 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 353 353 354 -After join success, it will start to upload messages to TTN and you can see the messages in the panel. 355 355 354 +**Example**: 356 356 357 - ==2.3 Uplink Payload ==356 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 358 358 358 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 359 359 360 -((( 361 -DDS45-LB will uplink payload via LoRaWAN with below payload format: 362 -))) 363 363 364 -((( 365 -Uplink payload includes in total 8 bytes. 366 -))) 361 +==== 2.3.2.c Distance ==== 367 367 368 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 369 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 370 -**Size(bytes)** 371 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 372 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 373 -[[Distance>>||anchor="H2.3.2A0Distance"]] 374 -(unit: mm) 375 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 376 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 377 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 378 378 379 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]364 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 380 380 381 381 382 - === 2.3.1 Battery Info ===367 +**Example**: 383 383 369 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 384 384 385 -Check the battery voltage for DDS45-LB. 386 386 387 - Ex1: 0x0B45= 2885mV372 +==== 2.3.2.d Distance signal strength ==== 388 388 389 -Ex2: 0x0B49 = 2889mV 390 390 375 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 391 391 392 -=== 2.3.2 Distance === 393 393 378 +**Example**: 394 394 395 -((( 396 -Get the distance. Flat object range 30mm - 4500mm. 397 -))) 380 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 398 398 399 -((( 400 -For example, if the data you get from the register is **0x0B 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 382 +Customers can judge whether they need to adjust the environment based on the signal strength. 401 401 402 -(% style="color:blue" %)**0B05(H) = 2821 (D) = 2821 mm.** 403 -))) 404 404 405 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 406 -* If the sensor value lower than 0x001E (30mm), the sensor value will be 0x00. 385 +==== 2.3.2.e Interrupt Pin & Interrupt Level ==== 407 407 408 -=== 2.3.3 Interrupt Pin === 409 409 410 - 411 411 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 412 412 390 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 391 + 413 413 **Example:** 414 414 415 415 0x00: Normal uplink packet. ... ... @@ -417,53 +417,58 @@ 417 417 0x01: Interrupt Uplink Packet. 418 418 419 419 420 -=== 2.3. 4DS18B20Temperaturesensor===399 +==== 2.3.2.f LiDAR temp ==== 421 421 422 422 423 - This is optional, usercanconnectxternal DS18B20 sensorto the+3.3v, 1-wire and GND pin . andthis fieldwill reporttemperature.402 +Characterize the internal temperature value of the sensor. 424 424 425 -**Example**: 404 +**Example: ** 405 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 406 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 426 426 427 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 428 428 429 - If payload is: FF3FH : (FF3F & FC00==1) , temp=(FF3FH - 65536)/10=-19.3degrees.409 +==== 2.3.2.g Message Type ==== 430 430 431 431 432 -=== 2.3.5 Sensor Flag === 433 - 434 - 435 435 ((( 436 - 0x01:DetectUltrasonicSensor413 +For a normal uplink payload, the message type is always 0x01. 437 437 ))) 438 438 439 439 ((( 440 - 0x00: No UltrasonicSensor417 +Valid Message Type: 441 441 ))) 442 442 420 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 421 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 422 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 423 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 443 443 444 -=== 2.3. 6425 +=== 2.3.3 Decode payload in The Things Network === 445 445 446 446 447 447 While using TTN network, you can add the payload format to decode the payload. 448 448 449 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LD DS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]430 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 450 450 451 -The payload decoder function for TTN V3 is here: 452 452 453 453 ((( 454 - DDS45-LBTTNV3 PayloadDecoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]434 +The payload decoder function for TTN is here: 455 455 ))) 456 456 437 +((( 438 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 439 +))) 457 457 458 -== 2.4 Uplink Interval == 459 459 442 +== 2.4 Uplink Interval == 460 460 461 -The DDS45-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 462 462 445 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 463 463 464 -== 2.5 Show Data in DataCake IoT Server == 465 465 448 +== 2.5 Show Data in DataCake IoT Server == 466 466 450 + 467 467 ((( 468 468 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 469 469 ))) ... ... @@ -486,7 +486,7 @@ 486 486 487 487 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 488 488 489 -(% style="color:blue" %)**Step 4**(%%)**: Search the D DS45-LB and add DevEUI.**473 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 490 490 491 491 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 492 492 ... ... @@ -496,23 +496,22 @@ 496 496 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 497 497 498 498 499 - 500 500 == 2.6 Datalog Feature == 501 501 502 502 503 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, D DS45-LB will store the reading for future retrieving purposes.486 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 504 504 505 505 506 506 === 2.6.1 Ways to get datalog via LoRaWAN === 507 507 508 508 509 -Set PNACKMD=1, D DS45-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS45-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.492 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 510 510 511 511 * ((( 512 -a) D DS45-LB will do an ACK check for data records sending to make sure every data arrive server.495 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 513 513 ))) 514 514 * ((( 515 -b) D DS45-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS45-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS45-LB gets a ACK, DDS45-LB will consider there is a network connection and resend all NONE-ACK messages.498 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 516 516 ))) 517 517 518 518 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -523,7 +523,7 @@ 523 523 === 2.6.2 Unix TimeStamp === 524 524 525 525 526 -D DS45-LB uses Unix TimeStamp format based on509 +LDS12-LB uses Unix TimeStamp format based on 527 527 528 528 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 529 529 ... ... @@ -542,7 +542,7 @@ 542 542 543 543 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 544 544 545 -Once D DS45-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS45-LB. If DDS45-LB fails to get the time from the server, DDS45-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).528 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 546 546 547 547 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 548 548 ... ... @@ -570,7 +570,7 @@ 570 570 ))) 571 571 572 572 ((( 573 -Uplink Internal =5s,means D DS45-LB will send one packet every 5s. range 5~~255s.556 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 574 574 ))) 575 575 576 576 ... ... @@ -577,17 +577,101 @@ 577 577 == 2.7 Frequency Plans == 578 578 579 579 580 -The D DS45-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.563 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 581 581 582 582 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 583 583 584 584 585 -= 3.ConfigureDDS45-LB=568 +== 2.8 LiDAR ToF Measurement == 586 586 570 +=== 2.8.1 Principle of Distance Measurement === 571 + 572 + 573 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 574 + 575 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 576 + 577 + 578 +=== 2.8.2 Distance Measurement Characteristics === 579 + 580 + 581 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 582 + 583 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 584 + 585 + 586 +((( 587 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 588 +))) 589 + 590 +((( 591 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 592 +))) 593 + 594 +((( 595 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 596 +))) 597 + 598 + 599 +((( 600 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 601 +))) 602 + 603 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 604 + 605 +((( 606 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 607 +))) 608 + 609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 610 + 611 +((( 612 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 613 +))) 614 + 615 + 616 +=== 2.8.3 Notice of usage === 617 + 618 + 619 +Possible invalid /wrong reading for LiDAR ToF tech: 620 + 621 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 622 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 623 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 624 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 625 + 626 +=== 2.8.4 Reflectivity of different objects === 627 + 628 + 629 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 630 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 631 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 632 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 633 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 634 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 635 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 636 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 637 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 638 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 639 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 640 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 641 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 642 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 643 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 644 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 645 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 646 +Unpolished white metal surface 647 +)))|(% style="width:93px" %)130% 648 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 649 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 650 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 651 + 652 += 3. Configure LDS12-LB = 653 + 587 587 == 3.1 Configure Methods == 588 588 589 589 590 -D DS45-LB supports below configure method:657 +LDS12-LB supports below configure method: 591 591 592 592 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 593 593 ... ... @@ -609,10 +609,10 @@ 609 609 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 610 610 611 611 612 -== 3.3 Commands special design for D DS45-LB ==679 +== 3.3 Commands special design for LDS12-LB == 613 613 614 614 615 -These commands only valid for D DS45-LB, as below:682 +These commands only valid for LDS12-LB, as below: 616 616 617 617 618 618 === 3.3.1 Set Transmit Interval Time === ... ... @@ -627,7 +627,7 @@ 627 627 ))) 628 628 629 629 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 630 -|=(% style="width: 156px;background-color:# D9E2F3;#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;#0070c0" %)**Function**|=(% style="background-color:#D9E2F3;#0070c0" %)**Response**697 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 631 631 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 632 632 30000 633 633 OK ... ... @@ -655,6 +655,9 @@ 655 655 ))) 656 656 * ((( 657 657 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 725 + 726 + 727 + 658 658 ))) 659 659 660 660 === 3.3.2 Set Interrupt Mode === ... ... @@ -667,7 +667,7 @@ 667 667 (% style="color:blue" %)**AT Command: AT+INTMOD** 668 668 669 669 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 670 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**740 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 671 671 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 672 672 0 673 673 OK ... ... @@ -691,10 +691,37 @@ 691 691 692 692 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 693 693 764 +=== 3.3.3 Set Power Output Duration === 765 + 766 +Control the output duration 3V3 . Before each sampling, device will 767 + 768 +~1. first enable the power output to external sensor, 769 + 770 +2. keep it on as per duration, read sensor value and construct uplink payload 771 + 772 +3. final, close the power output. 773 + 774 +(% style="color:blue" %)**AT Command: AT+3V3T** 775 + 776 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 777 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 778 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 779 +OK 780 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 781 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 782 + 783 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 784 +Format: Command Code (0x07) followed by 3 bytes. 785 + 786 +The first byte is 01,the second and third bytes are the time to turn on. 787 + 788 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 789 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 790 + 694 694 = 4. Battery & Power Consumption = 695 695 696 696 697 -D DS45-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.794 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 698 698 699 699 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 700 700 ... ... @@ -703,7 +703,7 @@ 703 703 704 704 705 705 (% class="wikigeneratedid" %) 706 -User can change firmware D DS45-LB to:803 +User can change firmware LDS12-LB to: 707 707 708 708 * Change Frequency band/ region. 709 709 ... ... @@ -711,77 +711,55 @@ 711 711 712 712 * Fix bugs. 713 713 714 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ a5ue0nfrzqy9nz6/AABbvlATosDJKDwBmbirVbMYa?dl=0]]**811 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 715 715 716 716 Methods to Update Firmware: 717 717 718 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 815 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 719 719 720 720 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 721 721 722 722 = 6. FAQ = 723 723 724 -== 6.1 DS45-LB? ==821 +== 6.1 What is the frequency plan for LDS12-LB? == 725 725 726 726 727 -D DS45-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]824 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 728 728 729 729 730 -= =6.2Can IuseDDS45-LB in condensationenvironment?==827 += 7. Trouble Shooting = 731 731 829 +== 7.1 AT Command input doesn't work == 732 732 733 -DDS45-LB is not suitable to be used in condensation environment. Condensation on the DDS45-LB probe will affect the reading and always got 0. 734 734 735 - 736 -= 7. Trouble Shooting = 737 - 738 -== 7.1 Why I can't join TTN V3 in US915 / AU915 bands? == 739 - 740 - 741 -It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 742 - 743 - 744 -== 7.2 AT Command input doesn't work == 745 - 746 - 747 747 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 748 748 749 749 750 -== 7. 3Why doesthesensorreadingshow0or"Nosensor"==835 +== 7.2 Significant error between the output distant value of LiDAR and actual distance == 751 751 752 752 753 -~1. The measurement object is very close to the sensor, but in the blind spot of the sensor. 838 +((( 839 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 840 +))) 754 754 755 -2. Sensor wiring is disconnected 842 +((( 843 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 844 +))) 756 756 757 -3. Not using the correct decoder 758 758 847 +((( 848 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 849 +))) 759 759 760 -== 7.4 Abnormal readings The gap between multiple readings is too large or the gap between the readings and the actual value is too large == 851 +((( 852 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 853 +))) 761 761 762 762 763 -1) Please check if there is something on the probe affecting its measurement (condensed water, volatile oil, etc.) 764 - 765 -2) Does it change with temperature, temperature will affect its measurement 766 - 767 -3) If abnormal data occurs, you can turn on DEBUG mode, Please use downlink or AT COMMAN to enter DEBUG mode. 768 - 769 -downlink command: (% style="color:blue" %)**F1 01**(%%), AT command: (% style="color:blue" %)**AT+DDEBUG=1** 770 - 771 -4) After entering the debug mode, it will send 20 pieces of data at a time, and you can send its uplink to us for analysis 772 - 773 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20230113135125-2.png?width=1057&height=136&rev=1.1||alt="image-20230113135125-2.png"]] 774 - 775 - 776 -Its original payload will be longer than other data. Even though it is being parsed, it can be seen that it is abnormal data. 777 - 778 -Please send the data to us for check. 779 - 780 - 781 781 = 8. Order Info = 782 782 783 783 784 -Part Number: (% style="color:blue" %)**D DS45-LB-XXX**859 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 785 785 786 786 (% style="color:red" %)**XXX**(%%): **The default frequency band** 787 787 ... ... @@ -806,7 +806,7 @@ 806 806 807 807 (% style="color:#037691" %)**Package Includes**: 808 808 809 -* D DS45-LB LoRaWAN DistanceDetectionSensor x 1884 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 810 810 811 811 (% style="color:#037691" %)**Dimension and weight**: 812 812
- image-20230614153353-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +112.1 KB - Content
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content