Last modified by Mengting Qiu on 2023/12/14 11:15

From version 79.20
edited by Xiaoling
on 2023/06/14 15:26
Change comment: Update document after refactoring.
To version 82.4
edited by Xiaoling
on 2023/06/14 16:46
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230613133716-2.png||height="717" width="717"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,24 +19,24 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 28  
29 -DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 30  
31 -The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 32  
33 -DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
37 -Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
39 -[[image:image-20230613140115-3.png||height="453" width="800"]]
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
40 40  
41 41  
42 42  == 1.2 ​Features ==
... ... @@ -45,20 +45,16 @@
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 47  * Ultra-low power consumption
48 -* Liquid Level Measurement by Ultrasonic technology
49 -* Measure through container, No need to contact Liquid
50 -* Valid level range 20mm - 2000mm
51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 -* Cable Length : 25cm
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
53 53  * Support Bluetooth v5.1 and LoRaWAN remote configure
54 54  * Support wireless OTA update firmware
55 55  * AT Commands to change parameters
56 56  * Downlink to change configure
57 -* IP66 Waterproof Enclosure
58 58  * 8500mAh Battery for long term use
59 59  
60 -
61 -
62 62  == 1.3 Specification ==
63 63  
64 64  
... ... @@ -67,6 +67,23 @@
67 67  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
68 68  * Operating Temperature: -40 ~~ 85°C
69 69  
65 +(% style="color:#037691" %)**Probe Specification:**
66 +
67 +* Storage temperature:-20℃~~75℃
68 +* Operating temperature : -20℃~~60℃
69 +* Measure Distance:
70 +** 0.1m ~~ 12m @ 90% Reflectivity
71 +** 0.1m ~~ 4m @ 10% Reflectivity
72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 +* Distance resolution : 5mm
74 +* Ambient light immunity : 70klux
75 +* Enclosure rating : IP65
76 +* Light source : LED
77 +* Central wavelength : 850nm
78 +* FOV : 3.6°
79 +* Material of enclosure : ABS+PC
80 +* Wire length : 25cm
81 +
70 70  (% style="color:#037691" %)**LoRa Spec:**
71 71  
72 72  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -89,148 +89,30 @@
89 89  
90 90  
91 91  
92 -== 1.4 Suitable Container & Liquid ==
104 +== 1.4 Applications ==
93 93  
94 94  
95 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
96 -* Container shape is regular, and surface is smooth.
97 -* Container Thickness:
98 -** Pure metal material.  2~~8mm, best is 3~~5mm
99 -** Pure non metal material: <10 mm
100 -* Pure liquid without irregular deposition.
107 +* Horizontal distance measurement
108 +* Parking management system
109 +* Object proximity and presence detection
110 +* Intelligent trash can management system
111 +* Robot obstacle avoidance
112 +* Automatic control
113 +* Sewer
101 101  
102 102  
103 103  
104 104  (% style="display:none" %)
105 105  
106 -== 1.5 Install DDS20-LB ==
119 +== 1.5 Sleep mode and working mode ==
107 107  
108 108  
109 -(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
110 -
111 -DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
112 -
113 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
114 -
115 -
116 -(((
117 -(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
118 -)))
119 -
120 -(((
121 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
122 -)))
123 -
124 -[[image:image-20230613143052-5.png]]
125 -
126 -
127 -No polish needed if the container is shine metal surface without paint or non-metal container.
128 -
129 -[[image:image-20230613143125-6.png]]
130 -
131 -
132 -(((
133 -(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
134 -)))
135 -
136 -(((
137 -Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
138 -)))
139 -
140 -(((
141 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
142 -)))
143 -
144 -(((
145 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
146 -)))
147 -
148 -
149 -(((
150 -(% style="color:blue" %)**LED Status:**
151 -)))
152 -
153 -* (((
154 -**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
155 -)))
156 -
157 -* (((
158 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
159 -)))
160 -* (((
161 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
162 -)))
163 -
164 -(((
165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 -)))
167 -
168 -
169 -(((
170 -(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
171 -)))
172 -
173 -
174 -(((
175 -(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
176 -)))
177 -
178 -(((
179 -Prepare Eproxy AB glue.
180 -)))
181 -
182 -(((
183 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
184 -)))
185 -
186 -(((
187 -Reset DDS20-LB and see if the BLUE LED is slowly blinking.
188 -)))
189 -
190 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
191 -
192 -
193 -(((
194 -(% style="color:red" %)**Note :**
195 -
196 -(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
197 -)))
198 -
199 -(((
200 -(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
201 -)))
202 -
203 -
204 -== 1.6 Applications ==
205 -
206 -
207 -* Smart liquid control solution
208 -
209 -* Smart liquefied gas solution
210 -
211 -
212 -
213 -== 1.7 Precautions ==
214 -
215 -
216 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
217 -
218 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
219 -
220 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
221 -
222 -
223 -(% style="display:none" %)
224 -
225 -== 1.8 Sleep mode and working mode ==
226 -
227 -
228 228  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
229 229  
230 230  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
231 231  
232 232  
233 -== 1.9 Button & LEDs ==
127 +== 1.6 Button & LEDs ==
234 234  
235 235  
236 236  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -249,13 +249,11 @@
249 249  )))
250 250  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
251 251  
146 +== 1.7 BLE connection ==
252 252  
253 253  
254 -== 1.10 BLE connection ==
149 +LDS12-LB support BLE remote configure.
255 255  
256 -
257 -DDS20-LB support BLE remote configure.
258 -
259 259  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
260 260  
261 261  * Press button to send an uplink
... ... @@ -265,14 +265,15 @@
265 265  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
266 266  
267 267  
268 -== 1.11 Pin Definitions ==
160 +== 1.8 Pin Definitions ==
269 269  
270 -[[image:image-20230523174230-1.png]]
162 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
271 271  
272 272  
273 -== 1.12 Mechanical ==
274 274  
166 +== 1.9 Mechanical ==
275 275  
168 +
276 276  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
277 277  
278 278  
... ... @@ -284,18 +284,17 @@
284 284  
285 285  (% style="color:blue" %)**Probe Mechanical:**
286 286  
287 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
288 288  
289 289  
290 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
182 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
291 291  
292 292  
293 -= 2. Configure DDS20-LB to connect to LoRaWAN network =
185 += 2. Configure LDS12-LB to connect to LoRaWAN network =
294 294  
295 295  == 2.1 How it works ==
296 296  
297 297  
298 -The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
190 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
299 299  
300 300  (% style="display:none" %) (%%)
301 301  
... ... @@ -306,12 +306,12 @@
306 306  
307 307  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
308 308  
309 -[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
201 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
310 310  
311 311  
312 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
204 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
313 313  
314 -Each DDS20-LB is shipped with a sticker with the default device EUI as below:
206 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
315 315  
316 316  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
317 317  
... ... @@ -340,10 +340,10 @@
340 340  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
341 341  
342 342  
343 -(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
235 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
344 344  
345 345  
346 -Press the button for 5 seconds to activate the DDS20-LB.
238 +Press the button for 5 seconds to activate the LDS12-LB.
347 347  
348 348  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
349 349  
... ... @@ -354,31 +354,33 @@
354 354  
355 355  
356 356  (((
357 -DDS20-LB will uplink payload via LoRaWAN with below payload format: 
249 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
358 358  )))
359 359  
360 360  (((
361 -Uplink payload includes in total 8 bytes.
253 +Uplink payload includes in total 11 bytes.
362 362  )))
363 363  
256 +
364 364  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
365 365  |=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
366 366  **Size(bytes)**
367 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
368 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
369 -[[Distance>>||anchor="H2.3.2A0Distance"]]
370 -(unit: mm)
371 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
372 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
373 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
260 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
261 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
262 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
263 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
264 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
265 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
266 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
267 +)))
374 374  
375 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
269 +[[image:1654833689380-972.png]]
376 376  
377 377  
378 378  === 2.3.1  Battery Info ===
379 379  
380 380  
381 -Check the battery voltage for DDS20-LB.
275 +Check the battery voltage for LDS12-LB.
382 382  
383 383  Ex1: 0x0B45 = 2885mV
384 384  
... ... @@ -385,79 +385,106 @@
385 385  Ex2: 0x0B49 = 2889mV
386 386  
387 387  
388 -=== 2.3.2  Distance ===
282 +=== 2.3.2  DS18B20 Temperature sensor ===
389 389  
390 390  
391 -(((
392 -Get the distance. Flat object range 20mm - 2000mm.
393 -)))
285 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
394 394  
395 -(((
396 -For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
397 397  
398 -(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
399 -)))
288 +**Example**:
400 400  
401 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
290 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
402 402  
403 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
292 +If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
404 404  
405 405  
295 +=== 2.3.3  Distance ===
406 406  
407 -=== 2.3.3  Interrupt Pin ===
408 408  
298 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
409 409  
410 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
411 411  
412 -**Example:**
301 +**Example**:
413 413  
414 -0x00: Normal uplink packet.
303 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
415 415  
416 -0x01: Interrupt Uplink Packet.
417 417  
306 +=== 2.3.4  Distance signal strength ===
418 418  
419 -=== 2.3.4  DS18B20 Temperature sensor ===
420 420  
309 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
421 421  
422 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
423 423  
424 424  **Example**:
425 425  
426 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
314 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
427 427  
428 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
316 +Customers can judge whether they need to adjust the environment based on the signal strength.
429 429  
430 430  
431 -=== 2.3.5  Sensor Flag ===
319 +=== 2.3.5  Interrupt Pin ===
432 432  
433 433  
322 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
323 +
324 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
325 +
326 +**Example:**
327 +
328 +0x00: Normal uplink packet.
329 +
330 +0x01: Interrupt Uplink Packet.
331 +
332 +
333 +=== 2.3.6  LiDAR temp ===
334 +
335 +
336 +Characterize the internal temperature value of the sensor.
337 +
338 +**Example: **
339 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
340 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
341 +
342 +
343 +=== 2.3.7  Message Type ===
344 +
345 +
434 434  (((
435 -0x01: Detect Ultrasonic Sensor
347 +For a normal uplink payload, the message type is always 0x01.
436 436  )))
437 437  
438 438  (((
439 -0x00: No Ultrasonic Sensor
351 +Valid Message Type:
440 440  )))
441 441  
354 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
355 +|=(% style="width: 161px;background-color:#D9E2F3;color:#0070C0" %)**Message Type Code**|=(% style="width: 164px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Payload**
356 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
357 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
442 442  
443 -=== 2.3.6  Decode payload in The Things Network ===
444 444  
360 +=== 2.3.8  Decode payload in The Things Network ===
445 445  
362 +
446 446  While using TTN network, you can add the payload format to decode the payload.
447 447  
448 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
449 449  
450 -The payload decoder function for TTN V3 is here:
366 +[[image:1654592762713-715.png]]
451 451  
368 +
452 452  (((
453 -DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
370 +The payload decoder function for TTN is here:
454 454  )))
455 455  
373 +(((
374 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
375 +)))
456 456  
377 +
457 457  == 2.4  Uplink Interval ==
458 458  
459 459  
460 -The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
381 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
461 461  
462 462  
463 463  == 2.5  ​Show Data in DataCake IoT Server ==
... ... @@ -485,7 +485,7 @@
485 485  
486 486  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
487 487  
488 -(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
409 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
489 489  
490 490  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
491 491  
... ... @@ -498,19 +498,19 @@
498 498  == 2.6 Datalog Feature ==
499 499  
500 500  
501 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
422 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
502 502  
503 503  
504 504  === 2.6.1 Ways to get datalog via LoRaWAN ===
505 505  
506 506  
507 -Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
428 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
508 508  
509 509  * (((
510 -a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
431 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
511 511  )))
512 512  * (((
513 -b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
434 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
514 514  )))
515 515  
516 516  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -521,7 +521,7 @@
521 521  === 2.6.2 Unix TimeStamp ===
522 522  
523 523  
524 -DDS20-LB uses Unix TimeStamp format based on
445 +LDS12-LB uses Unix TimeStamp format based on
525 525  
526 526  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
527 527  
... ... @@ -540,7 +540,7 @@
540 540  
541 541  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
542 542  
543 -Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
464 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
544 544  
545 545  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
546 546  
... ... @@ -568,7 +568,7 @@
568 568  )))
569 569  
570 570  (((
571 -Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
492 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
572 572  )))
573 573  
574 574  
... ... @@ -575,17 +575,107 @@
575 575  == 2.7 Frequency Plans ==
576 576  
577 577  
578 -The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
499 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
579 579  
580 580  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
581 581  
582 582  
583 -= 3. Configure DDS20-LB =
504 +== 2.8 LiDAR ToF Measurement ==
584 584  
506 +=== 2.8.1 Principle of Distance Measurement ===
507 +
508 +
509 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
510 +
511 +
512 +[[image:1654831757579-263.png]]
513 +
514 +
515 +=== 2.8.2 Distance Measurement Characteristics ===
516 +
517 +
518 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
519 +
520 +[[image:1654831774373-275.png]]
521 +
522 +
523 +(((
524 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
525 +)))
526 +
527 +(((
528 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
529 +)))
530 +
531 +(((
532 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
533 +)))
534 +
535 +
536 +(((
537 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
538 +)))
539 +
540 +
541 +[[image:1654831797521-720.png]]
542 +
543 +
544 +(((
545 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
546 +)))
547 +
548 +[[image:1654831810009-716.png]]
549 +
550 +
551 +(((
552 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
553 +)))
554 +
555 +
556 +=== 2.8.3 Notice of usage: ===
557 +
558 +
559 +Possible invalid /wrong reading for LiDAR ToF tech:
560 +
561 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
562 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
563 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
564 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
565 +
566 +
567 +=== 2.8.4  Reflectivity of different objects ===
568 +
569 +
570 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
571 +|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
572 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
573 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
574 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
575 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
576 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
577 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
578 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
579 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
580 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
581 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
582 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
583 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
584 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
585 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
586 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
587 +Unpolished white metal surface
588 +)))|(% style="width:93px" %)130%
589 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
590 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
591 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
592 +
593 +
594 += 3. Configure LDS12-LB =
595 +
585 585  == 3.1 Configure Methods ==
586 586  
587 587  
588 -DDS20-LB supports below configure method:
599 +LDS12-LB supports below configure method:
589 589  
590 590  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
591 591  
... ... @@ -593,8 +593,6 @@
593 593  
594 594  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
595 595  
596 -
597 -
598 598  == 3.2 General Commands ==
599 599  
600 600  
... ... @@ -609,10 +609,10 @@
609 609  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
610 610  
611 611  
612 -== 3.3 Commands special design for DDS20-LB ==
621 +== 3.3 Commands special design for LDS12-LB ==
613 613  
614 614  
615 -These commands only valid for DDS20-LB, as below:
624 +These commands only valid for LDS12-LB, as below:
616 616  
617 617  
618 618  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -694,12 +694,10 @@
694 694  
695 695  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
696 696  
697 -
698 -
699 699  = 4. Battery & Power Consumption =
700 700  
701 701  
702 -DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
709 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
703 703  
704 704  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
705 705  
... ... @@ -708,7 +708,7 @@
708 708  
709 709  
710 710  (% class="wikigeneratedid" %)
711 -User can change firmware DDS20-LB to:
718 +User can change firmware LDS12-LB to:
712 712  
713 713  * Change Frequency band/ region.
714 714  
... ... @@ -724,43 +724,40 @@
724 724  
725 725  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
726 726  
727 -
728 -
729 729  = 6. FAQ =
730 730  
731 -== 6.1  What is the frequency plan for DDS20-LB? ==
736 +== 6.1 What is the frequency plan for LDS12-LB? ==
732 732  
733 733  
734 -DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
739 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
735 735  
736 736  
737 -== 6.2  Can I use DDS20-LB in condensation environment? ==
742 += 7Trouble Shooting =
738 738  
744 +== 7.1 AT Command input doesn't work ==
739 739  
740 -DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
741 741  
747 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
742 742  
743 -= 7.  Trouble Shooting =
744 744  
745 -== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
750 +== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
746 746  
747 747  
748 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
753 +(((
754 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
755 +)))
749 749  
757 +(((
758 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
759 +)))
750 750  
751 -== 7.2  AT Command input doesn't work ==
752 752  
753 -
754 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
755 -
756 -
757 -== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
758 -
759 -
760 760  (((
761 -LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
763 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
764 +)))
762 762  
763 -If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
766 +(((
767 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
764 764  )))
765 765  
766 766  
... ... @@ -767,7 +767,7 @@
767 767  = 8. Order Info =
768 768  
769 769  
770 -Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
774 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
771 771  
772 772  (% style="color:red" %)**XXX**(%%): **The default frequency band**
773 773  
... ... @@ -787,14 +787,12 @@
787 787  
788 788  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
789 789  
790 -
791 -
792 792  = 9. ​Packing Info =
793 793  
794 794  
795 795  (% style="color:#037691" %)**Package Includes**:
796 796  
797 -* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
799 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
798 798  
799 799  (% style="color:#037691" %)**Dimension and weight**:
800 800  
... ... @@ -806,8 +806,6 @@
806 806  
807 807  * Weight / pcs : g
808 808  
809 -
810 -
811 811  = 10. Support =
812 812  
813 813  
image-20230614153353-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content