Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 5 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -D DS20-LB -- LoRaWANUltrasonicLiquid LevelSensor User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023061 3133716-2.png||height="717" width="717"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,24 +19,24 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN Ultrasonicliquid levelSensor ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino D DS20-LB is a (% style="color:blue" %)**LoRaWANUltrasonicliquidlevelsensor**(%%) for Internet of Things solution. Ituses (%style="color:blue"%)**none-contact method**(%%)tomeasure the(%style="color:blue" %)**heightofliquid**(%%)ina containerwithoutopeningthecontainer,andsendthevalueviaLoRaWANnetworktoIoTServer.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -The D DS20-LBsensorisinstalleddirectly belowthecontainertodetect theheightoftheliquidlevel. Userdoesn't needtoopen aholeon the containerto betested.Thenone-contactmeasurementmakesthemeasurement safety, easierand possibleforsome strict situation.26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 28 29 - DDS20-LBuses (% style="color:blue" %)**ultrasonicsensingtechnology**(%%)fordistancemeasurement.DDS20-LB is ofhighaccuracy tomeasurevarious liquidsuch as: (% style="color:blue" %)**toxicsubstances**(%%), (%style="color:blue"%)**strong acids**(%%), (% style="color:blue"%)**strongalkalis**(%%) and(%style="color:blue" %)**variouspureliquids**(%%) inhigh-temperature andhigh-pressureairtightcontainers.28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 30 30 31 -The LoRa wireless technology used in D DS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 32 33 -D DS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 -D DS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 37 -Each D DS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 38 38 39 -[[image:image-2023061 3140115-3.png||height="453" width="800"]]38 +[[image:image-20230615152941-1.png||height="459" width="800"]] 40 40 41 41 42 42 == 1.2 Features == ... ... @@ -45,16 +45,14 @@ 45 45 * LoRaWAN 1.0.3 Class A 46 46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 47 47 * Ultra-low power consumption 48 -* Liquid Level Measurement by Ultrasonic technology 49 -* Measure through container, No need to contact Liquid 50 -* Valid level range 20mm - 2000mm 51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 52 -* Cable Length : 25cm 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 53 53 * Support Bluetooth v5.1 and LoRaWAN remote configure 54 54 * Support wireless OTA update firmware 55 55 * AT Commands to change parameters 56 56 * Downlink to change configure 57 -* IP66 Waterproof Enclosure 58 58 * 8500mAh Battery for long term use 59 59 60 60 == 1.3 Specification == ... ... @@ -65,6 +65,23 @@ 65 65 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 66 66 * Operating Temperature: -40 ~~ 85°C 67 67 65 +(% style="color:#037691" %)**Probe Specification:** 66 + 67 +* Storage temperature:-20℃~~75℃ 68 +* Operating temperature : -20℃~~60℃ 69 +* Measure Distance: 70 +** 0.1m ~~ 12m @ 90% Reflectivity 71 +** 0.1m ~~ 4m @ 10% Reflectivity 72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 74 +* Ambient light immunity : 70klux 75 +* Enclosure rating : IP65 76 +* Light source : LED 77 +* Central wavelength : 850nm 78 +* FOV : 3.6° 79 +* Material of enclosure : ABS+PC 80 +* Wire length : 25cm 81 + 68 68 (% style="color:#037691" %)**LoRa Spec:** 69 69 70 70 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -85,332 +85,296 @@ 85 85 * Sleep Mode: 5uA @ 3.3v 86 86 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 87 87 88 -== 1.4 Suitable Container& Liquid==102 +== 1.4 Applications == 89 89 90 90 91 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 92 -* Container shape is regular, and surface is smooth. 93 -* Container Thickness: 94 -** Pure metal material. 2~~8mm, best is 3~~5mm 95 -** Pure non metal material: <10 mm 96 -* Pure liquid without irregular deposition.(% style="display:none" %) 105 +* Horizontal distance measurement 106 +* Parking management system 107 +* Object proximity and presence detection 108 +* Intelligent trash can management system 109 +* Robot obstacle avoidance 110 +* Automatic control 111 +* Sewer 97 97 113 +(% style="display:none" %) 98 98 99 -== 1.5 InstallDDS20-LB==115 +== 1.5 Sleep mode and working mode == 100 100 101 101 102 -(% style="color:blue" %)**S tep1**(%%):Choose the installation point.118 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 103 103 104 - DDS20-LB(% style="color:red" %)**MUST**(%%)beinstalledon thecontainerbottommiddle position.120 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 105 105 106 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 107 107 123 +== 1.6 Button & LEDs == 108 108 109 -((( 110 -(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 111 -))) 112 112 113 -((( 114 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 115 -))) 126 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 116 116 117 -[[image:image-20230613143052-5.png]] 118 118 129 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 130 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 131 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 132 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 133 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 134 +))) 135 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 136 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 137 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 138 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 139 +))) 140 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 119 119 120 - Nopolishneededif thecontainer is shine metal surface without paintornon-metalcontainer.142 +== 1.7 BLE connection == 121 121 122 -[[image:image-20230613143125-6.png]] 123 123 145 +LDS12-LB support BLE remote configure. 124 124 147 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 125 125 126 - (((127 - (%style="color:blue"%)**Step3: **(%%)Test theinstallationpoint.128 - )))149 +* Press button to send an uplink 150 +* Press button to active device. 151 +* Device Power on or reset. 129 129 130 -((( 131 -Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 132 -))) 153 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 133 133 134 134 135 -((( 136 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 137 -))) 156 +== 1.8 Pin Definitions == 138 138 139 -[[image: 1655256160324-178.png||height="151" width="419"]][[image:image-20220615092327-13.png||height="146"width="260"]]158 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 140 140 141 141 142 -((( 143 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 144 -))) 161 +== 1.9 Mechanical == 145 145 146 146 147 -((( 148 -(% style="color:red" %)**LED Status:** 149 -))) 164 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 150 150 151 -* ((( 152 -Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 153 -))) 154 154 155 -* ((( 156 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 157 -))) 158 -* ((( 159 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 160 -))) 167 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 161 161 162 -((( 163 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 164 -))) 165 165 170 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 166 166 167 -((( 168 -(% style="color:red" %)**Note 2:** 169 -))) 170 170 171 -((( 172 -(% style="color:red" %)**Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 173 -))) 173 +(% style="color:blue" %)**Probe Mechanical:** 174 174 175 175 176 -((( 177 -(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 178 -))) 176 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 179 179 180 -((( 181 -Prepare Eproxy AB glue. 182 -))) 183 183 184 -((( 185 -Put Eproxy AB glue in the sensor and press it hard on the container installation point. 186 -))) 179 += 2. Configure LDS12-LB to connect to LoRaWAN network = 187 187 188 -((( 189 -Reset DDS20-LB and see if the BLUE LED is slowly blinking. 190 -))) 181 +== 2.1 How it works == 191 191 192 -[[image:image-20220615091045-8.png||height="203" width="341"]] [[image:image-20220615091045-9.png||height="200" width="284"]] 193 193 184 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 194 194 195 -((( 196 -(% style="color:red" %)**Note 1:** 197 -))) 186 +(% style="display:none" %) (%%) 198 198 199 -((( 200 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 201 -))) 188 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 202 202 203 203 204 -((( 205 -(% style="color:red" %)**Note 2:** 206 -))) 191 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 207 207 208 -((( 209 -(% style="color:red" %)**Eproxy AB glue**(%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 210 -))) 193 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 211 211 195 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 212 212 213 -== 1.6 Applications == 214 214 198 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 215 215 216 - *Smartliquidcontrolsolution.200 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 217 217 218 - * Smart liquefiedgas solution.202 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 219 219 220 220 205 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 221 221 222 -== 1.7 Precautions == 223 223 208 +(% style="color:blue" %)**Register the device** 224 224 225 - * At roomtemperature, containers of different materials, such as steel,glass,iron,ceramics,non-foamedplasticsdothernseaterials, havefferentdetectionblind areas and detection limit heights.210 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 226 226 227 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 228 228 229 - *Whenthe detectedliquid level exceeds the effective detection valueof the sensor, and theliquid levelof the liquidto be measuredshakesortilts, the detected liquid height is unstable.(% style="display:none"%)213 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 230 230 215 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 231 231 232 -== 1.8 Sleep mode and working mode == 233 233 218 +(% style="color:blue" %)**Add APP EUI in the application** 234 234 235 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 236 236 237 - (% style="color:blue" %)**WorkingMode:** (%%)Inthis mode, Sensorwill work asLoRaWANSensor to JoinLoRaWANnetworkand send outsensordata toserver. Betweeneach sampling/tx/rx periodically, sensorwill be in IDLE mode),in IDLE mode, sensorhasthe same powerconsumption as Deep Sleep mode.221 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 238 238 239 239 240 - ==1.9 Button&LEDs==224 +(% style="color:blue" %)**Add APP KEY** 241 241 226 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 242 242 243 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 244 244 229 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 245 245 246 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 247 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 248 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 249 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 250 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 251 -))) 252 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 253 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 254 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 255 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 256 -))) 257 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 258 258 259 - ==1.10BLEconnection==232 +Press the button for 5 seconds to activate the LDS12-LB. 260 260 234 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 261 261 262 - DDS20-LBsupportBLEremoteconfigure.236 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 263 263 264 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 265 265 266 -* Press button to send an uplink 267 -* Press button to active device. 268 -* Device Power on or reset. 239 +== 2.3 Uplink Payload == 269 269 270 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 271 271 242 +=== 2.3.1 Device Status, FPORT~=5 === 272 272 273 -== 1.11 Pin Definitions == 274 274 275 - [[image:image-20230523174230-1.png]]245 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 276 276 247 +The Payload format is as below. 277 277 278 -== 1.12 Mechanical == 249 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 250 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 251 +**Size(bytes)** 252 +)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2** 253 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 279 279 255 +Example parse in TTNv3 280 280 281 - [[image:Main.User Manualfor LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]257 +**Sensor Model**: For LDS12-LB, this value is 0x24 282 282 259 +**Firmware Version**: 0x0100, Means: v1.0.0 version 283 283 284 - [[image:Main.User Manualfor LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]261 +**Frequency Band**: 285 285 263 +0x01: EU868 286 286 287 - [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]265 +0x02: US915 288 288 267 +0x03: IN865 289 289 290 - (% style="color:blue"%)**Probe Mechanical:**269 +0x04: AU915 291 291 292 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]271 +0x05: KZ865 293 293 273 +0x06: RU864 294 294 295 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]275 +0x07: AS923 296 296 277 +0x08: AS923-1 297 297 298 - =2. Configure DDS20-LB to connect to LoRaWAN network =279 +0x09: AS923-2 299 299 300 - ==2.1 How it works ==281 +0x0a: AS923-3 301 301 283 +0x0b: CN470 302 302 303 - The DDS45-LB isconfigured as (% style="color:#037691"%)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS45-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.285 +0x0c: EU433 304 304 305 - (% style="display:none"%) (%%)287 +0x0d: KR920 306 306 307 - == 2.2 Quick guideto connect to LoRaWAN server (OTAA) ==289 +0x0e: MA869 308 308 291 +**Sub-Band**: 309 309 310 - Followingisanexample for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]]asa LoRaWAN gateway in this example.293 +AU915 and US915:value 0x00 ~~ 0x08 311 311 312 - TheLPS8v2 isalready set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]],sowhatwe need to now is configure the TTN server.295 +CN470: value 0x0B ~~ 0x0C 313 313 314 - [[image:image-20230613140140-4.png||height="453"width="800"]](%style="display:none"%)297 +Other Bands: Always 0x00 315 315 299 +**Battery Info**: 316 316 317 - (% style="color:blue"%)**Step1:**(%%) Create a device in TTN with theOTAA keysfrom DDS45-LB.301 +Check the battery voltage. 318 318 319 -E achDDS45-LBisshipped with a sticker with the default device EUI as below:303 +Ex1: 0x0B45 = 2885mV 320 320 321 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png"height="233"width="502"]]305 +Ex2: 0x0B49 = 2889mV 322 322 323 323 324 - Youcanenter thiskeyin the LoRaWAN Server portal.Below isTTNscreen shot:308 +=== 2.3.2 Uplink Payload, FPORT~=2 === 325 325 326 326 327 -(% style="color:blue" %)**Register the device** 311 +((( 312 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 313 +))) 328 328 329 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 315 +((( 316 +Uplink payload includes in total 11 bytes. 317 +))) 330 330 319 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %) 320 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 321 +**Size(bytes)** 322 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1** 323 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)((( 324 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 325 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)((( 326 +[[Interrupt flag>>]] 331 331 332 - (% style="color:blue" %)**Add APP EUI and DEV EUI**328 +[[&>>]] 333 333 334 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 330 +[[Interrupt_level>>]] 331 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)((( 332 +[[Message Type>>||anchor="H2.3.7MessageType"]] 333 +))) 335 335 335 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 336 336 337 -(% style="color:blue" %)**Add APP EUI in the application** 338 338 338 +==== 2.3.2.a Battery Info ==== 339 339 340 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 341 341 341 +Check the battery voltage for LDS12-LB. 342 342 343 - (% style="color:blue"%)**AddAPPKEY**343 +Ex1: 0x0B45 = 2885mV 344 344 345 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]345 +Ex2: 0x0B49 = 2889mV 346 346 347 347 348 - (% style="color:blue"%)**Step2:**(%%)ActivateonDDS45-LB348 +==== 2.3.2.b DS18B20 Temperature sensor ==== 349 349 350 350 351 - Press thebuttonfor5seconds toactivate theDDS45-LB.351 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 352 352 353 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 354 354 355 - After join success, it will start to uploadmessages to TTN and you can see the messages in thepanel.354 +**Example**: 356 356 356 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 357 357 358 - ==2.3 Uplink Payload ==358 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 359 359 360 360 361 -((( 362 -DDS45-LB will uplink payload via LoRaWAN with below payload format: 363 -))) 361 +==== 2.3.2.c Distance ==== 364 364 365 -((( 366 -Uplink payload includes in total 8 bytes. 367 -))) 368 368 369 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 370 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 371 -**Size(bytes)** 372 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 373 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 374 -[[Distance>>||anchor="H2.3.2A0Distance"]] 375 -(unit: mm) 376 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 377 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 378 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 364 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 379 379 380 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 381 381 367 +**Example**: 382 382 383 - ===2.3.1BatteryInfo ===369 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 384 384 385 385 386 - Checkthebatteryvoltagefor DDS45-LB.372 +==== 2.3.2.d Distance signal strength ==== 387 387 388 -Ex1: 0x0B45 = 2885mV 389 389 390 - Ex2:0x0B49=2889mV375 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 391 391 392 392 393 - === 2.3.2 Distance===378 +**Example**: 394 394 380 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 395 395 396 -((( 397 -Get the distance. Flat object range 30mm - 4500mm. 398 -))) 382 +Customers can judge whether they need to adjust the environment based on the signal strength. 399 399 400 -((( 401 -For example, if the data you get from the register is **0x0B 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 402 402 403 -(% style="color:blue" %)**0B05(H) = 2821 (D) = 2821 mm.** 404 -))) 385 +==== 2.3.2.e Interrupt Pin & Interrupt Level ==== 405 405 406 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 407 -* If the sensor value lower than 0x001E (30mm), the sensor value will be 0x00. 408 408 409 -=== 2.3.3 Interrupt Pin === 410 - 411 - 412 412 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 413 413 390 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 391 + 414 414 **Example:** 415 415 416 416 0x00: Normal uplink packet. ... ... @@ -418,53 +418,58 @@ 418 418 0x01: Interrupt Uplink Packet. 419 419 420 420 421 -=== 2.3. 4DS18B20Temperaturesensor===399 +==== 2.3.2.f LiDAR temp ==== 422 422 423 423 424 - This is optional, usercanconnectxternal DS18B20 sensorto the+3.3v, 1-wire and GND pin . andthis fieldwill reporttemperature.402 +Characterize the internal temperature value of the sensor. 425 425 426 -**Example**: 404 +**Example: ** 405 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 406 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 427 427 428 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 429 429 430 - If payload is: FF3FH : (FF3F & FC00==1) , temp=(FF3FH - 65536)/10=-19.3degrees.409 +==== 2.3.2.g Message Type ==== 431 431 432 432 433 -=== 2.3.5 Sensor Flag === 434 - 435 - 436 436 ((( 437 - 0x01:DetectUltrasonicSensor413 +For a normal uplink payload, the message type is always 0x01. 438 438 ))) 439 439 440 440 ((( 441 - 0x00: No UltrasonicSensor417 +Valid Message Type: 442 442 ))) 443 443 420 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 421 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 422 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 423 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 444 444 445 -=== 2.3. 6425 +=== 2.3.3 Decode payload in The Things Network === 446 446 447 447 448 448 While using TTN network, you can add the payload format to decode the payload. 449 449 450 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LD DS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]430 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 451 451 452 -The payload decoder function for TTN V3 is here: 453 453 454 454 ((( 455 - DDS45-LBTTNV3 PayloadDecoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]434 +The payload decoder function for TTN is here: 456 456 ))) 457 457 437 +((( 438 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 439 +))) 458 458 459 -== 2.4 Uplink Interval == 460 460 442 +== 2.4 Uplink Interval == 461 461 462 -The DDS45-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 463 463 445 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 464 464 465 -== 2.5 Show Data in DataCake IoT Server == 466 466 448 +== 2.5 Show Data in DataCake IoT Server == 467 467 450 + 468 468 ((( 469 469 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 470 470 ))) ... ... @@ -487,7 +487,7 @@ 487 487 488 488 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 489 489 490 -(% style="color:blue" %)**Step 4**(%%)**: Search the D DS45-LB and add DevEUI.**473 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 491 491 492 492 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 493 493 ... ... @@ -497,23 +497,22 @@ 497 497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 498 498 499 499 500 - 501 501 == 2.6 Datalog Feature == 502 502 503 503 504 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, D DS45-LB will store the reading for future retrieving purposes.486 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 505 505 506 506 507 507 === 2.6.1 Ways to get datalog via LoRaWAN === 508 508 509 509 510 -Set PNACKMD=1, D DS45-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS45-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.492 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 511 511 512 512 * ((( 513 -a) D DS45-LB will do an ACK check for data records sending to make sure every data arrive server.495 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 514 514 ))) 515 515 * ((( 516 -b) D DS45-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS45-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS45-LB gets a ACK, DDS45-LB will consider there is a network connection and resend all NONE-ACK messages.498 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 517 517 ))) 518 518 519 519 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -524,7 +524,7 @@ 524 524 === 2.6.2 Unix TimeStamp === 525 525 526 526 527 -D DS45-LB uses Unix TimeStamp format based on509 +LDS12-LB uses Unix TimeStamp format based on 528 528 529 529 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 530 530 ... ... @@ -543,7 +543,7 @@ 543 543 544 544 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 545 545 546 -Once D DS45-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS45-LB. If DDS45-LB fails to get the time from the server, DDS45-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).528 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 547 547 548 548 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 549 549 ... ... @@ -571,7 +571,7 @@ 571 571 ))) 572 572 573 573 ((( 574 -Uplink Internal =5s,means D DS45-LB will send one packet every 5s. range 5~~255s.556 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 575 575 ))) 576 576 577 577 ... ... @@ -578,17 +578,101 @@ 578 578 == 2.7 Frequency Plans == 579 579 580 580 581 -The D DS45-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.563 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 582 582 583 583 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 584 584 585 585 586 -= 3.ConfigureDDS45-LB=568 +== 2.8 LiDAR ToF Measurement == 587 587 570 +=== 2.8.1 Principle of Distance Measurement === 571 + 572 + 573 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 574 + 575 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 576 + 577 + 578 +=== 2.8.2 Distance Measurement Characteristics === 579 + 580 + 581 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 582 + 583 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 584 + 585 + 586 +((( 587 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 588 +))) 589 + 590 +((( 591 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 592 +))) 593 + 594 +((( 595 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 596 +))) 597 + 598 + 599 +((( 600 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 601 +))) 602 + 603 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 604 + 605 +((( 606 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 607 +))) 608 + 609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 610 + 611 +((( 612 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 613 +))) 614 + 615 + 616 +=== 2.8.3 Notice of usage === 617 + 618 + 619 +Possible invalid /wrong reading for LiDAR ToF tech: 620 + 621 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 622 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 623 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 624 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 625 + 626 +=== 2.8.4 Reflectivity of different objects === 627 + 628 + 629 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 630 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 631 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 632 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 633 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 634 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 635 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 636 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 637 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 638 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 639 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 640 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 641 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 642 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 643 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 644 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 645 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 646 +Unpolished white metal surface 647 +)))|(% style="width:93px" %)130% 648 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 649 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 650 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 651 + 652 += 3. Configure LDS12-LB = 653 + 588 588 == 3.1 Configure Methods == 589 589 590 590 591 -D DS45-LB supports below configure method:657 +LDS12-LB supports below configure method: 592 592 593 593 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 594 594 ... ... @@ -610,10 +610,10 @@ 610 610 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 611 611 612 612 613 -== 3.3 Commands special design for D DS45-LB ==679 +== 3.3 Commands special design for LDS12-LB == 614 614 615 615 616 -These commands only valid for D DS45-LB, as below:682 +These commands only valid for LDS12-LB, as below: 617 617 618 618 619 619 === 3.3.1 Set Transmit Interval Time === ... ... @@ -628,7 +628,7 @@ 628 628 ))) 629 629 630 630 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 631 -|=(% style="width: 156px;background-color:# D9E2F3;#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;#0070c0" %)**Function**|=(% style="background-color:#D9E2F3;#0070c0" %)**Response**697 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 632 632 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 633 633 30000 634 634 OK ... ... @@ -656,6 +656,9 @@ 656 656 ))) 657 657 * ((( 658 658 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 725 + 726 + 727 + 659 659 ))) 660 660 661 661 === 3.3.2 Set Interrupt Mode === ... ... @@ -668,7 +668,7 @@ 668 668 (% style="color:blue" %)**AT Command: AT+INTMOD** 669 669 670 670 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 671 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**740 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 672 672 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 673 673 0 674 674 OK ... ... @@ -692,10 +692,37 @@ 692 692 693 693 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 694 694 764 +=== 3.3.3 Set Power Output Duration === 765 + 766 +Control the output duration 3V3 . Before each sampling, device will 767 + 768 +~1. first enable the power output to external sensor, 769 + 770 +2. keep it on as per duration, read sensor value and construct uplink payload 771 + 772 +3. final, close the power output. 773 + 774 +(% style="color:blue" %)**AT Command: AT+3V3T** 775 + 776 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 777 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 778 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 779 +OK 780 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 781 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 782 + 783 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 784 +Format: Command Code (0x07) followed by 3 bytes. 785 + 786 +The first byte is 01,the second and third bytes are the time to turn on. 787 + 788 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 789 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 790 + 695 695 = 4. Battery & Power Consumption = 696 696 697 697 698 -D DS45-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.794 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 699 699 700 700 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 701 701 ... ... @@ -704,7 +704,7 @@ 704 704 705 705 706 706 (% class="wikigeneratedid" %) 707 -User can change firmware D DS45-LB to:803 +User can change firmware LDS12-LB to: 708 708 709 709 * Change Frequency band/ region. 710 710 ... ... @@ -712,77 +712,55 @@ 712 712 713 713 * Fix bugs. 714 714 715 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ a5ue0nfrzqy9nz6/AABbvlATosDJKDwBmbirVbMYa?dl=0]]**811 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 716 716 717 717 Methods to Update Firmware: 718 718 719 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 815 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 720 720 721 721 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 722 722 723 723 = 6. FAQ = 724 724 725 -== 6.1 DS45-LB? ==821 +== 6.1 What is the frequency plan for LDS12-LB? == 726 726 727 727 728 -D DS45-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]824 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 729 729 730 730 731 -= =6.2Can IuseDDS45-LB in condensationenvironment?==827 += 7. Trouble Shooting = 732 732 829 +== 7.1 AT Command input doesn't work == 733 733 734 -DDS45-LB is not suitable to be used in condensation environment. Condensation on the DDS45-LB probe will affect the reading and always got 0. 735 735 736 - 737 -= 7. Trouble Shooting = 738 - 739 -== 7.1 Why I can't join TTN V3 in US915 / AU915 bands? == 740 - 741 - 742 -It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 743 - 744 - 745 -== 7.2 AT Command input doesn't work == 746 - 747 - 748 748 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 749 749 750 750 751 -== 7. 3Why doesthesensorreadingshow0or"Nosensor"==835 +== 7.2 Significant error between the output distant value of LiDAR and actual distance == 752 752 753 753 754 -~1. The measurement object is very close to the sensor, but in the blind spot of the sensor. 838 +((( 839 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 840 +))) 755 755 756 -2. Sensor wiring is disconnected 842 +((( 843 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 844 +))) 757 757 758 -3. Not using the correct decoder 759 759 847 +((( 848 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 849 +))) 760 760 761 -== 7.4 Abnormal readings The gap between multiple readings is too large or the gap between the readings and the actual value is too large == 851 +((( 852 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 853 +))) 762 762 763 763 764 -1) Please check if there is something on the probe affecting its measurement (condensed water, volatile oil, etc.) 765 - 766 -2) Does it change with temperature, temperature will affect its measurement 767 - 768 -3) If abnormal data occurs, you can turn on DEBUG mode, Please use downlink or AT COMMAN to enter DEBUG mode. 769 - 770 -downlink command: (% style="color:blue" %)**F1 01**(%%), AT command: (% style="color:blue" %)**AT+DDEBUG=1** 771 - 772 -4) After entering the debug mode, it will send 20 pieces of data at a time, and you can send its uplink to us for analysis 773 - 774 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20230113135125-2.png?width=1057&height=136&rev=1.1||alt="image-20230113135125-2.png"]] 775 - 776 - 777 -Its original payload will be longer than other data. Even though it is being parsed, it can be seen that it is abnormal data. 778 - 779 -Please send the data to us for check. 780 - 781 - 782 782 = 8. Order Info = 783 783 784 784 785 -Part Number: (% style="color:blue" %)**D DS45-LB-XXX**859 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 786 786 787 787 (% style="color:red" %)**XXX**(%%): **The default frequency band** 788 788 ... ... @@ -807,7 +807,7 @@ 807 807 808 808 (% style="color:#037691" %)**Package Includes**: 809 809 810 -* D DS45-LB LoRaWAN DistanceDetectionSensor x 1884 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 811 811 812 812 (% style="color:#037691" %)**Dimension and weight**: 813 813
- image-20230614153353-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +112.1 KB - Content
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content