Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 5 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDS12-LB _LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023061 3133716-2.png||height="717" width="717"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,24 +19,24 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN Ultrasonicliquid levelSensor ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino D DS20-LB is a (% style="color:blue" %)**LoRaWANUltrasonicliquidlevelsensor**(%%) for Internet of Things solution. Ituses (%style="color:blue"%)**none-contact method**(%%)tomeasure the(%style="color:blue" %)**heightofliquid**(%%)ina containerwithoutopeningthecontainer,andsendthevalueviaLoRaWANnetworktoIoTServer.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -The D DS20-LBsensorisinstalleddirectly belowthecontainertodetect theheightoftheliquidlevel. Userdoesn't needtoopen aholeon the containerto betested.Thenone-contactmeasurementmakesthemeasurement safety, easierand possibleforsome strict situation.26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 28 29 - DDS20-LBuses (% style="color:blue" %)**ultrasonicsensingtechnology**(%%)fordistancemeasurement.DDS20-LB is ofhighaccuracy tomeasurevarious liquidsuch as: (% style="color:blue" %)**toxicsubstances**(%%), (%style="color:blue"%)**strong acids**(%%), (% style="color:blue"%)**strongalkalis**(%%) and(%style="color:blue" %)**variouspureliquids**(%%) inhigh-temperature andhigh-pressureairtightcontainers.28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 30 30 31 -The LoRa wireless technology used in D DS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 32 33 -D DS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 -D DS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 37 -Each D DS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 38 38 39 -[[image:image-2023061 3140115-3.png||height="453" width="800"]]38 +[[image:image-20230615152941-1.png||height="459" width="800"]] 40 40 41 41 42 42 == 1.2 Features == ... ... @@ -45,20 +45,16 @@ 45 45 * LoRaWAN 1.0.3 Class A 46 46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 47 47 * Ultra-low power consumption 48 -* Liquid Level Measurement by Ultrasonic technology 49 -* Measure through container, No need to contact Liquid 50 -* Valid level range 20mm - 2000mm 51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 52 -* Cable Length : 25cm 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 53 53 * Support Bluetooth v5.1 and LoRaWAN remote configure 54 54 * Support wireless OTA update firmware 55 55 * AT Commands to change parameters 56 56 * Downlink to change configure 57 -* IP66 Waterproof Enclosure 58 58 * 8500mAh Battery for long term use 59 59 60 - 61 - 62 62 == 1.3 Specification == 63 63 64 64 ... ... @@ -67,6 +67,23 @@ 67 67 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 68 68 * Operating Temperature: -40 ~~ 85°C 69 69 65 +(% style="color:#037691" %)**Probe Specification:** 66 + 67 +* Storage temperature:-20℃~~75℃ 68 +* Operating temperature : -20℃~~60℃ 69 +* Measure Distance: 70 +** 0.1m ~~ 12m @ 90% Reflectivity 71 +** 0.1m ~~ 4m @ 10% Reflectivity 72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 74 +* Ambient light immunity : 70klux 75 +* Enclosure rating : IP65 76 +* Light source : LED 77 +* Central wavelength : 850nm 78 +* FOV : 3.6° 79 +* Material of enclosure : ABS+PC 80 +* Wire length : 25cm 81 + 70 70 (% style="color:#037691" %)**LoRa Spec:** 71 71 72 72 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -87,328 +87,294 @@ 87 87 * Sleep Mode: 5uA @ 3.3v 88 88 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 89 89 102 +== 1.4 Applications == 90 90 91 91 92 -== 1.4 Suitable Container & Liquid == 105 +* Horizontal distance measurement 106 +* Parking management system 107 +* Object proximity and presence detection 108 +* Intelligent trash can management system 109 +* Robot obstacle avoidance 110 +* Automatic control 111 +* Sewer 93 93 113 +(% style="display:none" %) 94 94 95 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 96 -* Container shape is regular, and surface is smooth. 97 -* Container Thickness: 98 -** Pure metal material. 2~~8mm, best is 3~~5mm 99 -** Pure non metal material: <10 mm 100 -* Pure liquid without irregular deposition. 115 +== 1.5 Sleep mode and working mode == 101 101 102 102 118 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 103 103 104 -(% style="display :none"%)120 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 105 105 106 -== 1.5 Install DDS20-LB == 107 107 123 +== 1.6 Button & LEDs == 108 108 109 -(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 110 110 111 - DDS20-LB (% style="color:red" %)**MUST**(%%) beinstalledonthecontainerttommiddleosition.126 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 112 112 113 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 114 114 115 - 116 -((( 117 -(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 129 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 130 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 131 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 132 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 133 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 118 118 ))) 119 - 120 -((( 121 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 135 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 136 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 137 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 138 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 122 122 ))) 140 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 123 123 124 - [[image:image-20230613143052-5.png]]142 +== 1.7 BLE connection == 125 125 126 126 127 - Nopolish needed if the containeris shine metalsurfacewithoutpaint or non-metalcontainer.145 +LDS12-LB support BLE remote configure. 128 128 129 - [[image:image-20230613143125-6.png]]147 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 130 130 149 +* Press button to send an uplink 150 +* Press button to active device. 151 +* Device Power on or reset. 131 131 132 -((( 133 -(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 134 -))) 153 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 135 135 136 -((( 137 -Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 138 -))) 139 139 140 -((( 141 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 142 -))) 156 +== 1.8 Pin Definitions == 143 143 144 -((( 145 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 146 -))) 158 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 147 147 148 148 149 -((( 150 -(% style="color:blue" %)**LED Status:** 151 -))) 161 +== 1.9 Mechanical == 152 152 153 -* ((( 154 -**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 155 -))) 156 156 157 -* ((( 158 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 159 -))) 160 -* ((( 161 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 162 -))) 164 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 163 163 164 -((( 165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 166 -))) 167 167 167 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 168 168 169 -((( 170 -(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 171 -))) 172 172 170 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 173 173 174 -((( 175 -(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 176 -))) 177 177 178 -((( 179 -Prepare Eproxy AB glue. 180 -))) 173 +(% style="color:blue" %)**Probe Mechanical:** 181 181 182 -((( 183 -Put Eproxy AB glue in the sensor and press it hard on the container installation point. 184 -))) 185 185 186 -((( 187 -Reset DDS20-LB and see if the BLUE LED is slowly blinking. 188 -))) 176 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 189 189 190 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 191 191 179 += 2. Configure LDS12-LB to connect to LoRaWAN network = 192 192 193 -((( 194 -(% style="color:red" %)**Note :** 181 +== 2.1 How it works == 195 195 196 -(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 197 -))) 198 198 199 -((( 200 -(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 201 -))) 184 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 202 202 186 +(% style="display:none" %) (%%) 203 203 204 -== 1.6Applications ==188 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 205 205 206 206 207 - *Smartliquidcontrol solution191 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 208 208 209 - *Smartliquefiedgassolution193 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 210 210 195 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 211 211 212 212 213 -= =1.7Precautions==198 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 214 214 200 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 215 215 216 - * At roomtemperature, containers of differentmaterials, such as steel,glass, iron, ceramics, non-foamedplastics andother dense materials,have differentdetection blindareas and detection limitheights.202 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 217 217 218 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 219 219 220 - *Whenthedetectedliquid level exceedstheeffective detectionvalue ofthesensor,andtheliquid leveloftheliquidto bemeasured shakesortilts,thedetected liquid heightisunstable.205 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 221 221 222 222 223 -(% style=" display:none" %)208 +(% style="color:blue" %)**Register the device** 224 224 225 - == 1.8 Sleepworking mode210 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 226 226 227 227 228 -(% style="color:blue" %)** Deep Sleep Mode: **(%%)Sensordoesn'thave any LoRaWANactivate.This mode is used for storage andshippingto save battery life.213 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 229 229 230 - (% style="color:blue" %)**WorkingMode:** (%%)Inthis mode, Sensorwill work asLoRaWANSensor to JoinLoRaWANnetworkand send outsensordata toserver. Betweeneach sampling/tx/rx periodically, sensorwill be in IDLE mode),in IDLE mode, sensorhasthe same powerconsumption as Deep Sleep mode.215 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 231 231 232 232 233 - ==1.9 Button&LEDs==218 +(% style="color:blue" %)**Add APP EUI in the application** 234 234 235 235 236 -[[image: Main.User.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]221 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 237 237 238 238 239 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 240 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 241 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 242 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 243 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 244 -))) 245 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 246 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 247 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 248 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 249 -))) 250 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 224 +(% style="color:blue" %)**Add APP KEY** 251 251 226 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 252 252 253 253 254 -= =1.10BLEconnection==229 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 255 255 256 256 257 - DDS20-LBsupportBLEremoteconfigure.232 +Press the button for 5 seconds to activate the LDS12-LB. 258 258 259 - BLEcanbeused toconfiguretheparameterofsensor or seetheconsoleoutputfromsensor.BLEwillbeonlyactivateonbelowcase:234 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 260 260 261 -* Press button to send an uplink 262 -* Press button to active device. 263 -* Device Power on or reset. 236 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 264 264 265 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 266 266 239 +== 2.3 Uplink Payload == 267 267 268 -== 1.11 Pin Definitions == 269 269 270 - [[image:image-20230523174230-1.png]]242 +=== 2.3.1 Device Status, FPORT~=5 === 271 271 272 272 273 - ==1.12Mechanical ==245 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 274 274 247 +The Payload format is as below. 275 275 276 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 249 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 250 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 251 +**Size(bytes)** 252 +)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2** 253 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 277 277 255 +Example parse in TTNv3 278 278 279 - [[image:Main.User Manualfor LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]257 +**Sensor Model**: For LDS12-LB, this value is 0x24 280 280 259 +**Firmware Version**: 0x0100, Means: v1.0.0 version 281 281 282 - [[image:Main.User Manualfor LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]261 +**Frequency Band**: 283 283 263 +0x01: EU868 284 284 285 - (% style="color:blue"%)**Probe Mechanical:**265 +0x02: US915 286 286 287 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]267 +0x03: IN865 288 288 269 +0x04: AU915 289 289 290 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]271 +0x05: KZ865 291 291 273 +0x06: RU864 292 292 293 - = 2. Configure DDS20-LBto connect to LoRaWAN network =275 +0x07: AS923 294 294 295 - ==2.1How it works ==277 +0x08: AS923-1 296 296 279 +0x09: AS923-2 297 297 298 - The DDS20-LB is configuredas (% style="color:#037691"%)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.281 +0x0a: AS923-3 299 299 300 - (% style="display:none"%) (%%)283 +0x0b: CN470 301 301 302 - == 2.2 Quickguide to connect to LoRaWAN server (OTAA) ==285 +0x0c: EU433 303 303 287 +0x0d: KR920 304 304 305 - Following is an examplefor how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.289 +0x0e: MA869 306 306 307 - The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what weneedto now is configure the TTN server.291 +**Sub-Band**: 308 308 309 - [[image:image-20230613140140-4.png||height="453"width="800"]](% style="display:none" %)293 +AU915 and US915:value 0x00 ~~ 0x08 310 310 295 +CN470: value 0x0B ~~ 0x0C 311 311 312 - (% style="color:blue"%)**Step 1:**(%%) Create adevicein TTN with the OTAA keysfrom DDS20-LB.297 +Other Bands: Always 0x00 313 313 314 - Each DDS20-LBis shipped withastickerwith the default device EUIas below:299 +**Battery Info**: 315 315 316 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png"height="233"width="502"]]301 +Check the battery voltage. 317 317 303 +Ex1: 0x0B45 = 2885mV 318 318 319 - Youcan enter this key in the LoRaWAN Server portal.BelowisTTN screen shot:305 +Ex2: 0x0B49 = 2889mV 320 320 321 321 322 - (%style="color:blue"%)**Registerthe device**308 +=== 2.3.2 Uplink Payload, FPORT~=2 === 323 323 324 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 325 325 311 +((( 312 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 313 +))) 326 326 327 -(% style="color:blue" %)**Add APP EUI and DEV EUI** 315 +((( 316 +Uplink payload includes in total 11 bytes. 317 +))) 328 328 329 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 319 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %) 320 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 321 +**Size(bytes)** 322 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1** 323 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)((( 324 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 325 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)((( 326 +[[Interrupt flag>>]] 327 +[[&>>]] 328 +[[Interrupt_level>>]] 329 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)((( 330 +[[Message Type>>||anchor="H2.3.7MessageType"]] 331 +))) 330 330 333 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 331 331 332 -(% style="color:blue" %)**Add APP EUI in the application** 333 333 336 +==== (% style="color:blue" %)**Battery Info** ==== 334 334 335 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 336 336 339 +Check the battery voltage for LDS12-LB. 337 337 338 - (% style="color:blue"%)**AddAPPKEY**341 +Ex1: 0x0B45 = 2885mV 339 339 340 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]343 +Ex2: 0x0B49 = 2889mV 341 341 342 342 343 -(% style="color:blue" %)**S tep2:**(%%)ActivateonDDS20-LB346 +==== (% style="color:blue" %)**DS18B20 Temperature sensor** ==== 344 344 345 345 346 - Press thebuttonfor5seconds toactivate theDDS20-LB.349 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 347 347 348 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 349 349 350 - After join success, it will start to uploadmessages to TTN and you can see the messages in thepanel.352 +**Example**: 351 351 354 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 352 352 353 - ==2.3 Uplink Payload ==356 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 354 354 355 355 356 -((( 357 -DDS20-LB will uplink payload via LoRaWAN with below payload format: 358 -))) 359 +==== (% style="color:blue" %)**Distance** ==== 359 359 360 -((( 361 -Uplink payload includes in total 8 bytes. 362 -))) 363 363 364 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 365 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 366 -**Size(bytes)** 367 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 368 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 369 -[[Distance>>||anchor="H2.3.2A0Distance"]] 370 -(unit: mm) 371 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 372 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 373 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 362 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 374 374 375 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 376 376 365 +**Example**: 377 377 378 - ===2.3.1BatteryInfo ===367 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 379 379 380 380 381 - ChecktheatteryvoltageforDDS20-LB.370 +====(% style="color:blue" %) **Distance signal strength** ==== 382 382 383 -Ex1: 0x0B45 = 2885mV 384 384 385 - Ex2:0x0B49=2889mV373 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 386 386 387 387 388 - === 2.3.2 Distance===376 +**Example**: 389 389 378 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 390 390 391 -((( 392 -Get the distance. Flat object range 20mm - 2000mm. 393 -))) 380 +Customers can judge whether they need to adjust the environment based on the signal strength. 394 394 395 -((( 396 -For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 397 397 398 -(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 399 -))) 383 +====(% style="color:blue" %) **Interrupt Pin & Interrupt Level** ==== 400 400 401 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 402 402 403 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 404 - 405 - 406 - 407 -=== 2.3.3 Interrupt Pin === 408 - 409 - 410 410 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 411 411 388 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 389 + 412 412 **Example:** 413 413 414 414 0x00: Normal uplink packet. ... ... @@ -416,53 +416,60 @@ 416 416 0x01: Interrupt Uplink Packet. 417 417 418 418 419 -=== 2.3.4DS18B20 Temperaturesensor===397 +==== (% style="color:blue" %)**LiDAR temp** ==== 420 420 421 421 422 - This is optional, usercanconnectxternal DS18B20 sensorto the+3.3v, 1-wire and GND pin . andthis fieldwill reporttemperature.400 +Characterize the internal temperature value of the sensor. 423 423 424 -**Example**: 402 +**Example: ** 403 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 404 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 425 425 426 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 427 427 428 - If payload is: FF3FH : (FF3F & FC00==1),temp=(FF3FH - 65536)/10 = -19.3 degrees.407 +==== (% style="color:blue" %)**Message Type** ==== 429 429 430 430 431 -=== 2.3.5 Sensor Flag === 432 - 433 - 434 434 ((( 435 - 0x01:DetectUltrasonicSensor411 +For a normal uplink payload, the message type is always 0x01. 436 436 ))) 437 437 438 438 ((( 439 - 0x00: No UltrasonicSensor415 +Valid Message Type: 440 440 ))) 441 441 418 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 419 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 420 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 421 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 442 442 443 -=== 2.3.6 Decode payload in The Things Network === 444 444 445 445 425 +=== 2.3.3 Decode payload in The Things Network === 426 + 427 + 446 446 While using TTN network, you can add the payload format to decode the payload. 447 447 448 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LD DS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]430 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 449 449 450 -The payload decoder function for TTN V3 is here: 451 451 452 452 ((( 453 - DDS20-LBTTNV3 PayloadDecoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]434 +The payload decoder function for TTN is here: 454 454 ))) 455 455 437 +((( 438 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 439 +))) 456 456 457 -== 2.4 Uplink Interval == 458 458 442 +== 2.4 Uplink Interval == 459 459 460 -The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 461 461 445 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 462 462 463 -== 2.5 Show Data in DataCake IoT Server == 464 464 448 +== 2.5 Show Data in DataCake IoT Server == 465 465 450 + 466 466 ((( 467 467 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 468 468 ))) ... ... @@ -485,7 +485,7 @@ 485 485 486 486 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 487 487 488 -(% style="color:blue" %)**Step 4**(%%)**: Search the D DS20-LB and add DevEUI.**473 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 489 489 490 490 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 491 491 ... ... @@ -498,19 +498,19 @@ 498 498 == 2.6 Datalog Feature == 499 499 500 500 501 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, D DS20-LB will store the reading for future retrieving purposes.486 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 502 502 503 503 504 504 === 2.6.1 Ways to get datalog via LoRaWAN === 505 505 506 506 507 -Set PNACKMD=1, D DS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.492 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 508 508 509 509 * ((( 510 -a) D DS20-LB will do an ACK check for data records sending to make sure every data arrive server.495 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 511 511 ))) 512 512 * ((( 513 -b) D DS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.498 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 514 514 ))) 515 515 516 516 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -521,7 +521,7 @@ 521 521 === 2.6.2 Unix TimeStamp === 522 522 523 523 524 -D DS20-LB uses Unix TimeStamp format based on509 +LDS12-LB uses Unix TimeStamp format based on 525 525 526 526 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 527 527 ... ... @@ -540,7 +540,7 @@ 540 540 541 541 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 542 542 543 -Once D DS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).528 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 544 544 545 545 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 546 546 ... ... @@ -568,7 +568,7 @@ 568 568 ))) 569 569 570 570 ((( 571 -Uplink Internal =5s,means D DS20-LB will send one packet every 5s. range 5~~255s.556 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 572 572 ))) 573 573 574 574 ... ... @@ -575,17 +575,101 @@ 575 575 == 2.7 Frequency Plans == 576 576 577 577 578 -The D DS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.563 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 579 579 580 580 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 581 581 582 582 583 -= 3.ConfigureDDS20-LB=568 +== 2.8 LiDAR ToF Measurement == 584 584 570 +=== 2.8.1 Principle of Distance Measurement === 571 + 572 + 573 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 574 + 575 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 576 + 577 + 578 +=== 2.8.2 Distance Measurement Characteristics === 579 + 580 + 581 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 582 + 583 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 584 + 585 + 586 +((( 587 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 588 +))) 589 + 590 +((( 591 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 592 +))) 593 + 594 +((( 595 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 596 +))) 597 + 598 + 599 +((( 600 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 601 +))) 602 + 603 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 604 + 605 +((( 606 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 607 +))) 608 + 609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 610 + 611 +((( 612 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 613 +))) 614 + 615 + 616 +=== 2.8.3 Notice of usage === 617 + 618 + 619 +Possible invalid /wrong reading for LiDAR ToF tech: 620 + 621 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 622 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 623 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 624 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 625 + 626 +=== 2.8.4 Reflectivity of different objects === 627 + 628 + 629 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 630 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 631 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 632 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 633 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 634 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 635 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 636 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 637 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 638 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 639 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 640 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 641 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 642 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 643 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 644 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 645 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 646 +Unpolished white metal surface 647 +)))|(% style="width:93px" %)130% 648 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 649 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 650 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 651 + 652 += 3. Configure LDS12-LB = 653 + 585 585 == 3.1 Configure Methods == 586 586 587 587 588 -D DS20-LB supports below configure method:657 +LDS12-LB supports below configure method: 589 589 590 590 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 591 591 ... ... @@ -593,8 +593,6 @@ 593 593 594 594 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 595 595 596 - 597 - 598 598 == 3.2 General Commands == 599 599 600 600 ... ... @@ -609,10 +609,10 @@ 609 609 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 610 610 611 611 612 -== 3.3 Commands special design for D DS20-LB ==679 +== 3.3 Commands special design for LDS12-LB == 613 613 614 614 615 -These commands only valid for D DS20-LB, as below:682 +These commands only valid for LDS12-LB, as below: 616 616 617 617 618 618 === 3.3.1 Set Transmit Interval Time === ... ... @@ -627,7 +627,7 @@ 627 627 ))) 628 628 629 629 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 630 -|=(% style="width: 156px;background-color:# D9E2F3;#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;#0070c0" %)**Function**|=(% style="background-color:#D9E2F3;#0070c0" %)**Response**697 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 631 631 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 632 632 30000 633 633 OK ... ... @@ -670,7 +670,7 @@ 670 670 (% style="color:blue" %)**AT Command: AT+INTMOD** 671 671 672 672 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 673 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**740 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 674 674 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 675 675 0 676 676 OK ... ... @@ -694,12 +694,37 @@ 694 694 695 695 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 696 696 764 +=== 3.3.3 Set Power Output Duration === 697 697 766 +Control the output duration 3V3 . Before each sampling, device will 698 698 768 +~1. first enable the power output to external sensor, 769 + 770 +2. keep it on as per duration, read sensor value and construct uplink payload 771 + 772 +3. final, close the power output. 773 + 774 +(% style="color:blue" %)**AT Command: AT+3V3T** 775 + 776 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 777 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 778 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 779 +OK 780 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 781 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 782 + 783 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 784 +Format: Command Code (0x07) followed by 3 bytes. 785 + 786 +The first byte is 01,the second and third bytes are the time to turn on. 787 + 788 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 789 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 790 + 699 699 = 4. Battery & Power Consumption = 700 700 701 701 702 -D DS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.794 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 703 703 704 704 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 705 705 ... ... @@ -708,7 +708,7 @@ 708 708 709 709 710 710 (% class="wikigeneratedid" %) 711 -User can change firmware D DS20-LB to:803 +User can change firmware LDS12-LB to: 712 712 713 713 * Change Frequency band/ region. 714 714 ... ... @@ -716,7 +716,7 @@ 716 716 717 717 * Fix bugs. 718 718 719 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/p h4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**811 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 720 720 721 721 Methods to Update Firmware: 722 722 ... ... @@ -724,43 +724,40 @@ 724 724 725 725 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 726 726 727 - 728 - 729 729 = 6. FAQ = 730 730 731 -== 6.1 DS20-LB? ==821 +== 6.1 What is the frequency plan for LDS12-LB? == 732 732 733 733 734 -D DS20-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]824 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 735 735 736 736 737 -= =6.2Can IuseDDS20-LB in condensationenvironment?==827 += 7. Trouble Shooting = 738 738 829 +== 7.1 AT Command input doesn't work == 739 739 740 -DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0. 741 741 832 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 742 742 743 -= 7. Trouble Shooting = 744 744 745 -== 7. 1Why Ican'tjoinTTNV3inUS915/AU915bands?==835 +== 7.2 Significant error between the output distant value of LiDAR and actual distance == 746 746 747 747 748 -It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 838 +((( 839 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 840 +))) 749 749 842 +((( 843 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 844 +))) 750 750 751 -== 7.2 AT Command input doesn't work == 752 752 753 - 754 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 755 - 756 - 757 -== 7.3 Why i always see 0x0000 or 0 for the distance value? == 758 - 759 - 760 760 ((( 761 -LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 848 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 849 +))) 762 762 763 -If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 851 +((( 852 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 764 764 ))) 765 765 766 766 ... ... @@ -767,7 +767,7 @@ 767 767 = 8. Order Info = 768 768 769 769 770 -Part Number: (% style="color:blue" %)**D DS20-LB-XXX**859 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 771 771 772 772 (% style="color:red" %)**XXX**(%%): **The default frequency band** 773 773 ... ... @@ -787,14 +787,12 @@ 787 787 788 788 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 789 789 790 - 791 - 792 792 = 9. Packing Info = 793 793 794 794 795 795 (% style="color:#037691" %)**Package Includes**: 796 796 797 -* D DS20-LB LoRaWANUltrasonicLiquid LevelSensor x 1884 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 798 798 799 799 (% style="color:#037691" %)**Dimension and weight**: 800 800 ... ... @@ -806,8 +806,6 @@ 806 806 807 807 * Weight / pcs : g 808 808 809 - 810 - 811 811 = 10. Support = 812 812 813 813
- image-20230614153353-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +112.1 KB - Content
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content