Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 3 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -D DS20-LB -- LoRaWANUltrasonicLiquid LevelSensor User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023061 3133716-2.png||height="717" width="717"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,24 +19,24 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN Ultrasonicliquid levelSensor ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino D DS20-LB is a (% style="color:blue" %)**LoRaWANUltrasonicliquidlevelsensor**(%%) for Internet of Things solution. Ituses (%style="color:blue"%)**none-contact method**(%%)tomeasure the(%style="color:blue" %)**heightofliquid**(%%)ina containerwithoutopeningthecontainer,andsendthevalueviaLoRaWANnetworktoIoTServer.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -The D DS20-LBsensorisinstalleddirectly belowthecontainertodetect theheightoftheliquidlevel. Userdoesn't needtoopen aholeon the containerto betested.Thenone-contactmeasurementmakesthemeasurement safety, easierand possibleforsome strict situation.26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 28 29 - DDS20-LBuses (% style="color:blue" %)**ultrasonicsensingtechnology**(%%)fordistancemeasurement.DDS20-LB is ofhighaccuracy tomeasurevarious liquidsuch as: (% style="color:blue" %)**toxicsubstances**(%%), (%style="color:blue"%)**strong acids**(%%), (% style="color:blue"%)**strongalkalis**(%%) and(%style="color:blue" %)**variouspureliquids**(%%) inhigh-temperature andhigh-pressureairtightcontainers.28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 30 30 31 -The LoRa wireless technology used in D DS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 32 33 -D DS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 -D DS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 37 -Each D DS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 38 38 39 -[[image:image-2023061 3140115-3.png||height="453" width="800"]]38 +[[image:image-20230614162334-2.png||height="468" width="800"]] 40 40 41 41 42 42 == 1.2 Features == ... ... @@ -45,20 +45,16 @@ 45 45 * LoRaWAN 1.0.3 Class A 46 46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 47 47 * Ultra-low power consumption 48 -* Liquid Level Measurement by Ultrasonic technology 49 -* Measure through container, No need to contact Liquid 50 -* Valid level range 20mm - 2000mm 51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 52 -* Cable Length : 25cm 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 53 53 * Support Bluetooth v5.1 and LoRaWAN remote configure 54 54 * Support wireless OTA update firmware 55 55 * AT Commands to change parameters 56 56 * Downlink to change configure 57 -* IP66 Waterproof Enclosure 58 58 * 8500mAh Battery for long term use 59 59 60 - 61 - 62 62 == 1.3 Specification == 63 63 64 64 ... ... @@ -67,6 +67,23 @@ 67 67 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 68 68 * Operating Temperature: -40 ~~ 85°C 69 69 65 +(% style="color:#037691" %)**Probe Specification:** 66 + 67 +* Storage temperature:-20℃~~75℃ 68 +* Operating temperature : -20℃~~60℃ 69 +* Measure Distance: 70 +** 0.1m ~~ 12m @ 90% Reflectivity 71 +** 0.1m ~~ 4m @ 10% Reflectivity 72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 74 +* Ambient light immunity : 70klux 75 +* Enclosure rating : IP65 76 +* Light source : LED 77 +* Central wavelength : 850nm 78 +* FOV : 3.6° 79 +* Material of enclosure : ABS+PC 80 +* Wire length : 25cm 81 + 70 70 (% style="color:#037691" %)**LoRa Spec:** 71 71 72 72 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -88,149 +88,29 @@ 88 88 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 89 89 90 90 103 +== 1.4 Applications == 91 91 92 -== 1.4 Suitable Container & Liquid == 93 93 106 +* Horizontal distance measurement 107 +* Parking management system 108 +* Object proximity and presence detection 109 +* Intelligent trash can management system 110 +* Robot obstacle avoidance 111 +* Automatic control 112 +* Sewer 94 94 95 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 96 -* Container shape is regular, and surface is smooth. 97 -* Container Thickness: 98 -** Pure metal material. 2~~8mm, best is 3~~5mm 99 -** Pure non metal material: <10 mm 100 -* Pure liquid without irregular deposition. 101 101 102 - 103 - 104 104 (% style="display:none" %) 105 105 106 -== 1.5 InstallDDS20-LB==117 +== 1.5 Sleep mode and working mode == 107 107 108 108 109 -(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 110 - 111 -DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 112 - 113 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 114 - 115 - 116 -((( 117 -(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 118 -))) 119 - 120 -((( 121 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 122 -))) 123 - 124 -[[image:image-20230613143052-5.png]] 125 - 126 - 127 -No polish needed if the container is shine metal surface without paint or non-metal container. 128 - 129 -[[image:image-20230613143125-6.png]] 130 - 131 - 132 -((( 133 -(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 134 -))) 135 - 136 -((( 137 -Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 138 -))) 139 - 140 -((( 141 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 142 -))) 143 - 144 -((( 145 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 146 -))) 147 - 148 - 149 -((( 150 -(% style="color:blue" %)**LED Status:** 151 -))) 152 - 153 -* ((( 154 -**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 155 -))) 156 - 157 -* ((( 158 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 159 -))) 160 -* ((( 161 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 162 -))) 163 - 164 -((( 165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 166 -))) 167 - 168 - 169 -((( 170 -(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 171 -))) 172 - 173 - 174 -((( 175 -(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 176 -))) 177 - 178 -((( 179 -Prepare Eproxy AB glue. 180 -))) 181 - 182 -((( 183 -Put Eproxy AB glue in the sensor and press it hard on the container installation point. 184 -))) 185 - 186 -((( 187 -Reset DDS20-LB and see if the BLUE LED is slowly blinking. 188 -))) 189 - 190 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 191 - 192 - 193 -((( 194 -(% style="color:red" %)**Note :** 195 - 196 -(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 197 -))) 198 - 199 -((( 200 -(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 201 -))) 202 - 203 - 204 -== 1.6 Applications == 205 - 206 - 207 -* Smart liquid control solution 208 - 209 -* Smart liquefied gas solution 210 - 211 - 212 - 213 -== 1.7 Precautions == 214 - 215 - 216 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 217 - 218 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 219 - 220 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 221 - 222 - 223 -(% style="display:none" %) 224 - 225 -== 1.8 Sleep mode and working mode == 226 - 227 - 228 228 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 229 229 230 230 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 231 231 232 232 233 -== 1. 9Button & LEDs ==125 +== 1.6 Button & LEDs == 234 234 235 235 236 236 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] ... ... @@ -249,13 +249,11 @@ 249 249 ))) 250 250 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 251 251 144 +== 1.7 BLE connection == 252 252 253 253 254 - ==1.10BLEconnection==147 +LDS12-LB support BLE remote configure. 255 255 256 - 257 -DDS20-LB support BLE remote configure. 258 - 259 259 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 260 260 261 261 * Press button to send an uplink ... ... @@ -265,14 +265,15 @@ 265 265 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 266 266 267 267 268 -== 1. 11Pin Definitions ==158 +== 1.8 Pin Definitions == 269 269 270 -[[image:image-20230 523174230-1.png]]160 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 271 271 272 272 273 -== 1.12 Mechanical == 274 274 164 +== 1.9 Mechanical == 275 275 166 + 276 276 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 277 277 278 278 ... ... @@ -284,18 +284,17 @@ 284 284 285 285 (% style="color:blue" %)**Probe Mechanical:** 286 286 287 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]] 288 288 289 289 290 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LD DS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 291 291 292 292 293 -= 2. Configure D DS20-LB to connect to LoRaWAN network =183 += 2. Configure LDS12-LB to connect to LoRaWAN network = 294 294 295 295 == 2.1 How it works == 296 296 297 297 298 -The D DS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.188 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 299 299 300 300 (% style="display:none" %) (%%) 301 301 ... ... @@ -306,12 +306,12 @@ 306 306 307 307 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 308 308 309 -[[image:image-2023061 3140140-4.png||height="453" width="800"]](% style="display:none" %)199 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %) 310 310 311 311 312 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from D DS20-LB.202 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 313 313 314 -Each D DS20-LB is shipped with a sticker with the default device EUI as below:204 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 315 315 316 316 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 317 317 ... ... @@ -340,10 +340,10 @@ 340 340 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 341 341 342 342 343 -(% style="color:blue" %)**Step 2:**(%%) Activate on D DS20-LB233 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 344 344 345 345 346 -Press the button for 5 seconds to activate the D DS20-LB.236 +Press the button for 5 seconds to activate the LDS12-LB. 347 347 348 348 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 349 349 ... ... @@ -354,31 +354,33 @@ 354 354 355 355 356 356 ((( 357 -D DS20-LB will uplink payload via LoRaWAN with below payload format:247 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 358 358 ))) 359 359 360 360 ((( 361 -Uplink payload includes in total 8bytes.251 +Uplink payload includes in total 11 bytes. 362 362 ))) 363 363 364 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 365 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 254 + 255 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 256 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 366 366 **Size(bytes)** 367 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 368 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 369 -[[Distance>>||anchor="H2.3.2A0Distance"]] 370 -(unit: mm) 371 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 372 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 373 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 258 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1** 259 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)((( 260 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]] 261 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 262 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]] 263 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|((( 264 +[[Message Type>>||anchor="H2.3.7A0MessageType"]] 265 +))) 374 374 375 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LD DS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]267 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 376 376 377 377 378 378 === 2.3.1 Battery Info === 379 379 380 380 381 -Check the battery voltage for D DS20-LB.273 +Check the battery voltage for LDS12-LB. 382 382 383 383 Ex1: 0x0B45 = 2885mV 384 384 ... ... @@ -385,77 +385,105 @@ 385 385 Ex2: 0x0B49 = 2889mV 386 386 387 387 388 -=== 2.3.2 D istance ===280 +=== 2.3.2 DS18B20 Temperature sensor === 389 389 390 390 391 -((( 392 -Get the distance. Flat object range 20mm - 2000mm. 393 -))) 283 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 394 394 395 -((( 396 -For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 397 397 398 -(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 399 -))) 286 +**Example**: 400 400 401 - *Ifthe sensor valueis 0x0000,itmeanssystemdoesn'tdetectultrasonicsensor.288 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 402 402 403 - *Ifthesensorvaluelowerthan0x0014(20mm), thesensorvaluewillbeinvalid.290 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 404 404 405 -=== 2.3.3 Interrupt Pin === 406 406 293 +=== 2.3.3 Distance === 407 407 408 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 409 409 410 - **Example:**296 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 411 411 412 -0x00: Normal uplink packet. 413 413 414 - 0x01: Interrupt Uplink Packet.299 +**Example**: 415 415 301 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 416 416 417 -=== 2.3.4 DS18B20 Temperature sensor === 418 418 304 +=== 2.3.4 Distance signal strength === 419 419 420 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 421 421 307 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 308 + 309 + 422 422 **Example**: 423 423 424 -If payload is: 01 05H:(0105&FC00==0), temp=0105H/10=26.1degree312 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 425 425 426 - If payload is:FF3FH:(FF3F&FC00==1),temp=(FF3FH- 65536)/10 = -19.3 degrees.314 +Customers can judge whether they need to adjust the environment based on the signal strength. 427 427 428 428 429 -=== 2.3.5 SensorFlag===317 +=== 2.3.5 Interrupt Pin === 430 430 431 431 320 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 321 + 322 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 323 + 324 +**Example:** 325 + 326 +0x00: Normal uplink packet. 327 + 328 +0x01: Interrupt Uplink Packet. 329 + 330 + 331 +=== 2.3.6 LiDAR temp === 332 + 333 + 334 +Characterize the internal temperature value of the sensor. 335 + 336 +**Example: ** 337 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 338 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 339 + 340 + 341 +=== 2.3.7 Message Type === 342 + 343 + 432 432 ((( 433 - 0x01:DetectUltrasonicSensor345 +For a normal uplink payload, the message type is always 0x01. 434 434 ))) 435 435 436 436 ((( 437 - 0x00: No UltrasonicSensor349 +Valid Message Type: 438 438 ))) 439 439 352 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 353 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 354 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 355 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 440 440 441 -=== 2.3. 6Decode payload in The Things Network ===357 +=== 2.3.8 Decode payload in The Things Network === 442 442 443 443 444 444 While using TTN network, you can add the payload format to decode the payload. 445 445 446 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 447 447 448 - The payload decoder function for TTN V3 is here:363 +[[image:1654592762713-715.png]] 449 449 365 + 450 450 ((( 451 - DDS20-LBTTNV3 PayloadDecoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]367 +The payload decoder function for TTN is here: 452 452 ))) 453 453 370 +((( 371 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 372 +))) 454 454 374 + 455 455 == 2.4 Uplink Interval == 456 456 457 457 458 -The D DS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]378 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 459 459 460 460 461 461 == 2.5 Show Data in DataCake IoT Server == ... ... @@ -483,7 +483,7 @@ 483 483 484 484 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 485 485 486 -(% style="color:blue" %)**Step 4**(%%)**: Search the D DS20-LB and add DevEUI.**406 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 487 487 488 488 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 489 489 ... ... @@ -493,23 +493,22 @@ 493 493 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 494 494 495 495 496 - 497 497 == 2.6 Datalog Feature == 498 498 499 499 500 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, D DS20-LB will store the reading for future retrieving purposes.419 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 501 501 502 502 503 503 === 2.6.1 Ways to get datalog via LoRaWAN === 504 504 505 505 506 -Set PNACKMD=1, D DS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.425 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 507 507 508 508 * ((( 509 -a) D DS20-LB will do an ACK check for data records sending to make sure every data arrive server.428 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 510 510 ))) 511 511 * ((( 512 -b) D DS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.431 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 513 513 ))) 514 514 515 515 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -520,7 +520,7 @@ 520 520 === 2.6.2 Unix TimeStamp === 521 521 522 522 523 -D DS20-LB uses Unix TimeStamp format based on442 +LDS12-LB uses Unix TimeStamp format based on 524 524 525 525 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 526 526 ... ... @@ -539,7 +539,7 @@ 539 539 540 540 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 541 541 542 -Once D DS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).461 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 543 543 544 544 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 545 545 ... ... @@ -567,7 +567,7 @@ 567 567 ))) 568 568 569 569 ((( 570 -Uplink Internal =5s,means D DS20-LB will send one packet every 5s. range 5~~255s.489 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 571 571 ))) 572 572 573 573 ... ... @@ -574,17 +574,105 @@ 574 574 == 2.7 Frequency Plans == 575 575 576 576 577 -The D DS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.496 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 578 578 579 579 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 580 580 581 581 582 -= 3.ConfigureDDS20-LB=501 +== 2.8 LiDAR ToF Measurement == 583 583 503 +=== 2.8.1 Principle of Distance Measurement === 504 + 505 + 506 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 507 + 508 + 509 +[[image:1654831757579-263.png]] 510 + 511 + 512 +=== 2.8.2 Distance Measurement Characteristics === 513 + 514 + 515 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 516 + 517 +[[image:1654831774373-275.png]] 518 + 519 + 520 +((( 521 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 522 +))) 523 + 524 +((( 525 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 526 +))) 527 + 528 +((( 529 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 530 +))) 531 + 532 + 533 +((( 534 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 535 +))) 536 + 537 + 538 +[[image:1654831797521-720.png]] 539 + 540 + 541 +((( 542 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 543 +))) 544 + 545 +[[image:1654831810009-716.png]] 546 + 547 + 548 +((( 549 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 550 +))) 551 + 552 + 553 +=== 2.8.3 Notice of usage: === 554 + 555 + 556 +Possible invalid /wrong reading for LiDAR ToF tech: 557 + 558 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 559 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 560 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 561 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 562 + 563 +=== 2.8.4 Reflectivity of different objects === 564 + 565 + 566 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 567 +|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity 568 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 569 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 570 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 571 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 572 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 573 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 574 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 575 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 576 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 577 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 578 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 579 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 580 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 581 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 582 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 583 +Unpolished white metal surface 584 +)))|(% style="width:93px" %)130% 585 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 586 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 587 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 588 + 589 += 3. Configure LDS12-LB = 590 + 584 584 == 3.1 Configure Methods == 585 585 586 586 587 -D DS20-LB supports below configure method:594 +LDS12-LB supports below configure method: 588 588 589 589 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 590 590 ... ... @@ -606,10 +606,10 @@ 606 606 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 607 607 608 608 609 -== 3.3 Commands special design for D DS20-LB ==616 +== 3.3 Commands special design for LDS12-LB == 610 610 611 611 612 -These commands only valid for D DS20-LB, as below:619 +These commands only valid for LDS12-LB, as below: 613 613 614 614 615 615 === 3.3.1 Set Transmit Interval Time === ... ... @@ -688,10 +688,91 @@ 688 688 689 689 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 690 690 698 + 699 + 700 +=== 3.3.3 Get Firmware Version Info === 701 + 702 + 703 +Feature: use downlink to get firmware version. 704 + 705 +(% style="color:#037691" %)**Downlink Command: 0x26** 706 + 707 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %) 708 +|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)** 709 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2 710 + 711 +* Reply to the confirmation package: 26 01 712 +* Reply to non-confirmed packet: 26 00 713 + 714 +Device will send an uplink after got this downlink command. With below payload: 715 + 716 +Configures info payload: 717 + 718 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 719 +|=(% style="background-color:#D9E2F3;color:#0070C0" %)((( 720 +**Size(bytes)** 721 +)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 722 +|**Value**|Software Type|((( 723 +Frequency 724 +Band 725 +)))|Sub-band|((( 726 +Firmware 727 +Version 728 +)))|Sensor Type|Reserve|((( 729 +[[Message Type>>||anchor="H2.3.7A0MessageType"]] 730 +Always 0x02 731 +))) 732 + 733 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12 734 + 735 +(% style="color:#037691" %)**Frequency Band**: 736 + 737 +*0x01: EU868 738 + 739 +*0x02: US915 740 + 741 +*0x03: IN865 742 + 743 +*0x04: AU915 744 + 745 +*0x05: KZ865 746 + 747 +*0x06: RU864 748 + 749 +*0x07: AS923 750 + 751 +*0x08: AS923-1 752 + 753 +*0x09: AS923-2 754 + 755 +*0xa0: AS923-3 756 + 757 + 758 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08 759 + 760 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 761 + 762 +(% style="color:#037691" %)**Sensor Type**: 763 + 764 +0x01: LSE01 765 + 766 +0x02: LDDS75 767 + 768 +0x03: LDDS20 769 + 770 +0x04: LLMS01 771 + 772 +0x05: LSPH01 773 + 774 +0x06: LSNPK01 775 + 776 +0x07: LLDS12 777 + 778 + 691 691 = 4. Battery & Power Consumption = 692 692 693 693 694 -D DS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.782 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 695 695 696 696 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 697 697 ... ... @@ -700,7 +700,7 @@ 700 700 701 701 702 702 (% class="wikigeneratedid" %) 703 -User can change firmware D DS20-LB to:791 +User can change firmware LDS12-LB to: 704 704 705 705 * Change Frequency band/ region. 706 706 ... ... @@ -718,39 +718,38 @@ 718 718 719 719 = 6. FAQ = 720 720 721 -== 6.1 DS20-LB? ==809 +== 6.1 What is the frequency plan for LDS12-LB? == 722 722 723 723 724 -D DS20-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]812 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 725 725 726 726 727 -= =6.2Can IuseDDS20-LB in condensationenvironment?==815 += 7. Trouble Shooting = 728 728 817 +== 7.1 AT Command input doesn't work == 729 729 730 -DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0. 731 731 820 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 732 732 733 -= 7. Trouble Shooting = 734 734 735 -== 7. 1Why Ican'tjoinTTNV3inUS915/AU915bands?==823 +== 7.2 Significant error between the output distant value of LiDAR and actual distance == 736 736 737 737 738 -It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 826 +((( 827 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 828 +))) 739 739 830 +((( 831 +Troubleshooting: Please avoid use of this product under such circumstance in practice. 832 +))) 740 740 741 -== 7.2 AT Command input doesn't work == 742 742 743 - 744 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 745 - 746 - 747 -== 7.3 Why i always see 0x0000 or 0 for the distance value? == 748 - 749 - 750 750 ((( 751 -LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 836 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 837 +))) 752 752 753 -If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 839 +((( 840 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 754 754 ))) 755 755 756 756 ... ... @@ -757,7 +757,7 @@ 757 757 = 8. Order Info = 758 758 759 759 760 -Part Number: (% style="color:blue" %)**D DS20-LB-XXX**847 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 761 761 762 762 (% style="color:red" %)**XXX**(%%): **The default frequency band** 763 763 ... ... @@ -782,7 +782,7 @@ 782 782 783 783 (% style="color:#037691" %)**Package Includes**: 784 784 785 -* D DS20-LB LoRaWANUltrasonicLiquid LevelSensor x 1872 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 786 786 787 787 (% style="color:#037691" %)**Dimension and weight**: 788 788
- image-20230614153353-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +112.1 KB - Content
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content