Last modified by Mengting Qiu on 2023/12/14 11:15

From version 79.17
edited by Xiaoling
on 2023/06/13 15:47
Change comment: There is no comment for this version
To version 82.6
edited by Xiaoling
on 2023/06/14 16:55
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230613133716-2.png||height="717" width="717"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,24 +19,24 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 28  
29 -DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 30  
31 -The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 32  
33 -DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
37 -Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
39 -[[image:image-20230613140115-3.png||height="453" width="800"]]
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
40 40  
41 41  
42 42  == 1.2 ​Features ==
... ... @@ -45,19 +45,16 @@
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 47  * Ultra-low power consumption
48 -* Liquid Level Measurement by Ultrasonic technology
49 -* Measure through container, No need to contact Liquid
50 -* Valid level range 20mm - 2000mm
51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 -* Cable Length : 25cm
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
53 53  * Support Bluetooth v5.1 and LoRaWAN remote configure
54 54  * Support wireless OTA update firmware
55 55  * AT Commands to change parameters
56 56  * Downlink to change configure
57 -* IP66 Waterproof Enclosure
58 58  * 8500mAh Battery for long term use
59 59  
60 -
61 61  == 1.3 Specification ==
62 62  
63 63  
... ... @@ -66,6 +66,23 @@
66 66  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
67 67  * Operating Temperature: -40 ~~ 85°C
68 68  
65 +(% style="color:#037691" %)**Probe Specification:**
66 +
67 +* Storage temperature:-20℃~~75℃
68 +* Operating temperature : -20℃~~60℃
69 +* Measure Distance:
70 +** 0.1m ~~ 12m @ 90% Reflectivity
71 +** 0.1m ~~ 4m @ 10% Reflectivity
72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 +* Distance resolution : 5mm
74 +* Ambient light immunity : 70klux
75 +* Enclosure rating : IP65
76 +* Light source : LED
77 +* Central wavelength : 850nm
78 +* FOV : 3.6°
79 +* Material of enclosure : ABS+PC
80 +* Wire length : 25cm
81 +
69 69  (% style="color:#037691" %)**LoRa Spec:**
70 70  
71 71  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -86,141 +86,30 @@
86 86  * Sleep Mode: 5uA @ 3.3v
87 87  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
88 88  
89 -== 1.4 Suitable Container & Liquid ==
90 90  
103 +== 1.4 Applications ==
91 91  
92 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
93 -* Container shape is regular, and surface is smooth.
94 -* Container Thickness:
95 -** Pure metal material.  2~~8mm, best is 3~~5mm
96 -** Pure non metal material: <10 mm
97 -* Pure liquid without irregular deposition.
98 98  
99 -(% style="display:none" %)
106 +* Horizontal distance measurement
107 +* Parking management system
108 +* Object proximity and presence detection
109 +* Intelligent trash can management system
110 +* Robot obstacle avoidance
111 +* Automatic control
112 +* Sewer
100 100  
101 -== 1.5 Install DDS20-LB ==
102 102  
115 +(% style="display:none" %)
103 103  
104 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
117 +== 1.5 Sleep mode and working mode ==
105 105  
106 -DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
107 107  
108 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
109 -
110 -
111 -(((
112 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
113 -)))
114 -
115 -(((
116 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
117 -)))
118 -
119 -[[image:image-20230613143052-5.png]]
120 -
121 -
122 -No polish needed if the container is shine metal surface without paint or non-metal container.
123 -
124 -[[image:image-20230613143125-6.png]]
125 -
126 -
127 -(((
128 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
129 -)))
130 -
131 -(((
132 -Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
133 -)))
134 -
135 -(((
136 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
137 -)))
138 -
139 -(((
140 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
141 -)))
142 -
143 -
144 -(((
145 -(% style="color:blue" %)**LED Status:**
146 -)))
147 -
148 -* (((
149 -**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
150 -)))
151 -
152 -* (((
153 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
154 -)))
155 -* (((
156 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
157 -)))
158 -
159 -(((
160 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
161 -)))
162 -
163 -
164 -(((
165 -(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
166 -)))
167 -
168 -
169 -(((
170 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
171 -)))
172 -
173 -(((
174 -Prepare Eproxy AB glue.
175 -)))
176 -
177 -(((
178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 -)))
180 -
181 -(((
182 -Reset DDS20-LB and see if the BLUE LED is slowly blinking.
183 -)))
184 -
185 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
186 -
187 -
188 -(((
189 -(% style="color:red" %)**Note :**
190 -
191 -(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
192 -)))
193 -
194 -(((
195 -(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
196 -)))
197 -
198 -
199 -== 1.6 Applications ==
200 -
201 -
202 -* Smart liquid control solution.
203 -
204 -* Smart liquefied gas solution.
205 -
206 -== 1.7 Precautions ==
207 -
208 -
209 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
210 -
211 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
212 -
213 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %)
214 -
215 -== 1.8 Sleep mode and working mode ==
216 -
217 -
218 218  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
219 219  
220 220  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
221 221  
222 222  
223 -== 1.9 Button & LEDs ==
125 +== 1.6 Button & LEDs ==
224 224  
225 225  
226 226  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -239,10 +239,10 @@
239 239  )))
240 240  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
241 241  
242 -== 1.10 BLE connection ==
144 +== 1.7 BLE connection ==
243 243  
244 244  
245 -DDS20-LB support BLE remote configure.
147 +LDS12-LB support BLE remote configure.
246 246  
247 247  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
248 248  
... ... @@ -253,14 +253,15 @@
253 253  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
254 254  
255 255  
256 -== 1.11 Pin Definitions ==
158 +== 1.8 Pin Definitions ==
257 257  
258 -[[image:image-20230523174230-1.png]]
160 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
259 259  
260 260  
261 -== 1.12 Mechanical ==
262 262  
164 +== 1.9 Mechanical ==
263 263  
166 +
264 264  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
265 265  
266 266  
... ... @@ -272,18 +272,17 @@
272 272  
273 273  (% style="color:blue" %)**Probe Mechanical:**
274 274  
275 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
276 276  
277 277  
278 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
279 279  
280 280  
281 -= 2. Configure DDS20-LB to connect to LoRaWAN network =
183 += 2. Configure LDS12-LB to connect to LoRaWAN network =
282 282  
283 283  == 2.1 How it works ==
284 284  
285 285  
286 -The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
188 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
287 287  
288 288  (% style="display:none" %) (%%)
289 289  
... ... @@ -294,12 +294,12 @@
294 294  
295 295  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
296 296  
297 -[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
199 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
298 298  
299 299  
300 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
202 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
301 301  
302 -Each DDS20-LB is shipped with a sticker with the default device EUI as below:
204 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
303 303  
304 304  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
305 305  
... ... @@ -328,10 +328,10 @@
328 328  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
329 329  
330 330  
331 -(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
233 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
332 332  
333 333  
334 -Press the button for 5 seconds to activate the DDS20-LB.
236 +Press the button for 5 seconds to activate the LDS12-LB.
335 335  
336 336  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
337 337  
... ... @@ -342,31 +342,33 @@
342 342  
343 343  
344 344  (((
345 -DDS20-LB will uplink payload via LoRaWAN with below payload format: 
247 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
346 346  )))
347 347  
348 348  (((
349 -Uplink payload includes in total 8 bytes.
251 +Uplink payload includes in total 11 bytes.
350 350  )))
351 351  
352 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
353 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
254 +
255 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
256 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
354 354  **Size(bytes)**
355 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
356 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
357 -[[Distance>>||anchor="H2.3.2A0Distance"]]
358 -(unit: mm)
359 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
360 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
361 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
258 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
259 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
260 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
261 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
262 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
263 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
264 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
265 +)))
362 362  
363 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
267 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
364 364  
365 365  
366 366  === 2.3.1  Battery Info ===
367 367  
368 368  
369 -Check the battery voltage for DDS20-LB.
273 +Check the battery voltage for LDS12-LB.
370 370  
371 371  Ex1: 0x0B45 = 2885mV
372 372  
... ... @@ -373,77 +373,105 @@
373 373  Ex2: 0x0B49 = 2889mV
374 374  
375 375  
376 -=== 2.3.2  Distance ===
280 +=== 2.3.2  DS18B20 Temperature sensor ===
377 377  
378 378  
379 -(((
380 -Get the distance. Flat object range 20mm - 2000mm.
381 -)))
283 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
382 382  
383 -(((
384 -For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
385 385  
386 -(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
387 -)))
286 +**Example**:
388 388  
389 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
288 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
390 390  
391 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
290 +If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
392 392  
393 -=== 2.3.3  Interrupt Pin ===
394 394  
293 +=== 2.3.3  Distance ===
395 395  
396 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
397 397  
398 -**Example:**
296 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
399 399  
400 -0x00: Normal uplink packet.
401 401  
402 -0x01: Interrupt Uplink Packet.
299 +**Example**:
403 403  
301 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
404 404  
405 -=== 2.3.4  DS18B20 Temperature sensor ===
406 406  
304 +=== 2.3.4  Distance signal strength ===
407 407  
408 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
409 409  
307 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
308 +
309 +
410 410  **Example**:
411 411  
412 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
312 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
413 413  
414 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
314 +Customers can judge whether they need to adjust the environment based on the signal strength.
415 415  
416 416  
417 -=== 2.3.5  Sensor Flag ===
317 +=== 2.3.5  Interrupt Pin ===
418 418  
419 419  
320 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
321 +
322 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
323 +
324 +**Example:**
325 +
326 +0x00: Normal uplink packet.
327 +
328 +0x01: Interrupt Uplink Packet.
329 +
330 +
331 +=== 2.3.6  LiDAR temp ===
332 +
333 +
334 +Characterize the internal temperature value of the sensor.
335 +
336 +**Example: **
337 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
338 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
339 +
340 +
341 +=== 2.3.7  Message Type ===
342 +
343 +
420 420  (((
421 -0x01: Detect Ultrasonic Sensor
345 +For a normal uplink payload, the message type is always 0x01.
422 422  )))
423 423  
424 424  (((
425 -0x00: No Ultrasonic Sensor
349 +Valid Message Type:
426 426  )))
427 427  
352 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
353 +|=(% style="width: 161px;background-color:#D9E2F3;color:#0070C0" %)**Message Type Code**|=(% style="width: 164px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Payload**
354 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
355 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
428 428  
429 -=== 2.3.6  Decode payload in The Things Network ===
357 +=== 2.3.8  Decode payload in The Things Network ===
430 430  
431 431  
432 432  While using TTN network, you can add the payload format to decode the payload.
433 433  
434 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
435 435  
436 -The payload decoder function for TTN V3 is here:
363 +[[image:1654592762713-715.png]]
437 437  
365 +
438 438  (((
439 -DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
367 +The payload decoder function for TTN is here:
440 440  )))
441 441  
370 +(((
371 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
372 +)))
442 442  
374 +
443 443  == 2.4  Uplink Interval ==
444 444  
445 445  
446 -The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
378 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
447 447  
448 448  
449 449  == 2.5  ​Show Data in DataCake IoT Server ==
... ... @@ -471,7 +471,7 @@
471 471  
472 472  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
473 473  
474 -(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
406 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
475 475  
476 476  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
477 477  
... ... @@ -481,23 +481,22 @@
481 481  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
482 482  
483 483  
484 -
485 485  == 2.6 Datalog Feature ==
486 486  
487 487  
488 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
419 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
489 489  
490 490  
491 491  === 2.6.1 Ways to get datalog via LoRaWAN ===
492 492  
493 493  
494 -Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
425 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
495 495  
496 496  * (((
497 -a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
428 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
498 498  )))
499 499  * (((
500 -b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
431 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
501 501  )))
502 502  
503 503  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -508,7 +508,7 @@
508 508  === 2.6.2 Unix TimeStamp ===
509 509  
510 510  
511 -DDS20-LB uses Unix TimeStamp format based on
442 +LDS12-LB uses Unix TimeStamp format based on
512 512  
513 513  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
514 514  
... ... @@ -527,7 +527,7 @@
527 527  
528 528  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
529 529  
530 -Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
461 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
531 531  
532 532  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
533 533  
... ... @@ -555,7 +555,7 @@
555 555  )))
556 556  
557 557  (((
558 -Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
489 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
559 559  )))
560 560  
561 561  
... ... @@ -562,17 +562,105 @@
562 562  == 2.7 Frequency Plans ==
563 563  
564 564  
565 -The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
496 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
566 566  
567 567  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
568 568  
569 569  
570 -= 3. Configure DDS20-LB =
501 +== 2.8 LiDAR ToF Measurement ==
571 571  
503 +=== 2.8.1 Principle of Distance Measurement ===
504 +
505 +
506 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
507 +
508 +
509 +[[image:1654831757579-263.png]]
510 +
511 +
512 +=== 2.8.2 Distance Measurement Characteristics ===
513 +
514 +
515 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
516 +
517 +[[image:1654831774373-275.png]]
518 +
519 +
520 +(((
521 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
522 +)))
523 +
524 +(((
525 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
526 +)))
527 +
528 +(((
529 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
530 +)))
531 +
532 +
533 +(((
534 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
535 +)))
536 +
537 +
538 +[[image:1654831797521-720.png]]
539 +
540 +
541 +(((
542 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
543 +)))
544 +
545 +[[image:1654831810009-716.png]]
546 +
547 +
548 +(((
549 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
550 +)))
551 +
552 +
553 +=== 2.8.3 Notice of usage: ===
554 +
555 +
556 +Possible invalid /wrong reading for LiDAR ToF tech:
557 +
558 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
559 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
560 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
561 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
562 +
563 +=== 2.8.4  Reflectivity of different objects ===
564 +
565 +
566 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
567 +|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
568 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
569 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
570 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
571 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
572 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
573 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
574 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
575 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
576 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
577 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
578 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
579 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
580 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
581 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
582 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
583 +Unpolished white metal surface
584 +)))|(% style="width:93px" %)130%
585 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
586 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
587 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
588 +
589 += 3. Configure LDS12-LB =
590 +
572 572  == 3.1 Configure Methods ==
573 573  
574 574  
575 -DDS20-LB supports below configure method:
594 +LDS12-LB supports below configure method:
576 576  
577 577  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
578 578  
... ... @@ -594,10 +594,10 @@
594 594  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
595 595  
596 596  
597 -== 3.3 Commands special design for DDS20-LB ==
616 +== 3.3 Commands special design for LDS12-LB ==
598 598  
599 599  
600 -These commands only valid for DDS20-LB, as below:
619 +These commands only valid for LDS12-LB, as below:
601 601  
602 602  
603 603  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -676,10 +676,91 @@
676 676  
677 677  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
678 678  
698 +
699 +
700 +=== 3.3.3 Get Firmware Version Info ===
701 +
702 +
703 +Feature: use downlink to get firmware version.
704 +
705 +(% style="color:#037691" %)**Downlink Command: 0x26**
706 +
707 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
708 +|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)**
709 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
710 +
711 +* Reply to the confirmation package: 26 01
712 +* Reply to non-confirmed packet: 26 00
713 +
714 +Device will send an uplink after got this downlink command. With below payload:
715 +
716 +Configures info payload:
717 +
718 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
719 +|=(% style="background-color:#D9E2F3;color:#0070C0" %)(((
720 +**Size(bytes)**
721 +)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
722 +|**Value**|Software Type|(((
723 +Frequency
724 +Band
725 +)))|Sub-band|(((
726 +Firmware
727 +Version
728 +)))|Sensor Type|Reserve|(((
729 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
730 +Always 0x02
731 +)))
732 +
733 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
734 +
735 +(% style="color:#037691" %)**Frequency Band**:
736 +
737 +*0x01: EU868
738 +
739 +*0x02: US915
740 +
741 +*0x03: IN865
742 +
743 +*0x04: AU915
744 +
745 +*0x05: KZ865
746 +
747 +*0x06: RU864
748 +
749 +*0x07: AS923
750 +
751 +*0x08: AS923-1
752 +
753 +*0x09: AS923-2
754 +
755 +*0xa0: AS923-3
756 +
757 +
758 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
759 +
760 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
761 +
762 +(% style="color:#037691" %)**Sensor Type**:
763 +
764 +0x01: LSE01
765 +
766 +0x02: LDDS75
767 +
768 +0x03: LDDS20
769 +
770 +0x04: LLMS01
771 +
772 +0x05: LSPH01
773 +
774 +0x06: LSNPK01
775 +
776 +0x07: LLDS12
777 +
778 +
679 679  = 4. Battery & Power Consumption =
680 680  
681 681  
682 -DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
782 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
683 683  
684 684  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
685 685  
... ... @@ -688,7 +688,7 @@
688 688  
689 689  
690 690  (% class="wikigeneratedid" %)
691 -User can change firmware DDS20-LB to:
791 +User can change firmware LDS12-LB to:
692 692  
693 693  * Change Frequency band/ region.
694 694  
... ... @@ -706,39 +706,38 @@
706 706  
707 707  = 6. FAQ =
708 708  
709 -== 6.1  What is the frequency plan for DDS20-LB? ==
809 +== 6.1 What is the frequency plan for LDS12-LB? ==
710 710  
711 711  
712 -DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
812 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
713 713  
714 714  
715 -== 6.2  Can I use DDS20-LB in condensation environment? ==
815 += 7Trouble Shooting =
716 716  
817 +== 7.1 AT Command input doesn't work ==
717 717  
718 -DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
719 719  
820 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
720 720  
721 -= 7.  Trouble Shooting =
722 722  
723 -== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
823 +== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
724 724  
725 725  
726 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
826 +(((
827 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
828 +)))
727 727  
830 +(((
831 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
832 +)))
728 728  
729 -== 7.2  AT Command input doesn't work ==
730 730  
731 -
732 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
733 -
734 -
735 -== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
736 -
737 -
738 738  (((
739 -LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
836 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
837 +)))
740 740  
741 -If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
839 +(((
840 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
742 742  )))
743 743  
744 744  
... ... @@ -745,7 +745,7 @@
745 745  = 8. Order Info =
746 746  
747 747  
748 -Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
847 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
749 749  
750 750  (% style="color:red" %)**XXX**(%%): **The default frequency band**
751 751  
... ... @@ -770,7 +770,7 @@
770 770  
771 771  (% style="color:#037691" %)**Package Includes**:
772 772  
773 -* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
872 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
774 774  
775 775  (% style="color:#037691" %)**Dimension and weight**:
776 776  
image-20230614153353-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content