Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 14 added, 0 removed)
- image-20230614153353-1.png
- image-20230614162334-2.png
- image-20230614162359-3.png
- image-20230615152941-1.png
- image-20230615153004-2.png
- image-20230805103904-1.png
- image-20230805104104-2.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -D DS20-LB -- LoRaWANUltrasonicLiquid LevelSensor User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023061 3133716-2.png||height="717" width="717"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,24 +19,24 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN Ultrasonicliquid levelSensor ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino D DS20-LB is a (% style="color:blue" %)**LoRaWANUltrasonicliquidlevelsensor**(%%) for Internet of Things solution. Ituses (%style="color:blue"%)**none-contact method**(%%)tomeasure the(%style="color:blue" %)**heightofliquid**(%%)ina containerwithoutopeningthecontainer,andsendthevalueviaLoRaWANnetworktoIoTServer.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -The D DS20-LBsensorisinstalleddirectly belowthecontainertodetect theheightoftheliquidlevel. Userdoesn't needtoopen aholeon the containerto betested.Thenone-contactmeasurementmakesthemeasurement safety, easierand possibleforsome strict situation.26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 28 29 - DDS20-LBuses (% style="color:blue" %)**ultrasonicsensingtechnology**(%%)fordistancemeasurement.DDS20-LB is ofhighaccuracy tomeasurevarious liquidsuch as: (% style="color:blue" %)**toxicsubstances**(%%), (%style="color:blue"%)**strong acids**(%%), (% style="color:blue"%)**strongalkalis**(%%) and(%style="color:blue" %)**variouspureliquids**(%%) inhigh-temperature andhigh-pressureairtightcontainers.28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 30 30 31 -The LoRa wireless technology used in D DS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 32 33 -D DS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 -D DS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 37 -Each D DS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 38 38 39 -[[image:image-2023061 3140115-3.png||height="453" width="800"]]38 +[[image:image-20230615152941-1.png||height="459" width="800"]] 40 40 41 41 42 42 == 1.2 Features == ... ... @@ -45,16 +45,14 @@ 45 45 * LoRaWAN 1.0.3 Class A 46 46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 47 47 * Ultra-low power consumption 48 -* Liquid Level Measurement by Ultrasonic technology 49 -* Measure through container, No need to contact Liquid 50 -* Valid level range 20mm - 2000mm 51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 52 -* Cable Length : 25cm 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 53 53 * Support Bluetooth v5.1 and LoRaWAN remote configure 54 54 * Support wireless OTA update firmware 55 55 * AT Commands to change parameters 56 56 * Downlink to change configure 57 -* IP66 Waterproof Enclosure 58 58 * 8500mAh Battery for long term use 59 59 60 60 ... ... @@ -67,6 +67,23 @@ 67 67 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 68 68 * Operating Temperature: -40 ~~ 85°C 69 69 67 +(% style="color:#037691" %)**Probe Specification:** 68 + 69 +* Storage temperature:-20℃~~75℃ 70 +* Operating temperature : -20℃~~60℃ 71 +* Measure Distance: 72 +** 0.1m ~~ 12m @ 90% Reflectivity 73 +** 0.1m ~~ 4m @ 10% Reflectivity 74 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 75 +* Distance resolution : 5mm 76 +* Ambient light immunity : 70klux 77 +* Enclosure rating : IP65 78 +* Light source : LED 79 +* Central wavelength : 850nm 80 +* FOV : 3.6° 81 +* Material of enclosure : ABS+PC 82 +* Wire length : 25cm 83 + 70 70 (% style="color:#037691" %)**LoRa Spec:** 71 71 72 72 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -89,379 +89,451 @@ 89 89 90 90 91 91 92 -== 1.4 Suitable Container& Liquid==106 +== 1.4 Applications == 93 93 94 94 95 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 96 -* Container shape is regular, and surface is smooth. 97 -* Container Thickness: 98 -** Pure metal material. 2~~8mm, best is 3~~5mm 99 -** Pure non metal material: <10 mm 100 -* Pure liquid without irregular deposition. 109 +* Horizontal distance measurement 110 +* Parking management system 111 +* Object proximity and presence detection 112 +* Intelligent trash can management system 113 +* Robot obstacle avoidance 114 +* Automatic control 115 +* Sewer 101 101 102 102 103 103 104 104 (% style="display:none" %) 105 105 106 -== 1.5 InstallDDS20-LB==121 +== 1.5 Sleep mode and working mode == 107 107 108 108 109 -(% style="color:blue" %)**S tep1**(%%):** Choose the installation point.**124 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 110 110 111 - DDS20-LB(% style="color:red" %)**MUST**(%%)beinstalledon thecontainerbottommiddle position.126 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 112 112 113 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 114 114 129 +== 1.6 Button & LEDs == 115 115 116 -((( 117 -(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 118 -))) 119 119 120 -((( 121 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 133 + 134 + 135 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 136 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 137 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 138 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 139 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 122 122 ))) 141 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 142 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 143 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 144 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 145 +))) 146 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 123 123 124 -[[image:image-20230613143052-5.png]] 125 125 126 126 127 - Nopolishneededif thecontainer is shine metal surface without paintornon-metalcontainer.150 +== 1.7 BLE connection == 128 128 129 -[[image:image-20230613143125-6.png]] 130 130 153 +LDS12-LB support BLE remote configure. 131 131 132 -((( 133 -(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 134 -))) 155 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 135 135 136 - (((137 -P oweron DDS20-LB, check if the blue LED ison, If theblue LED is on, meansthe sensor works. Then putultrasoniccoupling pasteonthe sensorand putt tightly on the installation point.138 - )))157 +* Press button to send an uplink 158 +* Press button to active device. 159 +* Device Power on or reset. 139 139 140 -((( 141 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 142 -))) 161 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 143 143 144 -((( 145 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 146 -))) 147 147 164 +== 1.8 Pin Definitions == 148 148 149 -((( 150 -(% style="color:blue" %)**LED Status:** 151 -))) 152 152 153 -* ((( 154 -**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 155 -))) 167 +[[image:image-20230805144259-1.png||height="413" width="741"]] 156 156 157 -* ((( 158 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 159 -))) 160 -* ((( 161 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 162 -))) 169 +== 1.9 Mechanical == 163 163 164 -((( 165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 166 -))) 167 167 172 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 168 168 169 -((( 170 -(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 171 -))) 172 172 175 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 173 173 174 -((( 175 -(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 176 -))) 177 177 178 -((( 179 -Prepare Eproxy AB glue. 180 -))) 178 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 181 181 182 -((( 183 -Put Eproxy AB glue in the sensor and press it hard on the container installation point. 184 -))) 185 185 186 -((( 187 -Reset DDS20-LB and see if the BLUE LED is slowly blinking. 188 -))) 181 +(% style="color:blue" %)**Probe Mechanical:** 189 189 190 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 191 191 184 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 192 192 193 -((( 194 -(% style="color:red" %)**Note :** 195 195 196 -(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 197 -))) 187 += 2. Configure LDS12-LB to connect to LoRaWAN network = 198 198 199 -((( 200 -(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 201 -))) 189 +== 2.1 How it works == 202 202 203 203 204 - ==1.6 Applications==192 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 205 205 194 +(% style="display:none" %) (%%) 206 206 207 - *Smartliquid controlsolution196 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 208 208 209 -* Smart liquefied gas solution 210 210 199 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 211 211 201 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 212 212 213 - ==1.7 Precautions==203 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 214 214 215 215 216 - *Atroom temperature,containersofdifferent materials,suchassteel, glass,iron,ceramics,non-foamedplasticsand otherdensematerials,have different detection blind areas and detection limitheights.206 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 217 217 218 - *Forcontainersof thesame materialatroomtemperature,thedetectionblindzonend detectionlimitheight are alsodifferent for the thicknessofthe container.208 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 219 219 220 - * When the detected liquid level exceeds the effective detection valueof the sensor, and the liquid level of the liquid to bemeasured shakes or tilts,thedetected liquid height is unstable.210 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 221 221 222 222 223 - (%style="display:none"%)213 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 224 224 225 -== 1.8 Sleep mode and working mode == 226 226 216 +(% style="color:blue" %)**Register the device** 227 227 228 - (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensorn't have anyLoRaWANctivate. Thismodeis used fortorage and shipping to saveattery life.218 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 229 229 230 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 231 231 221 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 232 232 233 - == 1.9 Button&LEDs223 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 234 234 235 235 236 - [[image:Main.User ManualforLoRaWANEndNodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]226 +(% style="color:blue" %)**Add APP EUI in the application** 237 237 238 238 239 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 240 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 241 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 242 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 243 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 244 -))) 245 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 246 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 247 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 248 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 249 -))) 250 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 229 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 251 251 252 252 232 +(% style="color:blue" %)**Add APP KEY** 253 253 254 - == 1.10 BLEconnection234 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 255 255 256 256 257 - DDS20-LBsupportBLEremoteconfigure.237 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 258 258 259 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 260 260 261 -* Press button to send an uplink 262 -* Press button to active device. 263 -* Device Power on or reset. 240 +Press the button for 5 seconds to activate the LDS12-LB. 264 264 265 - Ifthere is noactivity connection onBLEin60seconds,sensorwill shutdownBLE moduletoenterlow power mode.242 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 266 266 244 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 267 267 268 -== 1.11 Pin Definitions == 269 269 270 - [[image:image-20230523174230-1.png]]247 +== 2.3 Uplink Payload == 271 271 249 +=== 2.3.1 Device Status, FPORT~=5 === 272 272 273 -== 1.12 Mechanical == 274 274 252 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 275 275 276 - [[image:Main.UserManualfor LoRaWAN EndNodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]254 +The Payload format is as below. 277 277 256 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 257 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 258 +**Size(bytes)** 259 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 260 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 278 278 279 - [[image:Main.User Manual for LoRaWANEnd Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]262 +Example parse in TTNv3 280 280 264 +[[image:image-20230805103904-1.png||height="131" width="711"]] 281 281 282 - [[image:Main.User Manualfor LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]266 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 283 283 268 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 284 284 285 -(% style="color:blue" %)** ProbeMechanical:**270 +(% style="color:blue" %)**Frequency Band**: 286 286 287 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]272 +0x01: EU868 288 288 274 +0x02: US915 289 289 290 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]276 +0x03: IN865 291 291 278 +0x04: AU915 292 292 293 - = 2. Configure DDS20-LBto connect to LoRaWAN network =280 +0x05: KZ865 294 294 295 - ==2.1 How it works ==282 +0x06: RU864 296 296 284 +0x07: AS923 297 297 298 - The DDS20-LB is configured as (% style="color:#037691"%)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.286 +0x08: AS923-1 299 299 300 - (% style="display:none"%) (%%)288 +0x09: AS923-2 301 301 302 - == 2.2 Quick guide to connect to LoRaWANserver (OTAA) ==290 +0x0a: AS923-3 303 303 292 +0x0b: CN470 304 304 305 - Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]]as a LoRaWAN gateway in this example.294 +0x0c: EU433 306 306 307 - The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]],so what we need to now is configure the TTN server.296 +0x0d: KR920 308 308 309 - [[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none"%)298 +0x0e: MA869 310 310 300 +(% style="color:blue" %)**Sub-Band**: 311 311 312 - (%style="color:blue"%)**Step1:**(%%) Createadevicein TTN with the OTAA keys from DDS20-LB.302 +AU915 and US915:value 0x00 ~~ 0x08 313 313 314 - Each DDS20-LBis shipped withasticker with the default deviceEUIasbelow:304 +CN470: value 0x0B ~~ 0x0C 315 315 316 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]306 +Other Bands: Always 0x00 317 317 308 +(% style="color:blue" %)**Battery Info**: 318 318 319 - You can enter this keyintheLoRaWAN Serverportal. Below is TTN screen shot:310 +Check the battery voltage. 320 320 312 +Ex1: 0x0B45 = 2885mV 321 321 322 - (% style="color:blue"%)**Registerthedevice**314 +Ex2: 0x0B49 = 2889mV 323 323 324 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 325 325 317 +=== 2.3.2 Uplink Payload, FPORT~=2 === 326 326 327 -(% style="color:blue" %)**Add APP EUI and DEV EUI** 328 328 329 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 320 +((( 321 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 330 330 323 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 331 331 332 -(% style="color:blue" %)**Add APP EUI in the application** 325 +Uplink Payload totals 11 bytes. 326 +))) 333 333 328 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 329 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 330 +**Size(bytes)** 331 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 332 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 333 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 334 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 335 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 336 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 337 +[[Message Type>>||anchor="HMessageType"]] 338 +))) 334 334 335 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]340 +[[image:image-20230805104104-2.png||height="136" width="754"]] 336 336 337 337 338 -(% style="color:blue" %)** AddAPP KEY**343 +==== (% style="color:blue" %)**Battery Info**(%%) ==== 339 339 340 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 341 341 346 +Check the battery voltage for LDS12-LB. 342 342 343 - (% style="color:blue"%)**Step2:**(%%)Activate on DDS20-LB348 +Ex1: 0x0B45 = 2885mV 344 344 350 +Ex2: 0x0B49 = 2889mV 345 345 346 -Press the button for 5 seconds to activate the DDS20-LB. 347 347 348 - (% style="color:green"%)**Green led**(%%)will fastblink 5 times, device will enter (% style="color:blue" %)**OTAmode**(%%) for3 seconds. And then startto JOIN LoRaWAN network.(%style="color:green" %)**Green led**(%%)will solidly turn on for 5 seconds after joined in network.353 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ==== 349 349 350 -After join success, it will start to upload messages to TTN and you can see the messages in the panel. 351 351 356 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 352 352 353 -== 2.3 Uplink Payload == 354 354 359 +**Example**: 355 355 356 -((( 357 -DDS20-LB will uplink payload via LoRaWAN with below payload format: 358 -))) 361 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 359 359 360 -((( 361 -Uplink payload includes in total 8 bytes. 362 -))) 363 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 363 363 364 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 365 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 366 -**Size(bytes)** 367 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 368 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 369 -[[Distance>>||anchor="H2.3.2A0Distance"]] 370 -(unit: mm) 371 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 372 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 373 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 374 374 375 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]366 +==== (% style="color:blue" %)**Distance**(%%) ==== 376 376 377 377 378 - ===2.3.1BatteryInfo===369 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 379 379 380 380 381 - Check the battery voltagefor DDS20-LB.372 +**Example**: 382 382 383 - Ex1:0x0B45 =2885mV374 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 384 384 385 -Ex2: 0x0B49 = 2889mV 386 386 377 +==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 387 387 388 -=== 2.3.2 Distance === 389 389 380 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 390 390 391 -((( 392 -Get the distance. Flat object range 20mm - 2000mm. 393 -))) 394 394 395 -((( 396 -For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 383 +**Example**: 397 397 398 -(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 399 -))) 385 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 400 400 401 - *Ifthesensorvalue is0x0000, it meanssystemdoesn'tdetectultrasonicsensor.387 +Customers can judge whether they need to adjust the environment based on the signal strength. 402 402 403 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 404 404 405 - ===2.3.3 InterruptPin===390 +**1) When the sensor detects valid data:** 406 406 392 +[[image:image-20230805155335-1.png||height="145" width="724"]] 407 407 408 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 409 409 410 -** Example:**395 +**2) When the sensor detects invalid data:** 411 411 412 - 0x00:Normal uplink packet.397 +[[image:image-20230805155428-2.png||height="139" width="726"]] 413 413 414 -0x01: Interrupt Uplink Packet. 415 415 400 +**3) When the sensor is not connected:** 416 416 417 - ===2.3.4 DS18B20Temperaturesensor===402 +[[image:image-20230805155515-3.png||height="143" width="725"]] 418 418 419 419 420 - Thisisoptional,usercanconnectxternal DS18B20 sensorothe +3.3v, 1-wire andGND pin. andthis field willreporttemperature.405 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 421 421 422 -**Example**: 423 423 424 - Ifpayloadis:0105H:(0105&FC00==0),temp=0105H/10=26.1degree408 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 425 425 426 -I fpayloadis:FF3FH:(FF3F&FC00==1) ,temp =(FF3FH- 65536)/10 = -19.3 degrees.410 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI . 427 427 412 +**Example:** 428 428 429 -= ==2.3.5SensorFlag===414 +If byte[0]&0x01=0x00 : Normal uplink packet. 430 430 416 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet. 431 431 418 + 419 +==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 420 + 421 + 422 +Characterize the internal temperature value of the sensor. 423 + 424 +**Example: ** 425 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 426 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 427 + 428 + 429 +==== (% style="color:blue" %)**Message Type**(%%) ==== 430 + 431 + 432 432 ((( 433 - 0x01:DetectUltrasonicSensor433 +For a normal uplink payload, the message type is always 0x01. 434 434 ))) 435 435 436 436 ((( 437 - 0x00: No UltrasonicSensor437 +Valid Message Type: 438 438 ))) 439 439 440 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 441 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 442 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 443 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 440 440 441 - ===2.3.6 Decodepayload inTheThings Network===445 +[[image:image-20230805150315-4.png||height="233" width="723"]] 442 442 443 443 444 - WhileusingTTN network, youcan add the payloadformattodecodethepayload.448 +=== 2.3.3 Historical measuring distance, FPORT~=3 === 445 445 446 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 447 447 448 - Thepayloaddecoderfunction forTTNV3ishere:451 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 449 449 450 -((( 451 -DDS20-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 453 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 454 + 455 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 456 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 457 +**Size(bytes)** 458 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 459 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 460 +Reserve(0xFF) 461 +)))|Distance|Distance signal strength|(% style="width:88px" %)((( 462 +LiDAR temp 463 +)))|(% style="width:85px" %)Unix TimeStamp 464 + 465 +**Interrupt flag & Interrupt level:** 466 + 467 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 468 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 469 +**Size(bit)** 470 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 471 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 472 +Interrupt flag 452 452 ))) 453 453 475 +* ((( 476 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 477 +))) 454 454 455 - ==2.4 UplinkInterval==479 +For example, in the US915 band, the max payload for different DR is: 456 456 481 +**a) DR0:** max is 11 bytes so one entry of data 457 457 458 - The DDS20-LBbydefaultuplinkthe sensordataevery 20 minutes. Usercan changethis intervalby AT CommandorLoRaWAN DownlinkCommand.Seethis link: [[ChangeUplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]483 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 459 459 485 +**c) DR2:** total payload includes 11 entries of data 460 460 461 - ==2.5ShowData inDataCakeIoTServer==487 +**d) DR3:** total payload includes 22 entries of data. 462 462 489 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 463 463 491 + 492 +**Downlink:** 493 + 494 +0x31 64 CC 68 0C 64 CC 69 74 05 495 + 496 +[[image:image-20230805144936-2.png||height="113" width="746"]] 497 + 498 +**Uplink:** 499 + 500 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 501 + 502 + 503 +**Parsed Value:** 504 + 505 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 506 + 507 + 508 +[360,176,30,High,True,2023-08-04 02:53:00], 509 + 510 +[355,168,30,Low,False,2023-08-04 02:53:29], 511 + 512 +[245,211,30,Low,False,2023-08-04 02:54:29], 513 + 514 +[57,700,30,Low,False,2023-08-04 02:55:29], 515 + 516 +[361,164,30,Low,True,2023-08-04 02:56:00], 517 + 518 +[337,184,30,Low,False,2023-08-04 02:56:40], 519 + 520 +[20,4458,30,Low,False,2023-08-04 02:57:40], 521 + 522 +[362,173,30,Low,False,2023-08-04 02:58:53], 523 + 524 + 525 +**History read from serial port:** 526 + 527 +[[image:image-20230805145056-3.png]] 528 + 529 + 530 +=== 2.3.4 Decode payload in The Things Network === 531 + 532 + 533 +While using TTN network, you can add the payload format to decode the payload. 534 + 535 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 536 + 537 + 464 464 ((( 539 +The payload decoder function for TTN is here: 540 +))) 541 + 542 +((( 543 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 544 +))) 545 + 546 + 547 +== 2.4 Show Data in DataCake IoT Server == 548 + 549 + 550 +((( 465 465 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 466 466 ))) 467 467 ... ... @@ -483,7 +483,7 @@ 483 483 484 484 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 485 485 486 -(% style="color:blue" %)**Step 4**(%%)**: Search the D DS20-LB and add DevEUI.**572 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 487 487 488 488 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 489 489 ... ... @@ -493,23 +493,22 @@ 493 493 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 494 494 495 495 582 +== 2.5 Datalog Feature == 496 496 497 -== 2.6 Datalog Feature == 498 498 585 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 499 499 500 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes. 501 501 588 +=== 2.5.1 Ways to get datalog via LoRaWAN === 502 502 503 -=== 2.6.1 Ways to get datalog via LoRaWAN === 504 504 591 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 505 505 506 -Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 507 - 508 508 * ((( 509 -a) D DS20-LB will do an ACK check for data records sending to make sure every data arrive server.594 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 510 510 ))) 511 511 * ((( 512 -b) D DS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.597 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 513 513 ))) 514 514 515 515 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -517,10 +517,10 @@ 517 517 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 518 518 519 519 520 -=== 2. 6.2 Unix TimeStamp ===605 +=== 2.5.2 Unix TimeStamp === 521 521 522 522 523 -D DS20-LB uses Unix TimeStamp format based on608 +LDS12-LB uses Unix TimeStamp format based on 524 524 525 525 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 526 526 ... ... @@ -534,23 +534,23 @@ 534 534 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 535 535 536 536 537 -=== 2. 6.3 Set Device Time ===622 +=== 2.5.3 Set Device Time === 538 538 539 539 540 540 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 541 541 542 -Once D DS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).627 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 543 543 544 544 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 545 545 546 546 547 -=== 2. 6.4 Poll sensor value ===632 +=== 2.5.4 Poll sensor value === 548 548 549 549 550 550 Users can poll sensor values based on timestamps. Below is the downlink command. 551 551 552 552 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 553 -|(% colspan="4" style="background-color:# d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**638 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 554 554 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 555 555 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 556 556 ... ... @@ -567,24 +567,112 @@ 567 567 ))) 568 568 569 569 ((( 570 -Uplink Internal =5s,means D DS20-LB will send one packet every 5s. range 5~~255s.655 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 571 571 ))) 572 572 573 573 574 -== 2. 7Frequency Plans ==659 +== 2.6 Frequency Plans == 575 575 576 576 577 -The D DS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.662 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 578 578 579 579 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 580 580 581 581 582 -= 3.ConfigureDDS20-LB=667 +== 2.7 LiDAR ToF Measurement == 583 583 669 +=== 2.7.1 Principle of Distance Measurement === 670 + 671 + 672 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 673 + 674 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 675 + 676 + 677 +=== 2.7.2 Distance Measurement Characteristics === 678 + 679 + 680 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 681 + 682 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 683 + 684 + 685 +((( 686 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 687 +))) 688 + 689 +((( 690 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 691 +))) 692 + 693 +((( 694 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 695 +))) 696 + 697 + 698 +((( 699 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 700 +))) 701 + 702 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 703 + 704 +((( 705 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 706 +))) 707 + 708 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 709 + 710 +((( 711 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 712 +))) 713 + 714 + 715 +=== 2.7.3 Notice of usage === 716 + 717 + 718 +Possible invalid /wrong reading for LiDAR ToF tech: 719 + 720 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 721 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 722 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 723 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 724 + 725 + 726 + 727 +=== 2.7.4 Reflectivity of different objects === 728 + 729 + 730 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 731 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 732 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 733 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 734 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 735 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 736 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 737 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 738 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 739 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 740 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 741 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 742 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 743 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 744 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 745 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 746 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 747 +Unpolished white metal surface 748 +)))|(% style="width:93px" %)130% 749 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 750 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 751 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 752 + 753 + 754 + 755 += 3. Configure LDS12-LB = 756 + 584 584 == 3.1 Configure Methods == 585 585 586 586 587 -D DS20-LB supports below configure method:760 +LDS12-LB supports below configure method: 588 588 589 589 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 590 590 ... ... @@ -592,6 +592,8 @@ 592 592 593 593 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 594 594 768 + 769 + 595 595 == 3.2 General Commands == 596 596 597 597 ... ... @@ -606,10 +606,10 @@ 606 606 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 607 607 608 608 609 -== 3.3 Commands special design for D DS20-LB ==784 +== 3.3 Commands special design for LDS12-LB == 610 610 611 611 612 -These commands only valid for D DS20-LB, as below:787 +These commands only valid for LDS12-LB, as below: 613 613 614 614 615 615 === 3.3.1 Set Transmit Interval Time === ... ... @@ -624,7 +624,7 @@ 624 624 ))) 625 625 626 626 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 627 -|=(% style="width: 156px;background-color:# D9E2F3;#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;#0070c0" %)**Function**|=(% style="background-color:#D9E2F3;#0070c0" %)**Response**802 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 628 628 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 629 629 30000 630 630 OK ... ... @@ -652,25 +652,32 @@ 652 652 ))) 653 653 * ((( 654 654 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 830 + 831 + 832 + 655 655 ))) 656 656 657 657 === 3.3.2 Set Interrupt Mode === 658 658 659 659 660 -Feature, Set Interrupt mode for PA8ofpin.838 +Feature, Set Interrupt mode for pin of GPIO_EXTI. 661 661 662 -When AT+INTMOD=0 is set, P A8is used as a digital input port.840 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port. 663 663 664 664 (% style="color:blue" %)**AT Command: AT+INTMOD** 665 665 666 666 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 667 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**845 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 668 668 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 669 669 0 670 670 OK 671 671 the mode is 0 =Disable Interrupt 672 672 ))) 673 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 851 +|(% style="width:154px" %)((( 852 +AT+INTMOD=2 853 + 854 +(default) 855 +)))|(% style="width:196px" %)((( 674 674 Set Transmit Interval 675 675 0. (Disable Interrupt), 676 676 ~1. (Trigger by rising and falling edge) ... ... @@ -688,10 +688,43 @@ 688 688 689 689 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 690 690 873 + 874 + 875 +=== 3.3.3 Set Power Output Duration === 876 + 877 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 878 + 879 +~1. first enable the power output to external sensor, 880 + 881 +2. keep it on as per duration, read sensor value and construct uplink payload 882 + 883 +3. final, close the power output. 884 + 885 +(% style="color:blue" %)**AT Command: AT+3V3T** 886 + 887 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 888 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 889 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 890 +OK 891 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 892 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 893 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 894 + 895 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 896 +Format: Command Code (0x07) followed by 3 bytes. 897 + 898 +The first byte is 01,the second and third bytes are the time to turn on. 899 + 900 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 901 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 902 +* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 903 + 904 + 905 + 691 691 = 4. Battery & Power Consumption = 692 692 693 693 694 -D DS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.909 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 695 695 696 696 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 697 697 ... ... @@ -700,7 +700,7 @@ 700 700 701 701 702 702 (% class="wikigeneratedid" %) 703 -User can change firmware D DS20-LB to:918 +User can change firmware LDS12-LB to: 704 704 705 705 * Change Frequency band/ region. 706 706 ... ... @@ -708,7 +708,7 @@ 708 708 709 709 * Fix bugs. 710 710 711 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/p h4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**926 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 712 712 713 713 Methods to Update Firmware: 714 714 ... ... @@ -716,41 +716,42 @@ 716 716 717 717 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 718 718 719 -= 6. FAQ = 720 720 721 -== 6.1 What is the frequency plan for DDS20-LB? == 722 722 936 += 6. FAQ = 723 723 724 - DDS20-LBusethe same frequency as otherDragino products.User can seethedetailfrom this link: [[Introduction>>doc:Main.End Device FrequencyBand.WebHome||anchor="H1.Introduction"]]938 +== 6.1 What is the frequency plan for LDS12-LB? == 725 725 726 726 727 - == 6.2CanIuse DDS20-LBincondensation environment?==941 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 728 728 729 729 730 - DDS20-LBis not suitabletobe used in condensationenvironment. Condensation on the DDS20-LB probe will affect the readingand always got 0.944 += 7. Trouble Shooting = 731 731 946 +== 7.1 AT Command input doesn't work == 732 732 733 -= 7. Trouble Shooting = 734 734 735 - ==7.1WhyIcan'tjoinTTNV3inUS915/AU915bands?==949 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 736 736 737 737 738 - Itisdue tochannelmapping.Pleasesee belowlink: [[Frequencyband>>doc:Main.LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]952 +== 7.2 Significant error between the output distant value of LiDAR and actual distance == 739 739 740 740 741 -== 7.2 AT Command input doesn't work == 955 +((( 956 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 957 +))) 742 742 959 +((( 960 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 961 +))) 743 743 744 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 745 745 746 - 747 -== 7.3 Why i always see 0x0000 or 0 for the distance value? == 748 - 749 - 750 750 ((( 751 -LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 965 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 966 +))) 752 752 753 -If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 968 +((( 969 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 754 754 ))) 755 755 756 756 ... ... @@ -757,7 +757,7 @@ 757 757 = 8. Order Info = 758 758 759 759 760 -Part Number: (% style="color:blue" %)**D DS20-LB-XXX**976 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 761 761 762 762 (% style="color:red" %)**XXX**(%%): **The default frequency band** 763 763 ... ... @@ -777,12 +777,14 @@ 777 777 778 778 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 779 779 996 + 997 + 780 780 = 9. Packing Info = 781 781 782 782 783 783 (% style="color:#037691" %)**Package Includes**: 784 784 785 -* D DS20-LB LoRaWANUltrasonicLiquid LevelSensor x 11003 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 786 786 787 787 (% style="color:#037691" %)**Dimension and weight**: 788 788 ... ... @@ -794,6 +794,8 @@ 794 794 795 795 * Weight / pcs : g 796 796 1015 + 1016 + 797 797 = 10. Support = 798 798 799 799
- image-20230614153353-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +112.1 KB - Content
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.7 KB - Content