Last modified by Mengting Qiu on 2023/12/14 11:15

From version 79.20
edited by Xiaoling
on 2023/06/14 15:26
Change comment: Update document after refactoring.
To version 90.4
edited by Xiaoling
on 2023/07/15 15:31
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230613133716-2.png||height="717" width="717"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,24 +19,24 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 28  
29 -DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 30  
31 -The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 32  
33 -DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
37 -Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
39 -[[image:image-20230613140115-3.png||height="453" width="800"]]
38 +[[image:image-20230615152941-1.png||height="459" width="800"]]
40 40  
41 41  
42 42  == 1.2 ​Features ==
... ... @@ -45,20 +45,16 @@
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 47  * Ultra-low power consumption
48 -* Liquid Level Measurement by Ultrasonic technology
49 -* Measure through container, No need to contact Liquid
50 -* Valid level range 20mm - 2000mm
51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 -* Cable Length : 25cm
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
53 53  * Support Bluetooth v5.1 and LoRaWAN remote configure
54 54  * Support wireless OTA update firmware
55 55  * AT Commands to change parameters
56 56  * Downlink to change configure
57 -* IP66 Waterproof Enclosure
58 58  * 8500mAh Battery for long term use
59 59  
60 -
61 -
62 62  == 1.3 Specification ==
63 63  
64 64  
... ... @@ -67,6 +67,23 @@
67 67  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
68 68  * Operating Temperature: -40 ~~ 85°C
69 69  
65 +(% style="color:#037691" %)**Probe Specification:**
66 +
67 +* Storage temperature:-20℃~~75℃
68 +* Operating temperature : -20℃~~60℃
69 +* Measure Distance:
70 +** 0.1m ~~ 12m @ 90% Reflectivity
71 +** 0.1m ~~ 4m @ 10% Reflectivity
72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 +* Distance resolution : 5mm
74 +* Ambient light immunity : 70klux
75 +* Enclosure rating : IP65
76 +* Light source : LED
77 +* Central wavelength : 850nm
78 +* FOV : 3.6°
79 +* Material of enclosure : ABS+PC
80 +* Wire length : 25cm
81 +
70 70  (% style="color:#037691" %)**LoRa Spec:**
71 71  
72 72  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -87,328 +87,294 @@
87 87  * Sleep Mode: 5uA @ 3.3v
88 88  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
89 89  
102 +== 1.4 Applications ==
90 90  
91 91  
92 -== 1.4 Suitable Container & Liquid ==
105 +* Horizontal distance measurement
106 +* Parking management system
107 +* Object proximity and presence detection
108 +* Intelligent trash can management system
109 +* Robot obstacle avoidance
110 +* Automatic control
111 +* Sewer
93 93  
113 +(% style="display:none" %)
94 94  
95 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
96 -* Container shape is regular, and surface is smooth.
97 -* Container Thickness:
98 -** Pure metal material.  2~~8mm, best is 3~~5mm
99 -** Pure non metal material: <10 mm
100 -* Pure liquid without irregular deposition.
115 +== 1.5 Sleep mode and working mode ==
101 101  
102 102  
118 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
103 103  
104 -(% style="display:none" %)
120 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
105 105  
106 -== 1.5 Install DDS20-LB ==
107 107  
123 +== 1.6 Button & LEDs ==
108 108  
109 -(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
110 110  
111 -DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
126 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
112 112  
113 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
114 114  
115 -
116 -(((
117 -(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
129 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
131 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
118 118  )))
119 -
120 -(((
121 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
135 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
122 122  )))
140 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
123 123  
124 -[[image:image-20230613143052-5.png]]
142 +== 1.7 BLE connection ==
125 125  
126 126  
127 -No polish needed if the container is shine metal surface without paint or non-metal container.
145 +LDS12-LB support BLE remote configure.
128 128  
129 -[[image:image-20230613143125-6.png]]
147 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
130 130  
149 +* Press button to send an uplink
150 +* Press button to active device.
151 +* Device Power on or reset.
131 131  
132 -(((
133 -(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
134 -)))
153 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
135 135  
136 -(((
137 -Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
138 -)))
139 139  
140 -(((
141 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
142 -)))
156 +== 1.8 Pin Definitions ==
143 143  
144 -(((
145 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
146 -)))
158 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
147 147  
148 148  
149 -(((
150 -(% style="color:blue" %)**LED Status:**
151 -)))
161 +== 1.9 Mechanical ==
152 152  
153 -* (((
154 -**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
155 -)))
156 156  
157 -* (((
158 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
159 -)))
160 -* (((
161 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
162 -)))
164 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
163 163  
164 -(((
165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 -)))
167 167  
167 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
168 168  
169 -(((
170 -(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
171 -)))
172 172  
170 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
173 173  
174 -(((
175 -(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
176 -)))
177 177  
178 -(((
179 -Prepare Eproxy AB glue.
180 -)))
173 +(% style="color:blue" %)**Probe Mechanical:**
181 181  
182 -(((
183 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
184 -)))
185 185  
186 -(((
187 -Reset DDS20-LB and see if the BLUE LED is slowly blinking.
188 -)))
176 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
189 189  
190 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
191 191  
179 += 2. Configure LDS12-LB to connect to LoRaWAN network =
192 192  
193 -(((
194 -(% style="color:red" %)**Note :**
181 +== 2.1 How it works ==
195 195  
196 -(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
197 -)))
198 198  
199 -(((
200 -(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
201 -)))
184 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
202 202  
186 +(% style="display:none" %) (%%)
203 203  
204 -== 1.6 Applications ==
188 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
205 205  
206 206  
207 -* Smart liquid control solution
191 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
208 208  
209 -* Smart liquefied gas solution
193 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
210 210  
195 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
211 211  
212 212  
213 -== 1.7 Precautions ==
198 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
214 214  
200 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
215 215  
216 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
202 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
217 217  
218 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
219 219  
220 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
205 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
221 221  
222 222  
223 -(% style="display:none" %)
208 +(% style="color:blue" %)**Register the device**
224 224  
225 -== 1.8 Sleep mode and working mode ==
210 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
226 226  
227 227  
228 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
213 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
229 229  
230 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
215 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
231 231  
232 232  
233 -== 1.9 Button & LEDs ==
218 +(% style="color:blue" %)**Add APP EUI in the application**
234 234  
235 235  
236 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
221 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
237 237  
238 238  
239 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
240 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
241 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
242 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
243 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
244 -)))
245 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
246 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
247 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
248 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
249 -)))
250 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
224 +(% style="color:blue" %)**Add APP KEY**
251 251  
226 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
252 252  
253 253  
254 -== 1.10 BLE connection ==
229 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
255 255  
256 256  
257 -DDS20-LB support BLE remote configure.
232 +Press the button for 5 seconds to activate the LDS12-LB.
258 258  
259 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
234 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
260 260  
261 -* Press button to send an uplink
262 -* Press button to active device.
263 -* Device Power on or reset.
236 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
264 264  
265 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
266 266  
239 +== 2.3 ​Uplink Payload ==
267 267  
268 -== 1.11 Pin Definitions ==
269 269  
270 -[[image:image-20230523174230-1.png]]
242 +=== 2.3.1 Device Status, FPORT~=5 ===
271 271  
272 272  
273 -== 1.12 Mechanical ==
245 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
274 274  
247 +The Payload format is as below.
275 275  
276 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
249 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
250 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
251 +**Size(bytes)**
252 +)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2**
253 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
277 277  
255 +Example parse in TTNv3
278 278  
279 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
257 +**Sensor Model**: For LDS12-LB, this value is 0x24
280 280  
259 +**Firmware Version**: 0x0100, Means: v1.0.0 version
281 281  
282 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
261 +**Frequency Band**:
283 283  
263 +0x01: EU868
284 284  
285 -(% style="color:blue" %)**Probe Mechanical:**
265 +0x02: US915
286 286  
287 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
267 +0x03: IN865
288 288  
269 +0x04: AU915
289 289  
290 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
271 +0x05: KZ865
291 291  
273 +0x06: RU864
292 292  
293 -= 2. Configure DDS20-LB to connect to LoRaWAN network =
275 +0x07: AS923
294 294  
295 -== 2.1 How it works ==
277 +0x08: AS923-1
296 296  
279 +0x09: AS923-2
297 297  
298 -The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
281 +0x0a: AS923-3
299 299  
300 -(% style="display:none" %) (%%)
283 +0x0b: CN470
301 301  
302 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
285 +0x0c: EU433
303 303  
287 +0x0d: KR920
304 304  
305 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
289 +0x0e: MA869
306 306  
307 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
291 +**Sub-Band**:
308 308  
309 -[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
293 +AU915 and US915:value 0x00 ~~ 0x08
310 310  
295 +CN470: value 0x0B ~~ 0x0C
311 311  
312 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
297 +Other Bands: Always 0x00
313 313  
314 -Each DDS20-LB is shipped with a sticker with the default device EUI as below:
299 +**Battery Info**:
315 315  
316 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
301 +Check the battery voltage.
317 317  
303 +Ex1: 0x0B45 = 2885mV
318 318  
319 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
305 +Ex2: 0x0B49 = 2889mV
320 320  
321 321  
322 -(% style="color:blue" %)**Register the device**
308 +=== 2.3.2 Uplink Payload, FPORT~=2 ===
323 323  
324 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
325 325  
311 +(((
312 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
313 +)))
326 326  
327 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
315 +(((
316 +Uplink payload includes in total 11 bytes.
317 +)))
328 328  
329 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
319 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %)
320 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
321 +**Size(bytes)**
322 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1**
323 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
324 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
325 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)(((
326 +[[Interrupt flag>>]]
327 +[[&>>]]
328 +[[Interrupt_level>>]]
329 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)(((
330 +[[Message Type>>||anchor="H2.3.7MessageType"]]
331 +)))
330 330  
333 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
331 331  
332 -(% style="color:blue" %)**Add APP EUI in the application**
333 333  
336 +==== (% style="color:blue" %)**Battery Info** ====
334 334  
335 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
336 336  
339 +Check the battery voltage for LDS12-LB.
337 337  
338 -(% style="color:blue" %)**Add APP KEY**
341 +Ex1: 0x0B45 = 2885mV
339 339  
340 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
343 +Ex2: 0x0B49 = 2889mV
341 341  
342 342  
343 -(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
346 +==== (% style="color:blue" %)**DS18B20 Temperature sensor** ====
344 344  
345 345  
346 -Press the button for 5 seconds to activate the DDS20-LB.
349 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
347 347  
348 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
349 349  
350 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
352 +**Example**:
351 351  
354 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
352 352  
353 -== 2.3  ​Uplink Payload ==
356 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
354 354  
355 355  
356 -(((
357 -DDS20-LB will uplink payload via LoRaWAN with below payload format: 
358 -)))
359 +==== (% style="color:blue" %)**Distance** ====
359 359  
360 -(((
361 -Uplink payload includes in total 8 bytes.
362 -)))
363 363  
364 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
365 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
366 -**Size(bytes)**
367 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
368 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
369 -[[Distance>>||anchor="H2.3.2A0Distance"]]
370 -(unit: mm)
371 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
372 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
373 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
362 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
374 374  
375 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
376 376  
365 +**Example**:
377 377  
378 -=== 2.3.1  Battery Info ===
367 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
379 379  
380 380  
381 -Check the battery voltage for DDS20-LB.
370 +====(% style="color:blue" %) **Distance signal strength** ====
382 382  
383 -Ex1: 0x0B45 = 2885mV
384 384  
385 -Ex2: 0x0B49 = 2889mV
373 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
386 386  
387 387  
388 -=== 2.3.2  Distance ===
376 +**Example**:
389 389  
378 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
390 390  
391 -(((
392 -Get the distance. Flat object range 20mm - 2000mm.
393 -)))
380 +Customers can judge whether they need to adjust the environment based on the signal strength.
394 394  
395 -(((
396 -For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
397 397  
398 -(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
399 -)))
383 +====(% style="color:blue" %) **Interrupt Pin & Interrupt Level** ====
400 400  
401 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
402 402  
403 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
404 -
405 -
406 -
407 -=== 2.3.3  Interrupt Pin ===
408 -
409 -
410 410  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
411 411  
388 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
389 +
412 412  **Example:**
413 413  
414 414  0x00: Normal uplink packet.
... ... @@ -416,53 +416,60 @@
416 416  0x01: Interrupt Uplink Packet.
417 417  
418 418  
419 -=== 2.3.4  DS18B20 Temperature sensor ===
397 +==== (% style="color:blue" %)**LiDAR temp** ====
420 420  
421 421  
422 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
400 +Characterize the internal temperature value of the sensor.
423 423  
424 -**Example**:
402 +**Example: **
403 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
404 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
425 425  
426 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
427 427  
428 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
407 +==== (% style="color:blue" %)**Message Type** ====
429 429  
430 430  
431 -=== 2.3.5  Sensor Flag ===
432 -
433 -
434 434  (((
435 -0x01: Detect Ultrasonic Sensor
411 +For a normal uplink payload, the message type is always 0x01.
436 436  )))
437 437  
438 438  (((
439 -0x00: No Ultrasonic Sensor
415 +Valid Message Type:
440 440  )))
441 441  
418 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
419 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
420 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
421 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
442 442  
443 -=== 2.3.6  Decode payload in The Things Network ===
444 444  
445 445  
425 +=== 2.3.3 Decode payload in The Things Network ===
426 +
427 +
446 446  While using TTN network, you can add the payload format to decode the payload.
447 447  
448 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
430 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
449 449  
450 -The payload decoder function for TTN V3 is here:
451 451  
452 452  (((
453 -DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
434 +The payload decoder function for TTN is here:
454 454  )))
455 455  
437 +(((
438 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
439 +)))
456 456  
457 -== 2.4  Uplink Interval ==
458 458  
442 +== 2.4 Uplink Interval ==
459 459  
460 -The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
461 461  
445 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
462 462  
463 -== 2.5  ​Show Data in DataCake IoT Server ==
464 464  
448 +== 2.5 ​Show Data in DataCake IoT Server ==
465 465  
450 +
466 466  (((
467 467  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
468 468  )))
... ... @@ -485,7 +485,7 @@
485 485  
486 486  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
487 487  
488 -(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
473 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
489 489  
490 490  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
491 491  
... ... @@ -498,19 +498,19 @@
498 498  == 2.6 Datalog Feature ==
499 499  
500 500  
501 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
486 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
502 502  
503 503  
504 504  === 2.6.1 Ways to get datalog via LoRaWAN ===
505 505  
506 506  
507 -Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
492 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
508 508  
509 509  * (((
510 -a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
495 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
511 511  )))
512 512  * (((
513 -b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
498 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
514 514  )))
515 515  
516 516  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -521,7 +521,7 @@
521 521  === 2.6.2 Unix TimeStamp ===
522 522  
523 523  
524 -DDS20-LB uses Unix TimeStamp format based on
509 +LDS12-LB uses Unix TimeStamp format based on
525 525  
526 526  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
527 527  
... ... @@ -540,7 +540,7 @@
540 540  
541 541  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
542 542  
543 -Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
528 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
544 544  
545 545  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
546 546  
... ... @@ -568,7 +568,7 @@
568 568  )))
569 569  
570 570  (((
571 -Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
556 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
572 572  )))
573 573  
574 574  
... ... @@ -575,17 +575,101 @@
575 575  == 2.7 Frequency Plans ==
576 576  
577 577  
578 -The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
563 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
579 579  
580 580  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
581 581  
582 582  
583 -= 3. Configure DDS20-LB =
568 +== 2.8 LiDAR ToF Measurement ==
584 584  
570 +=== 2.8.1 Principle of Distance Measurement ===
571 +
572 +
573 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
574 +
575 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
576 +
577 +
578 +=== 2.8.2 Distance Measurement Characteristics ===
579 +
580 +
581 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
582 +
583 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
584 +
585 +
586 +(((
587 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
588 +)))
589 +
590 +(((
591 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
592 +)))
593 +
594 +(((
595 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
596 +)))
597 +
598 +
599 +(((
600 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
601 +)))
602 +
603 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
604 +
605 +(((
606 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
607 +)))
608 +
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
610 +
611 +(((
612 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
613 +)))
614 +
615 +
616 +=== 2.8.3 Notice of usage ===
617 +
618 +
619 +Possible invalid /wrong reading for LiDAR ToF tech:
620 +
621 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
622 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
623 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
624 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
625 +
626 +=== 2.8.4  Reflectivity of different objects ===
627 +
628 +
629 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
630 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
631 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
632 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
633 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
634 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
635 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
636 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
637 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
638 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
639 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
640 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
641 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
642 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
643 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
644 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
645 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
646 +Unpolished white metal surface
647 +)))|(% style="width:93px" %)130%
648 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
649 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
650 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
651 +
652 += 3. Configure LDS12-LB =
653 +
585 585  == 3.1 Configure Methods ==
586 586  
587 587  
588 -DDS20-LB supports below configure method:
657 +LDS12-LB supports below configure method:
589 589  
590 590  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
591 591  
... ... @@ -593,8 +593,6 @@
593 593  
594 594  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
595 595  
596 -
597 -
598 598  == 3.2 General Commands ==
599 599  
600 600  
... ... @@ -609,10 +609,10 @@
609 609  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
610 610  
611 611  
612 -== 3.3 Commands special design for DDS20-LB ==
679 +== 3.3 Commands special design for LDS12-LB ==
613 613  
614 614  
615 -These commands only valid for DDS20-LB, as below:
682 +These commands only valid for LDS12-LB, as below:
616 616  
617 617  
618 618  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -627,7 +627,7 @@
627 627  )))
628 628  
629 629  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
630 -|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
697 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
631 631  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
632 632  30000
633 633  OK
... ... @@ -670,7 +670,7 @@
670 670  (% style="color:blue" %)**AT Command: AT+INTMOD**
671 671  
672 672  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
673 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
740 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
674 674  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
675 675  0
676 676  OK
... ... @@ -694,12 +694,37 @@
694 694  
695 695  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
696 696  
764 +=== 3.3.3  Set Power Output Duration ===
697 697  
766 +Control the output duration 3V3 . Before each sampling, device will
698 698  
768 +~1. first enable the power output to external sensor,
769 +
770 +2. keep it on as per duration, read sensor value and construct uplink payload
771 +
772 +3. final, close the power output.
773 +
774 +(% style="color:blue" %)**AT Command: AT+3V3T**
775 +
776 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
777 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
778 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
779 +OK
780 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
781 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
782 +
783 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
784 +Format: Command Code (0x07) followed by 3 bytes.
785 +
786 +The first byte is 01,the second and third bytes are the time to turn on.
787 +
788 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
789 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
790 +
699 699  = 4. Battery & Power Consumption =
700 700  
701 701  
702 -DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
794 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
703 703  
704 704  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
705 705  
... ... @@ -708,7 +708,7 @@
708 708  
709 709  
710 710  (% class="wikigeneratedid" %)
711 -User can change firmware DDS20-LB to:
803 +User can change firmware LDS12-LB to:
712 712  
713 713  * Change Frequency band/ region.
714 714  
... ... @@ -716,7 +716,7 @@
716 716  
717 717  * Fix bugs.
718 718  
719 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
811 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
720 720  
721 721  Methods to Update Firmware:
722 722  
... ... @@ -724,43 +724,40 @@
724 724  
725 725  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
726 726  
727 -
728 -
729 729  = 6. FAQ =
730 730  
731 -== 6.1  What is the frequency plan for DDS20-LB? ==
821 +== 6.1 What is the frequency plan for LDS12-LB? ==
732 732  
733 733  
734 -DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
824 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
735 735  
736 736  
737 -== 6.2  Can I use DDS20-LB in condensation environment? ==
827 += 7Trouble Shooting =
738 738  
829 +== 7.1 AT Command input doesn't work ==
739 739  
740 -DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
741 741  
832 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
742 742  
743 -= 7.  Trouble Shooting =
744 744  
745 -== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
835 +== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
746 746  
747 747  
748 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
838 +(((
839 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
840 +)))
749 749  
842 +(((
843 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
844 +)))
750 750  
751 -== 7.2  AT Command input doesn't work ==
752 752  
753 -
754 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
755 -
756 -
757 -== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
758 -
759 -
760 760  (((
761 -LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
848 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
849 +)))
762 762  
763 -If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
851 +(((
852 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
764 764  )))
765 765  
766 766  
... ... @@ -767,7 +767,7 @@
767 767  = 8. Order Info =
768 768  
769 769  
770 -Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
859 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
771 771  
772 772  (% style="color:red" %)**XXX**(%%): **The default frequency band**
773 773  
... ... @@ -787,14 +787,12 @@
787 787  
788 788  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
789 789  
790 -
791 -
792 792  = 9. ​Packing Info =
793 793  
794 794  
795 795  (% style="color:#037691" %)**Package Includes**:
796 796  
797 -* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
884 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
798 798  
799 799  (% style="color:#037691" %)**Dimension and weight**:
800 800  
... ... @@ -806,8 +806,6 @@
806 806  
807 807  * Weight / pcs : g
808 808  
809 -
810 -
811 811  = 10. Support =
812 812  
813 813  
image-20230614153353-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content