Last modified by Mengting Qiu on 2023/12/14 11:15

From version 79.3
edited by Xiaoling
on 2023/06/13 14:31
Change comment: There is no comment for this version
To version 82.5
edited by Xiaoling
on 2023/06/14 16:50
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230613133716-2.png||height="717" width="717"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,24 +19,24 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 28  
29 -DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 30  
31 -The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 32  
33 -DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
37 -Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
39 -[[image:image-20230613140115-3.png||height="453" width="800"]]
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
40 40  
41 41  
42 42  == 1.2 ​Features ==
... ... @@ -45,16 +45,14 @@
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 47  * Ultra-low power consumption
48 -* Liquid Level Measurement by Ultrasonic technology
49 -* Measure through container, No need to contact Liquid
50 -* Valid level range 20mm - 2000mm
51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 -* Cable Length : 25cm
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
53 53  * Support Bluetooth v5.1 and LoRaWAN remote configure
54 54  * Support wireless OTA update firmware
55 55  * AT Commands to change parameters
56 56  * Downlink to change configure
57 -* IP66 Waterproof Enclosure
58 58  * 8500mAh Battery for long term use
59 59  
60 60  == 1.3 Specification ==
... ... @@ -65,6 +65,23 @@
65 65  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
66 66  * Operating Temperature: -40 ~~ 85°C
67 67  
65 +(% style="color:#037691" %)**Probe Specification:**
66 +
67 +* Storage temperature:-20℃~~75℃
68 +* Operating temperature : -20℃~~60℃
69 +* Measure Distance:
70 +** 0.1m ~~ 12m @ 90% Reflectivity
71 +** 0.1m ~~ 4m @ 10% Reflectivity
72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 +* Distance resolution : 5mm
74 +* Ambient light immunity : 70klux
75 +* Enclosure rating : IP65
76 +* Light source : LED
77 +* Central wavelength : 850nm
78 +* FOV : 3.6°
79 +* Material of enclosure : ABS+PC
80 +* Wire length : 25cm
81 +
68 68  (% style="color:#037691" %)**LoRa Spec:**
69 69  
70 70  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -85,158 +85,32 @@
85 85  * Sleep Mode: 5uA @ 3.3v
86 86  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
87 87  
88 -== 1.4 Suitable Container & Liquid ==
89 89  
90 90  
91 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
92 -* Container shape is regular, and surface is smooth.
93 -* Container Thickness:
94 -** Pure metal material.  2~~8mm, best is 3~~5mm
95 -** Pure non metal material: <10 mm
96 -* Pure liquid without irregular deposition.(% style="display:none" %)
104 +== 1.4 Applications ==
97 97  
98 98  
99 -== 1.5 Install DDS20-LB ==
107 +* Horizontal distance measurement
108 +* Parking management system
109 +* Object proximity and presence detection
110 +* Intelligent trash can management system
111 +* Robot obstacle avoidance
112 +* Automatic control
113 +* Sewer
100 100  
101 101  
102 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
103 103  
104 -DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
117 +(% style="display:none" %)
105 105  
106 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
119 +== 1.5 Sleep mode and working mode ==
107 107  
108 108  
109 -(((
110 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
111 -)))
112 -
113 -(((
114 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
115 -)))
116 -
117 -[[image:image-20230613143052-5.png]]
118 -
119 -
120 -No polish needed if the container is shine metal surface without paint or non-metal container.
121 -
122 -[[image:image-20230613143125-6.png]]
123 -
124 -
125 -(((
126 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
127 -)))
128 -
129 -(((
130 -Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
131 -)))
132 -
133 -
134 -(((
135 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
136 -)))
137 -
138 -[[image:1655256160324-178.png||height="151" width="419"]][[image:image-20220615092327-13.png||height="146" width="260"]]
139 -
140 -
141 -(((
142 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
143 -)))
144 -
145 -
146 -(((
147 -(% style="color:red" %)**LED Status:**
148 -)))
149 -
150 -* (((
151 -Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
152 -)))
153 -
154 -* (((
155 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
156 -)))
157 -* (((
158 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
159 -)))
160 -
161 -(((
162 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
163 -)))
164 -
165 -
166 -(((
167 -(% style="color:red" %)**Note 2:**
168 -)))
169 -
170 -(((
171 -(% style="color:red" %)**Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
172 -)))
173 -
174 -
175 -(((
176 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
177 -)))
178 -
179 -(((
180 -Prepare Eproxy AB glue.
181 -)))
182 -
183 -(((
184 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
185 -)))
186 -
187 -(((
188 -Reset DDS20-LB and see if the BLUE LED is slowly blinking.
189 -)))
190 -
191 -[[image:image-20220615091045-8.png||height="203" width="341"]] [[image:image-20220615091045-9.png||height="200" width="284"]]
192 -
193 -
194 -(((
195 -(% style="color:red" %)**Note 1:**
196 -)))
197 -
198 -(((
199 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
200 -)))
201 -
202 -
203 -(((
204 -(% style="color:red" %)**Note 2:**
205 -)))
206 -
207 -(((
208 -(% style="color:red" %)**Eproxy AB glue**(%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
209 -)))
210 -
211 -
212 -== 1.6 Applications ==
213 -
214 -
215 -* Smart liquid control solution.
216 -
217 -* Smart liquefied gas solution.
218 -
219 -
220 -
221 -== 1.7 Precautions ==
222 -
223 -
224 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
225 -
226 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
227 -
228 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %)
229 -
230 -
231 -== 1.8 Sleep mode and working mode ==
232 -
233 -
234 234  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 235  
236 236  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 237  
238 238  
239 -== 1.9 Button & LEDs ==
127 +== 1.6 Button & LEDs ==
240 240  
241 241  
242 242  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -255,10 +255,10 @@
255 255  )))
256 256  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
257 257  
258 -== 1.10 BLE connection ==
146 +== 1.7 BLE connection ==
259 259  
260 260  
261 -DDS20-LB support BLE remote configure.
149 +LDS12-LB support BLE remote configure.
262 262  
263 263  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
264 264  
... ... @@ -269,14 +269,15 @@
269 269  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
270 270  
271 271  
272 -== 1.11 Pin Definitions ==
160 +== 1.8 Pin Definitions ==
273 273  
274 -[[image:image-20230523174230-1.png]]
162 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
275 275  
276 276  
277 -== 1.12 Mechanical ==
278 278  
166 +== 1.9 Mechanical ==
279 279  
168 +
280 280  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
281 281  
282 282  
... ... @@ -288,18 +288,17 @@
288 288  
289 289  (% style="color:blue" %)**Probe Mechanical:**
290 290  
291 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
292 292  
293 293  
294 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
182 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
295 295  
296 296  
297 -= 2. Configure DDS20-LB to connect to LoRaWAN network =
185 += 2. Configure LDS12-LB to connect to LoRaWAN network =
298 298  
299 299  == 2.1 How it works ==
300 300  
301 301  
302 -The DDS45-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS45-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
190 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
303 303  
304 304  (% style="display:none" %) (%%)
305 305  
... ... @@ -310,12 +310,12 @@
310 310  
311 311  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
312 312  
313 -[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
201 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
314 314  
315 315  
316 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS45-LB.
204 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
317 317  
318 -Each DDS45-LB is shipped with a sticker with the default device EUI as below:
206 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
319 319  
320 320  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
321 321  
... ... @@ -344,10 +344,10 @@
344 344  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
345 345  
346 346  
347 -(% style="color:blue" %)**Step 2:**(%%) Activate on DDS45-LB
235 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
348 348  
349 349  
350 -Press the button for 5 seconds to activate the DDS45-LB.
238 +Press the button for 5 seconds to activate the LDS12-LB.
351 351  
352 352  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
353 353  
... ... @@ -358,31 +358,33 @@
358 358  
359 359  
360 360  (((
361 -DDS45-LB will uplink payload via LoRaWAN with below payload format: 
249 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
362 362  )))
363 363  
364 364  (((
365 -Uplink payload includes in total 8 bytes.
253 +Uplink payload includes in total 11 bytes.
366 366  )))
367 367  
256 +
368 368  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
369 369  |=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
370 370  **Size(bytes)**
371 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
372 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
373 -[[Distance>>||anchor="H2.3.2A0Distance"]]
374 -(unit: mm)
375 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
376 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
377 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
260 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
261 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
262 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
263 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
264 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
265 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
266 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
267 +)))
378 378  
379 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
269 +[[image:1654833689380-972.png]]
380 380  
381 381  
382 382  === 2.3.1  Battery Info ===
383 383  
384 384  
385 -Check the battery voltage for DDS45-LB.
275 +Check the battery voltage for LDS12-LB.
386 386  
387 387  Ex1: 0x0B45 = 2885mV
388 388  
... ... @@ -389,76 +389,106 @@
389 389  Ex2: 0x0B49 = 2889mV
390 390  
391 391  
392 -=== 2.3.2  Distance ===
282 +=== 2.3.2  DS18B20 Temperature sensor ===
393 393  
394 394  
395 -(((
396 -Get the distance. Flat object range 30mm - 4500mm.
397 -)))
285 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
398 398  
399 -(((
400 -For example, if the data you get from the register is **0x0B 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
401 401  
402 -(% style="color:blue" %)**0B05(H) = 2821 (D) = 2821 mm.**
403 -)))
288 +**Example**:
404 404  
405 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
406 -* If the sensor value lower than 0x001E (30mm), the sensor value will be 0x00.
290 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
407 407  
408 -=== 2.3.3  Interrupt Pin ===
292 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
409 409  
410 410  
411 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
295 +=== 2.3.3  Distance ===
412 412  
413 -**Example:**
414 414  
415 -0x00: Normal uplink packet.
298 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
416 416  
417 -0x01: Interrupt Uplink Packet.
418 418  
301 +**Example**:
419 419  
420 -=== 2.3.4  DS18B20 Temperature sensor ===
303 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
421 421  
422 422  
423 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
306 +=== 2.3.4  Distance signal strength ===
424 424  
308 +
309 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
310 +
311 +
425 425  **Example**:
426 426  
427 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
314 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
428 428  
429 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
316 +Customers can judge whether they need to adjust the environment based on the signal strength.
430 430  
431 431  
432 -=== 2.3.5  Sensor Flag ===
319 +=== 2.3.5  Interrupt Pin ===
433 433  
434 434  
322 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
323 +
324 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
325 +
326 +**Example:**
327 +
328 +0x00: Normal uplink packet.
329 +
330 +0x01: Interrupt Uplink Packet.
331 +
332 +
333 +=== 2.3.6  LiDAR temp ===
334 +
335 +
336 +Characterize the internal temperature value of the sensor.
337 +
338 +**Example: **
339 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
340 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
341 +
342 +
343 +=== 2.3.7  Message Type ===
344 +
345 +
435 435  (((
436 -0x01: Detect Ultrasonic Sensor
347 +For a normal uplink payload, the message type is always 0x01.
437 437  )))
438 438  
439 439  (((
440 -0x00: No Ultrasonic Sensor
351 +Valid Message Type:
441 441  )))
442 442  
354 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
355 +|=(% style="width: 161px;background-color:#D9E2F3;color:#0070C0" %)**Message Type Code**|=(% style="width: 164px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Payload**
356 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
357 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
443 443  
444 -=== 2.3.6  Decode payload in The Things Network ===
445 445  
360 +=== 2.3.8  Decode payload in The Things Network ===
446 446  
362 +
447 447  While using TTN network, you can add the payload format to decode the payload.
448 448  
449 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
450 450  
451 -The payload decoder function for TTN V3 is here:
366 +[[image:1654592762713-715.png]]
452 452  
368 +
453 453  (((
454 -DDS45-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
370 +The payload decoder function for TTN is here:
455 455  )))
456 456  
373 +(((
374 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
375 +)))
457 457  
377 +
458 458  == 2.4  Uplink Interval ==
459 459  
460 460  
461 -The DDS45-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
381 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
462 462  
463 463  
464 464  == 2.5  ​Show Data in DataCake IoT Server ==
... ... @@ -486,7 +486,7 @@
486 486  
487 487  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
488 488  
489 -(% style="color:blue" %)**Step 4**(%%)**: Search the DDS45-LB and add DevEUI.**
409 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
490 490  
491 491  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
492 492  
... ... @@ -496,23 +496,22 @@
496 496  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
497 497  
498 498  
499 -
500 500  == 2.6 Datalog Feature ==
501 501  
502 502  
503 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS45-LB will store the reading for future retrieving purposes.
422 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
504 504  
505 505  
506 506  === 2.6.1 Ways to get datalog via LoRaWAN ===
507 507  
508 508  
509 -Set PNACKMD=1, DDS45-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS45-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
428 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
510 510  
511 511  * (((
512 -a) DDS45-LB will do an ACK check for data records sending to make sure every data arrive server.
431 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
513 513  )))
514 514  * (((
515 -b) DDS45-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS45-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS45-LB gets a ACK, DDS45-LB will consider there is a network connection and resend all NONE-ACK messages.
434 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
516 516  )))
517 517  
518 518  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -523,7 +523,7 @@
523 523  === 2.6.2 Unix TimeStamp ===
524 524  
525 525  
526 -DDS45-LB uses Unix TimeStamp format based on
445 +LDS12-LB uses Unix TimeStamp format based on
527 527  
528 528  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
529 529  
... ... @@ -542,7 +542,7 @@
542 542  
543 543  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
544 544  
545 -Once DDS45-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS45-LB. If DDS45-LB fails to get the time from the server, DDS45-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
464 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
546 546  
547 547  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
548 548  
... ... @@ -570,7 +570,7 @@
570 570  )))
571 571  
572 572  (((
573 -Uplink Internal =5s,means DDS45-LB will send one packet every 5s. range 5~~255s.
492 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
574 574  )))
575 575  
576 576  
... ... @@ -577,17 +577,107 @@
577 577  == 2.7 Frequency Plans ==
578 578  
579 579  
580 -The DDS45-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
499 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
581 581  
582 582  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
583 583  
584 584  
585 -= 3. Configure DDS45-LB =
504 +== 2.8 LiDAR ToF Measurement ==
586 586  
506 +=== 2.8.1 Principle of Distance Measurement ===
507 +
508 +
509 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
510 +
511 +
512 +[[image:1654831757579-263.png]]
513 +
514 +
515 +=== 2.8.2 Distance Measurement Characteristics ===
516 +
517 +
518 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
519 +
520 +[[image:1654831774373-275.png]]
521 +
522 +
523 +(((
524 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
525 +)))
526 +
527 +(((
528 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
529 +)))
530 +
531 +(((
532 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
533 +)))
534 +
535 +
536 +(((
537 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
538 +)))
539 +
540 +
541 +[[image:1654831797521-720.png]]
542 +
543 +
544 +(((
545 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
546 +)))
547 +
548 +[[image:1654831810009-716.png]]
549 +
550 +
551 +(((
552 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
553 +)))
554 +
555 +
556 +=== 2.8.3 Notice of usage: ===
557 +
558 +
559 +Possible invalid /wrong reading for LiDAR ToF tech:
560 +
561 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
562 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
563 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
564 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
565 +
566 +
567 +=== 2.8.4  Reflectivity of different objects ===
568 +
569 +
570 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
571 +|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
572 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
573 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
574 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
575 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
576 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
577 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
578 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
579 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
580 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
581 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
582 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
583 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
584 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
585 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
586 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
587 +Unpolished white metal surface
588 +)))|(% style="width:93px" %)130%
589 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
590 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
591 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
592 +
593 +
594 += 3. Configure LDS12-LB =
595 +
587 587  == 3.1 Configure Methods ==
588 588  
589 589  
590 -DDS45-LB supports below configure method:
599 +LDS12-LB supports below configure method:
591 591  
592 592  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
593 593  
... ... @@ -609,10 +609,10 @@
609 609  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
610 610  
611 611  
612 -== 3.3 Commands special design for DDS45-LB ==
621 +== 3.3 Commands special design for LDS12-LB ==
613 613  
614 614  
615 -These commands only valid for DDS45-LB, as below:
624 +These commands only valid for LDS12-LB, as below:
616 616  
617 617  
618 618  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -657,6 +657,7 @@
657 657  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
658 658  )))
659 659  
669 +
660 660  === 3.3.2 Set Interrupt Mode ===
661 661  
662 662  
... ... @@ -691,97 +691,157 @@
691 691  
692 692  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
693 693  
694 -= 4. Battery & Power Consumption =
695 695  
696 696  
697 -DDS45-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
698 698  
699 -[[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
707 +=== 3.3.3 Get Firmware Version Info ===
700 700  
701 701  
702 -= 5. OTA Firmware update =
710 +Feature: use downlink to get firmware version.
703 703  
712 +(% style="color:#037691" %)**Downlink Command: 0x26**
704 704  
705 -(% class="wikigeneratedid" %)
706 -User can change firmware DDS45-LB to:
714 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
715 +|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)**
716 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
707 707  
708 -* Change Frequency band/ region.
718 +* Reply to the confirmation package: 26 01
719 +* Reply to non-confirmed packet: 26 00
709 709  
710 -* Update with new features.
721 +Device will send an uplink after got this downlink command. With below payload:
711 711  
712 -* Fix bugs.
723 +Configures info payload:
713 713  
714 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/a5ue0nfrzqy9nz6/AABbvlATosDJKDwBmbirVbMYa?dl=0]]**
725 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
726 +|=(% style="background-color:#D9E2F3;color:#0070C0" %)(((
727 +**Size(bytes)**
728 +)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
729 +|**Value**|Software Type|(((
730 +Frequency
731 +Band
732 +)))|Sub-band|(((
733 +Firmware
734 +Version
735 +)))|Sensor Type|Reserve|(((
736 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
737 +Always 0x02
738 +)))
715 715  
716 -Methods to Update Firmware:
740 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
717 717  
718 -* (Recommanded way) OTA firmware update via wireless:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
742 +(% style="color:#037691" %)**Frequency Band**:
719 719  
720 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
744 +*0x01: EU868
721 721  
722 -= 6. FAQ =
746 +*0x02: US915
723 723  
724 -== 6.1  What is the frequency plan for DDS45-LB? ==
748 +*0x03: IN865
725 725  
750 +*0x04: AU915
726 726  
727 -DDS45-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
752 +*0x05: KZ865
728 728  
754 +*0x06: RU864
729 729  
730 -== 6.2  Can I use DDS45-LB in condensation environment? ==
756 +*0x07: AS923
731 731  
758 +*0x08: AS923-1
732 732  
733 -DDS45-LB is not suitable to be used in condensation environment. Condensation on the DDS45-LB probe will affect the reading and always got 0.
760 +*0x09: AS923-2
734 734  
762 +*0xa0: AS923-3
735 735  
736 -= 7.  Trouble Shooting =
737 737  
738 -== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
765 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
739 739  
767 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
740 740  
741 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
769 +(% style="color:#037691" %)**Sensor Type**:
742 742  
771 +0x01: LSE01
743 743  
744 -== 7.2  AT Command input doesn't work ==
773 +0x02: LDDS75
745 745  
775 +0x03: LDDS20
746 746  
747 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
777 +0x04: LLMS01
748 748  
779 +0x05: LSPH01
749 749  
750 -== 7.3  Why does the sensor reading show 0 or "No sensor" ==
781 +0x06: LSNPK01
751 751  
783 +0x07: LLDS12
752 752  
753 -~1. The measurement object is very close to the sensor, but in the blind spot of the sensor.
754 754  
755 -2. Sensor wiring is disconnected
786 += 4. Battery & Power Consumption =
756 756  
757 -3. Not using the correct decoder
758 758  
789 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
759 759  
760 -== 7.4  Abnormal readings The gap between multiple readings is too large or the gap between the readings and the actual value is too large ==
791 +[[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
761 761  
762 762  
763 -1) Please check if there is something on the probe affecting its measurement (condensed water, volatile oil, etc.)
794 += 5. OTA Firmware update =
764 764  
765 -2) Does it change with temperature, temperature will affect its measurement
766 766  
767 -3) If abnormal data occurs, you can turn on DEBUG mode, Please use downlink or AT COMMAN to enter DEBUG mode.
797 +(% class="wikigeneratedid" %)
798 +User can change firmware LDS12-LB to:
768 768  
769 -downlink command: (% style="color:blue" %)**F1 01**(%%), AT command: (% style="color:blue" %)**AT+DDEBUG=1**
800 +* Change Frequency band/ region.
770 770  
771 -4) After entering the debug mode, it will send 20 pieces of data at a time, and you can send its uplink to us for analysis
802 +* Update with new features.
772 772  
773 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20230113135125-2.png?width=1057&height=136&rev=1.1||alt="image-20230113135125-2.png"]]
804 +* Fix bugs.
774 774  
806 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
775 775  
776 -Its original payload will be longer than other data. Even though it is being parsed, it can be seen that it is abnormal data.
808 +Methods to Update Firmware:
777 777  
778 -Please send the data to us for check.
810 +* (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
779 779  
812 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
780 780  
814 += 6. FAQ =
815 +
816 +== 6.1 What is the frequency plan for LDS12-LB? ==
817 +
818 +
819 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
820 +
821 +
822 += 7. Trouble Shooting =
823 +
824 +== 7.1 AT Command input doesn't work ==
825 +
826 +
827 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
828 +
829 +
830 +== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
831 +
832 +
833 +(((
834 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
835 +)))
836 +
837 +(((
838 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
839 +)))
840 +
841 +
842 +(((
843 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
844 +)))
845 +
846 +(((
847 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
848 +)))
849 +
850 +
781 781  = 8. Order Info =
782 782  
783 783  
784 -Part Number: (% style="color:blue" %)**DDS45-LB-XXX**
854 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
785 785  
786 786  (% style="color:red" %)**XXX**(%%): **The default frequency band**
787 787  
... ... @@ -806,7 +806,7 @@
806 806  
807 807  (% style="color:#037691" %)**Package Includes**:
808 808  
809 -* DDS45-LB LoRaWAN Distance Detection Sensor x 1
879 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
810 810  
811 811  (% style="color:#037691" %)**Dimension and weight**:
812 812  
image-20230614153353-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content