Last modified by Mengting Qiu on 2023/12/14 11:15

From version 79.2
edited by Xiaoling
on 2023/06/13 14:31
Change comment: There is no comment for this version
To version 95.1
edited by Saxer Lin
on 2023/08/05 14:49
Change comment: Uploaded new attachment "image-20230805144936-2.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230613133716-2.png||height="717" width="717"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,24 +19,24 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 28  
29 -DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 30  
31 -The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 32  
33 -DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
37 -Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
39 -[[image:image-20230613140115-3.png||height="453" width="800"]]
38 +[[image:image-20230615152941-1.png||height="459" width="800"]]
40 40  
41 41  
42 42  == 1.2 ​Features ==
... ... @@ -45,18 +45,17 @@
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 47  * Ultra-low power consumption
48 -* Liquid Level Measurement by Ultrasonic technology
49 -* Measure through container, No need to contact Liquid
50 -* Valid level range 20mm - 2000mm
51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 -* Cable Length : 25cm
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
53 53  * Support Bluetooth v5.1 and LoRaWAN remote configure
54 54  * Support wireless OTA update firmware
55 55  * AT Commands to change parameters
56 56  * Downlink to change configure
57 -* IP66 Waterproof Enclosure
58 58  * 8500mAh Battery for long term use
59 59  
57 +
60 60  == 1.3 Specification ==
61 61  
62 62  
... ... @@ -65,6 +65,23 @@
65 65  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
66 66  * Operating Temperature: -40 ~~ 85°C
67 67  
66 +(% style="color:#037691" %)**Probe Specification:**
67 +
68 +* Storage temperature:-20℃~~75℃
69 +* Operating temperature : -20℃~~60℃
70 +* Measure Distance:
71 +** 0.1m ~~ 12m @ 90% Reflectivity
72 +** 0.1m ~~ 4m @ 10% Reflectivity
73 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
74 +* Distance resolution : 5mm
75 +* Ambient light immunity : 70klux
76 +* Enclosure rating : IP65
77 +* Light source : LED
78 +* Central wavelength : 850nm
79 +* FOV : 3.6°
80 +* Material of enclosure : ABS+PC
81 +* Wire length : 25cm
82 +
68 68  (% style="color:#037691" %)**LoRa Spec:**
69 69  
70 70  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -85,332 +85,296 @@
85 85  * Sleep Mode: 5uA @ 3.3v
86 86  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
87 87  
88 -== 1.4 Suitable Container & Liquid ==
89 89  
104 +== 1.4 Applications ==
90 90  
91 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
92 -* Container shape is regular, and surface is smooth.
93 -* Container Thickness:
94 -** Pure metal material.  2~~8mm, best is 3~~5mm
95 -** Pure non metal material: <10 mm
96 -* Pure liquid without irregular deposition.(% style="display:none" %)
97 97  
107 +* Horizontal distance measurement
108 +* Parking management system
109 +* Object proximity and presence detection
110 +* Intelligent trash can management system
111 +* Robot obstacle avoidance
112 +* Automatic control
113 +* Sewer
98 98  
99 -== 1.5 Install DDS20-LB ==
100 100  
116 +(% style="display:none" %)
101 101  
102 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
118 +== 1.5 Sleep mode and working mode ==
103 103  
104 -DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
105 105  
106 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
121 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
107 107  
123 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
108 108  
109 -(((
110 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
111 -)))
112 112  
113 -(((
114 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
115 -)))
126 +== 1.6 Button & LEDs ==
116 116  
117 -[[image:image-20230613143052-5.png]]
118 118  
129 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
119 119  
120 -No polish needed if the container is shine metal surface without paint or non-metal container.
121 121  
122 -[[image:image-20230613143125-6.png]]
132 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
133 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
134 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
135 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
136 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
137 +)))
138 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
139 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
140 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
141 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
142 +)))
143 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
123 123  
124 124  
146 +== 1.7 BLE connection ==
125 125  
126 -(((
127 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
128 -)))
129 129  
130 -(((
131 -Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
132 -)))
149 +LDS12-LB support BLE remote configure.
133 133  
151 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
134 134  
135 -(((
136 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
137 -)))
153 +* Press button to send an uplink
154 +* Press button to active device.
155 +* Device Power on or reset.
138 138  
139 -[[image:1655256160324-178.png||height="151" width="419"]][[image:image-20220615092327-13.png||height="146" width="260"]]
157 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
140 140  
141 141  
142 -(((
143 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
144 -)))
160 +== 1.8 Pin Definitions ==
145 145  
162 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
146 146  
147 -(((
148 -(% style="color:red" %)**LED Status:**
149 -)))
150 150  
151 -* (((
152 -Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
153 -)))
165 +== 1.9 Mechanical ==
154 154  
155 -* (((
156 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
157 -)))
158 -* (((
159 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
160 -)))
161 161  
162 -(((
163 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
164 -)))
168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
165 165  
166 166  
167 -(((
168 -(% style="color:red" %)**Note 2:**
169 -)))
171 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
170 170  
171 -(((
172 -(% style="color:red" %)**Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
173 -)))
174 174  
174 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
175 175  
176 -(((
177 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
178 -)))
179 179  
180 -(((
181 -Prepare Eproxy AB glue.
182 -)))
177 +(% style="color:blue" %)**Probe Mechanical:**
183 183  
184 -(((
185 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
186 -)))
187 187  
188 -(((
189 -Reset DDS20-LB and see if the BLUE LED is slowly blinking.
190 -)))
180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
191 191  
192 -[[image:image-20220615091045-8.png||height="203" width="341"]] [[image:image-20220615091045-9.png||height="200" width="284"]]
193 193  
183 += 2. Configure LDS12-LB to connect to LoRaWAN network =
194 194  
195 -(((
196 -(% style="color:red" %)**Note 1:**
197 -)))
185 +== 2.1 How it works ==
198 198  
199 -(((
200 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
201 -)))
202 202  
188 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
203 203  
204 -(((
205 -(% style="color:red" %)**Note 2:**
206 -)))
190 +(% style="display:none" %) (%%)
207 207  
208 -(((
209 -(% style="color:red" %)**Eproxy AB glue**(%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
210 -)))
192 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
211 211  
212 212  
213 -== 1.6 Applications ==
195 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
214 214  
197 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
215 215  
216 -* Smart liquid control solution.
199 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
217 217  
218 -* Smart liquefied gas solution.
219 219  
202 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
220 220  
204 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
221 221  
222 -== 1.7 Precautions ==
206 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
223 223  
224 224  
225 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
209 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
226 226  
227 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
228 228  
229 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %)
212 +(% style="color:blue" %)**Register the device**
230 230  
214 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
231 231  
232 -== 1.8 Sleep mode and working mode ==
233 233  
217 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
234 234  
235 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
219 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
236 236  
237 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 238  
222 +(% style="color:blue" %)**Add APP EUI in the application**
239 239  
240 -== 1.9 Button & LEDs ==
241 241  
225 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
242 242  
243 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
244 244  
228 +(% style="color:blue" %)**Add APP KEY**
245 245  
246 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
247 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
248 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
249 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
250 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
251 -)))
252 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
253 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
254 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
255 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
256 -)))
257 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
230 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
258 258  
259 -== 1.10 BLE connection ==
260 260  
233 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
261 261  
262 -DDS20-LB support BLE remote configure.
263 263  
264 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
236 +Press the button for 5 seconds to activate the LDS12-LB.
265 265  
266 -* Press button to send an uplink
267 -* Press button to active device.
268 -* Device Power on or reset.
238 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
269 269  
270 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
240 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
271 271  
272 272  
273 -== 1.11 Pin Definitions ==
243 +== 2.3 ​Uplink Payload ==
274 274  
275 -[[image:image-20230523174230-1.png]]
245 +=== 2.3.1 Device Status, FPORT~=5 ===
276 276  
277 277  
278 -== 1.12 Mechanical ==
248 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
279 279  
250 +The Payload format is as below.
280 280  
281 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
252 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
253 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
254 +**Size(bytes)**
255 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
256 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
282 282  
258 +Example parse in TTNv3
283 283  
284 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
260 +[[image:image-20230805103904-1.png||height="131" width="711"]]
285 285  
262 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
286 286  
287 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
264 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
288 288  
266 +(% style="color:blue" %)**Frequency Band**:
289 289  
290 -(% style="color:blue" %)**Probe Mechanical:**
268 +0x01: EU868
291 291  
292 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
270 +0x02: US915
293 293  
272 +0x03: IN865
294 294  
295 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
274 +0x04: AU915
296 296  
276 +0x05: KZ865
297 297  
298 -= 2. Configure DDS20-LB to connect to LoRaWAN network =
278 +0x06: RU864
299 299  
300 -== 2.1 How it works ==
280 +0x07: AS923
301 301  
282 +0x08: AS923-1
302 302  
303 -The DDS45-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS45-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
284 +0x09: AS923-2
304 304  
305 -(% style="display:none" %) (%%)
286 +0x0a: AS923-3
306 306  
307 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
288 +0x0b: CN470
308 308  
290 +0x0c: EU433
309 309  
310 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
292 +0x0d: KR920
311 311  
312 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
294 +0x0e: MA869
313 313  
314 -[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
296 +(% style="color:blue" %)**Sub-Band**:
315 315  
298 +AU915 and US915:value 0x00 ~~ 0x08
316 316  
317 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS45-LB.
300 +CN470: value 0x0B ~~ 0x0C
318 318  
319 -Each DDS45-LB is shipped with a sticker with the default device EUI as below:
302 +Other Bands: Always 0x00
320 320  
321 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
304 +(% style="color:blue" %)**Battery Info**:
322 322  
306 +Check the battery voltage.
323 323  
324 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
308 +Ex1: 0x0B45 = 2885mV
325 325  
310 +Ex2: 0x0B49 = 2889mV
326 326  
327 -(% style="color:blue" %)**Register the device**
328 328  
329 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
313 +=== 2.3.2 Uplink Payload, FPORT~=2 ===
330 330  
331 331  
332 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
316 +(((
317 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
333 333  
334 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
319 +periodically send this uplink every 20 minutes, this interval [[can be changed>>https://111]].
335 335  
321 +Uplink Payload totals 11 bytes.
322 +)))
336 336  
337 -(% style="color:blue" %)**Add APP EUI in the application**
324 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
325 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 +**Size(bytes)**
327 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
328 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
329 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
330 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
331 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
332 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
333 +[[Message Type>>||anchor="HMessageType"]]
334 +)))
338 338  
336 +[[image:image-20230805104104-2.png||height="136" width="754"]]
339 339  
340 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
341 341  
339 +==== (% style="color:blue" %)**Battery Info**(%%) ====
342 342  
343 -(% style="color:blue" %)**Add APP KEY**
344 344  
345 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
342 +Check the battery voltage for LDS12-LB.
346 346  
344 +Ex1: 0x0B45 = 2885mV
347 347  
348 -(% style="color:blue" %)**Step 2:**(%%) Activate on DDS45-LB
346 +Ex2: 0x0B49 = 2889mV
349 349  
350 350  
351 -Press the button for 5 seconds to activate the DDS45-LB.
349 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
352 352  
353 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
354 354  
355 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
352 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
356 356  
357 357  
358 -== 2.3  ​Uplink Payload ==
355 +**Example**:
359 359  
357 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
360 360  
361 -(((
362 -DDS45-LB will uplink payload via LoRaWAN with below payload format: 
363 -)))
359 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
364 364  
365 -(((
366 -Uplink payload includes in total 8 bytes.
367 -)))
368 368  
369 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
370 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
371 -**Size(bytes)**
372 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
373 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
374 -[[Distance>>||anchor="H2.3.2A0Distance"]]
375 -(unit: mm)
376 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
377 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
378 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
362 +==== (% style="color:blue" %)**Distance**(%%) ====
379 379  
380 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
381 381  
365 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
382 382  
383 -=== 2.3.1  Battery Info ===
384 384  
368 +**Example**:
385 385  
386 -Check the battery voltage for DDS45-LB.
370 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
387 387  
388 -Ex1: 0x0B45 = 2885mV
389 389  
390 -Ex2: 0x0B49 = 2889mV
373 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
391 391  
392 392  
393 -=== 2.3. Distance ===
376 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
394 394  
395 395  
396 -(((
397 -Get the distance. Flat object range 30mm - 4500mm.
398 -)))
379 +**Example**:
399 399  
400 -(((
401 -For example, if the data you get from the register is **0x0B 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
381 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
402 402  
403 -(% style="color:blue" %)**0B05(H) = 2821 (D) = 2821 mm.**
404 -)))
383 +Customers can judge whether they need to adjust the environment based on the signal strength.
405 405  
406 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
407 -* If the sensor value lower than 0x001E (30mm), the sensor value will be 0x00.
408 408  
409 -=== 2.3.3  Interrupt Pin ===
386 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
410 410  
411 411  
412 412  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
413 413  
391 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
392 +
414 414  **Example:**
415 415  
416 416  0x00: Normal uplink packet.
... ... @@ -418,53 +418,53 @@
418 418  0x01: Interrupt Uplink Packet.
419 419  
420 420  
421 -=== 2.3.4  DS18B20 Temperature sensor ===
400 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
422 422  
423 423  
424 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
403 +Characterize the internal temperature value of the sensor.
425 425  
426 -**Example**:
405 +**Example: **
406 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
407 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
427 427  
428 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
429 429  
430 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
410 +==== (% style="color:blue" %)**Message Type**(%%) ====
431 431  
432 432  
433 -=== 2.3.5  Sensor Flag ===
434 -
435 -
436 436  (((
437 -0x01: Detect Ultrasonic Sensor
414 +For a normal uplink payload, the message type is always 0x01.
438 438  )))
439 439  
440 440  (((
441 -0x00: No Ultrasonic Sensor
418 +Valid Message Type:
442 442  )))
443 443  
421 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
422 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
423 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
424 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
444 444  
445 -=== 2.3.6  Decode payload in The Things Network ===
446 446  
427 +=== 2.3.3 Decode payload in The Things Network ===
447 447  
429 +
448 448  While using TTN network, you can add the payload format to decode the payload.
449 449  
450 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
432 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
451 451  
452 -The payload decoder function for TTN V3 is here:
453 453  
454 454  (((
455 -DDS45-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
436 +The payload decoder function for TTN is here:
456 456  )))
457 457  
439 +(((
440 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
441 +)))
458 458  
459 -== 2.4  Uplink Interval ==
460 460  
444 +== 2.4 ​Show Data in DataCake IoT Server ==
461 461  
462 -The DDS45-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
463 463  
464 -
465 -== 2.5  ​Show Data in DataCake IoT Server ==
466 -
467 -
468 468  (((
469 469  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
470 470  )))
... ... @@ -487,7 +487,7 @@
487 487  
488 488  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
489 489  
490 -(% style="color:blue" %)**Step 4**(%%)**: Search the DDS45-LB and add DevEUI.**
469 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
491 491  
492 492  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
493 493  
... ... @@ -497,23 +497,22 @@
497 497  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
498 498  
499 499  
479 +== 2.5 Datalog Feature ==
500 500  
501 -== 2.6 Datalog Feature ==
502 502  
482 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
503 503  
504 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS45-LB will store the reading for future retrieving purposes.
505 505  
485 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
506 506  
507 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
508 508  
488 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
509 509  
510 -Set PNACKMD=1, DDS45-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS45-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
511 -
512 512  * (((
513 -a) DDS45-LB will do an ACK check for data records sending to make sure every data arrive server.
491 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
514 514  )))
515 515  * (((
516 -b) DDS45-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS45-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS45-LB gets a ACK, DDS45-LB will consider there is a network connection and resend all NONE-ACK messages.
494 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
517 517  )))
518 518  
519 519  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -521,10 +521,10 @@
521 521  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
522 522  
523 523  
524 -=== 2.6.2 Unix TimeStamp ===
502 +=== 2.5.2 Unix TimeStamp ===
525 525  
526 526  
527 -DDS45-LB uses Unix TimeStamp format based on
505 +LDS12-LB uses Unix TimeStamp format based on
528 528  
529 529  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
530 530  
... ... @@ -538,23 +538,23 @@
538 538  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
539 539  
540 540  
541 -=== 2.6.3 Set Device Time ===
519 +=== 2.5.3 Set Device Time ===
542 542  
543 543  
544 544  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
545 545  
546 -Once DDS45-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS45-LB. If DDS45-LB fails to get the time from the server, DDS45-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
524 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
547 547  
548 548  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
549 549  
550 550  
551 -=== 2.6.4 Poll sensor value ===
529 +=== 2.5.4 Poll sensor value ===
552 552  
553 553  
554 554  Users can poll sensor values based on timestamps. Below is the downlink command.
555 555  
556 556  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
557 -|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
535 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
558 558  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
559 559  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
560 560  
... ... @@ -571,24 +571,110 @@
571 571  )))
572 572  
573 573  (((
574 -Uplink Internal =5s,means DDS45-LB will send one packet every 5s. range 5~~255s.
552 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
575 575  )))
576 576  
577 577  
578 -== 2.7 Frequency Plans ==
556 +== 2.6 Frequency Plans ==
579 579  
580 580  
581 -The DDS45-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
559 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
582 582  
583 583  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
584 584  
585 585  
586 -= 3. Configure DDS45-LB =
564 +== 2.7 LiDAR ToF Measurement ==
587 587  
566 +=== 2.7.1 Principle of Distance Measurement ===
567 +
568 +
569 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
570 +
571 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
572 +
573 +
574 +=== 2.7.2 Distance Measurement Characteristics ===
575 +
576 +
577 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
578 +
579 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
580 +
581 +
582 +(((
583 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
584 +)))
585 +
586 +(((
587 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
588 +)))
589 +
590 +(((
591 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
592 +)))
593 +
594 +
595 +(((
596 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
597 +)))
598 +
599 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
600 +
601 +(((
602 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
603 +)))
604 +
605 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
606 +
607 +(((
608 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
609 +)))
610 +
611 +
612 +=== 2.7.3 Notice of usage ===
613 +
614 +
615 +Possible invalid /wrong reading for LiDAR ToF tech:
616 +
617 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
618 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
619 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
620 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
621 +
622 +
623 +=== 2.7.4  Reflectivity of different objects ===
624 +
625 +
626 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
627 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
628 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
629 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
630 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
631 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
632 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
633 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
634 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
635 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
636 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
637 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
638 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
639 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
640 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
641 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
642 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
643 +Unpolished white metal surface
644 +)))|(% style="width:93px" %)130%
645 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
646 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
647 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
648 +
649 +
650 += 3. Configure LDS12-LB =
651 +
588 588  == 3.1 Configure Methods ==
589 589  
590 590  
591 -DDS45-LB supports below configure method:
655 +LDS12-LB supports below configure method:
592 592  
593 593  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
594 594  
... ... @@ -596,6 +596,7 @@
596 596  
597 597  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
598 598  
663 +
599 599  == 3.2 General Commands ==
600 600  
601 601  
... ... @@ -610,10 +610,10 @@
610 610  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
611 611  
612 612  
613 -== 3.3 Commands special design for DDS45-LB ==
678 +== 3.3 Commands special design for LDS12-LB ==
614 614  
615 615  
616 -These commands only valid for DDS45-LB, as below:
681 +These commands only valid for LDS12-LB, as below:
617 617  
618 618  
619 619  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -628,7 +628,7 @@
628 628  )))
629 629  
630 630  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
631 -|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
696 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
632 632  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
633 633  30000
634 634  OK
... ... @@ -656,6 +656,9 @@
656 656  )))
657 657  * (((
658 658  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
724 +
725 +
726 +
659 659  )))
660 660  
661 661  === 3.3.2 Set Interrupt Mode ===
... ... @@ -668,7 +668,7 @@
668 668  (% style="color:blue" %)**AT Command: AT+INTMOD**
669 669  
670 670  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
671 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
739 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
672 672  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
673 673  0
674 674  OK
... ... @@ -692,97 +692,105 @@
692 692  
693 693  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
694 694  
695 -= 4. Battery & Power Consumption =
696 696  
764 +=== 3.3.3  Set Power Output Duration ===
697 697  
698 -DDS45-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
766 +Control the output duration 3V3 . Before each sampling, device will
699 699  
700 -[[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
768 +~1. first enable the power output to external sensor,
701 701  
770 +2. keep it on as per duration, read sensor value and construct uplink payload
702 702  
703 -= 5. OTA Firmware update =
772 +3. final, close the power output.
704 704  
774 +(% style="color:blue" %)**AT Command: AT+3V3T**
705 705  
706 -(% class="wikigeneratedid" %)
707 -User can change firmware DDS45-LB to:
776 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
777 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
778 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
779 +OK
780 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
781 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
708 708  
709 -* Change Frequency band/ region.
783 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
784 +Format: Command Code (0x07) followed by 3 bytes.
710 710  
711 -* Update with new features.
786 +The first byte is 01,the second and third bytes are the time to turn on.
712 712  
713 -* Fix bugs.
788 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
789 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
714 714  
715 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/a5ue0nfrzqy9nz6/AABbvlATosDJKDwBmbirVbMYa?dl=0]]**
716 716  
717 -Methods to Update Firmware:
792 += 4. Battery & Power Consumption =
718 718  
719 -* (Recommanded way) OTA firmware update via wireless:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
720 720  
721 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
795 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
722 722  
723 -= 6. FAQ =
797 +[[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
724 724  
725 -== 6.1  What is the frequency plan for DDS45-LB? ==
726 726  
800 += 5. OTA Firmware update =
727 727  
728 -DDS45-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
729 729  
803 +(% class="wikigeneratedid" %)
804 +User can change firmware LDS12-LB to:
730 730  
731 -== 6.2  Can I use DDS45-LB in condensation environment? ==
806 +* Change Frequency band/ region.
732 732  
808 +* Update with new features.
733 733  
734 -DDS45-LB is not suitable to be used in condensation environment. Condensation on the DDS45-LB probe will affect the reading and always got 0.
810 +* Fix bugs.
735 735  
812 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
736 736  
737 -= 7.  Trouble Shooting =
814 +Methods to Update Firmware:
738 738  
739 -== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
816 +* (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
740 740  
818 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
741 741  
742 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
743 743  
821 += 6. FAQ =
744 744  
745 -== 7. AT Command input doesn't work ==
823 +== 6.1 What is the frequency plan for LDS12-LB? ==
746 746  
747 747  
748 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
826 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
749 749  
750 750  
751 -== 7.3  Why does the sensor reading show 0 or "No sensor" ==
829 += 7. Trouble Shooting =
752 752  
831 +== 7.1 AT Command input doesn't work ==
753 753  
754 -~1. The measurement object is very close to the sensor, but in the blind spot of the sensor.
755 755  
756 -2. Sensor wiring is disconnected
834 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
757 757  
758 -3. Not using the correct decoder
759 759  
837 +== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
760 760  
761 -== 7.4  Abnormal readings The gap between multiple readings is too large or the gap between the readings and the actual value is too large ==
762 762  
840 +(((
841 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
842 +)))
763 763  
764 -1) Please check if there is something on the probe affecting its measurement (condensed water, volatile oil, etc.)
844 +(((
845 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
846 +)))
765 765  
766 -2) Does it change with temperature, temperature will affect its measurement
767 767  
768 -3) If abnormal data occurs, you can turn on DEBUG mode, Please use downlink or AT COMMAN to enter DEBUG mode.
849 +(((
850 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
851 +)))
769 769  
770 -downlink command: (% style="color:blue" %)**F1 01**(%%), AT command: (% style="color:blue" %)**AT+DDEBUG=1**
853 +(((
854 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
855 +)))
771 771  
772 -4) After entering the debug mode, it will send 20 pieces of data at a time, and you can send its uplink to us for analysis
773 773  
774 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20230113135125-2.png?width=1057&height=136&rev=1.1||alt="image-20230113135125-2.png"]]
775 -
776 -
777 -Its original payload will be longer than other data. Even though it is being parsed, it can be seen that it is abnormal data.
778 -
779 -Please send the data to us for check.
780 -
781 -
782 782  = 8. Order Info =
783 783  
784 784  
785 -Part Number: (% style="color:blue" %)**DDS45-LB-XXX**
861 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
786 786  
787 787  (% style="color:red" %)**XXX**(%%): **The default frequency band**
788 788  
... ... @@ -802,12 +802,13 @@
802 802  
803 803  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
804 804  
881 +
805 805  = 9. ​Packing Info =
806 806  
807 807  
808 808  (% style="color:#037691" %)**Package Includes**:
809 809  
810 -* DDS45-LB LoRaWAN Distance Detection Sensor x 1
887 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
811 811  
812 812  (% style="color:#037691" %)**Dimension and weight**:
813 813  
... ... @@ -819,6 +819,7 @@
819 819  
820 820  * Weight / pcs : g
821 821  
899 +
822 822  = 10. Support =
823 823  
824 824  
image-20230614153353-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content