Last modified by Mengting Qiu on 2023/12/14 11:15

From version 79.12
edited by Xiaoling
on 2023/06/13 15:02
Change comment: There is no comment for this version
To version 82.7
edited by Xiaoling
on 2023/06/14 16:56
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230613133716-2.png||height="717" width="717"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,24 +19,24 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 28  
29 -DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 30  
31 -The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 32  
33 -DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
37 -Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
39 -[[image:image-20230613140115-3.png||height="453" width="800"]]
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
40 40  
41 41  
42 42  == 1.2 ​Features ==
... ... @@ -45,16 +45,14 @@
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 47  * Ultra-low power consumption
48 -* Liquid Level Measurement by Ultrasonic technology
49 -* Measure through container, No need to contact Liquid
50 -* Valid level range 20mm - 2000mm
51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 -* Cable Length : 25cm
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
53 53  * Support Bluetooth v5.1 and LoRaWAN remote configure
54 54  * Support wireless OTA update firmware
55 55  * AT Commands to change parameters
56 56  * Downlink to change configure
57 -* IP66 Waterproof Enclosure
58 58  * 8500mAh Battery for long term use
59 59  
60 60  == 1.3 Specification ==
... ... @@ -65,6 +65,23 @@
65 65  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
66 66  * Operating Temperature: -40 ~~ 85°C
67 67  
65 +(% style="color:#037691" %)**Probe Specification:**
66 +
67 +* Storage temperature:-20℃~~75℃
68 +* Operating temperature : -20℃~~60℃
69 +* Measure Distance:
70 +** 0.1m ~~ 12m @ 90% Reflectivity
71 +** 0.1m ~~ 4m @ 10% Reflectivity
72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 +* Distance resolution : 5mm
74 +* Ambient light immunity : 70klux
75 +* Enclosure rating : IP65
76 +* Light source : LED
77 +* Central wavelength : 850nm
78 +* FOV : 3.6°
79 +* Material of enclosure : ABS+PC
80 +* Wire length : 25cm
81 +
68 68  (% style="color:#037691" %)**LoRa Spec:**
69 69  
70 70  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -85,141 +85,30 @@
85 85  * Sleep Mode: 5uA @ 3.3v
86 86  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
87 87  
88 -== 1.4 Suitable Container & Liquid ==
89 89  
103 +== 1.4 Applications ==
90 90  
91 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
92 -* Container shape is regular, and surface is smooth.
93 -* Container Thickness:
94 -** Pure metal material.  2~~8mm, best is 3~~5mm
95 -** Pure non metal material: <10 mm
96 -* Pure liquid without irregular deposition.(% style="display:none" %)
97 97  
98 -== 1.5 Install DDS20-LB ==
106 +* Horizontal distance measurement
107 +* Parking management system
108 +* Object proximity and presence detection
109 +* Intelligent trash can management system
110 +* Robot obstacle avoidance
111 +* Automatic control
112 +* Sewer
99 99  
100 100  
101 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
115 +(% style="display:none" %)
102 102  
103 -DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
117 +== 1.5 Sleep mode and working mode ==
104 104  
105 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
106 106  
107 -
108 -(((
109 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
110 -)))
111 -
112 -(((
113 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
114 -)))
115 -
116 -[[image:image-20230613143052-5.png]]
117 -
118 -
119 -No polish needed if the container is shine metal surface without paint or non-metal container.
120 -
121 -[[image:image-20230613143125-6.png]]
122 -
123 -
124 -(((
125 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
126 -)))
127 -
128 -(((
129 -Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
130 -)))
131 -
132 -(((
133 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
134 -)))
135 -
136 -(((
137 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
138 -)))
139 -
140 -
141 -(((
142 -(% style="color:red" %)**LED Status:**
143 -)))
144 -
145 -* (((
146 -Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
147 -)))
148 -
149 -* (((
150 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
151 -)))
152 -* (((
153 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
154 -)))
155 -
156 -(((
157 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
158 -)))
159 -
160 -
161 -(((
162 -(% style="color:red" %)**Note 2:**
163 -)))
164 -
165 -(((
166 -(% style="color:red" %)**Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
167 -)))
168 -
169 -
170 -(((
171 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
172 -)))
173 -
174 -(((
175 -Prepare Eproxy AB glue.
176 -)))
177 -
178 -(((
179 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 -)))
181 -
182 -(((
183 -Reset DDS20-LB and see if the BLUE LED is slowly blinking.
184 -)))
185 -
186 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
187 -
188 -
189 -(((
190 -(% style="color:red" %)**Note 1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
191 -)))
192 -
193 -(((
194 -(% style="color:red" %)**Note 2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
195 -)))
196 -
197 -
198 -== 1.6 Applications ==
199 -
200 -
201 -* Smart liquid control solution.
202 -
203 -* Smart liquefied gas solution.
204 -
205 -== 1.7 Precautions ==
206 -
207 -
208 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
209 -
210 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
211 -
212 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %)
213 -
214 -== 1.8 Sleep mode and working mode ==
215 -
216 -
217 217  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
218 218  
219 219  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
220 220  
221 221  
222 -== 1.9 Button & LEDs ==
125 +== 1.6 Button & LEDs ==
223 223  
224 224  
225 225  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -238,10 +238,10 @@
238 238  )))
239 239  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
240 240  
241 -== 1.10 BLE connection ==
144 +== 1.7 BLE connection ==
242 242  
243 243  
244 -DDS20-LB support BLE remote configure.
147 +LDS12-LB support BLE remote configure.
245 245  
246 246  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
247 247  
... ... @@ -252,14 +252,15 @@
252 252  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
253 253  
254 254  
255 -== 1.11 Pin Definitions ==
158 +== 1.8 Pin Definitions ==
256 256  
257 -[[image:image-20230523174230-1.png]]
160 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
258 258  
259 259  
260 -== 1.12 Mechanical ==
261 261  
164 +== 1.9 Mechanical ==
262 262  
166 +
263 263  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
264 264  
265 265  
... ... @@ -271,18 +271,17 @@
271 271  
272 272  (% style="color:blue" %)**Probe Mechanical:**
273 273  
274 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
275 275  
276 276  
277 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
278 278  
279 279  
280 -= 2. Configure DDS20-LB to connect to LoRaWAN network =
183 += 2. Configure LDS12-LB to connect to LoRaWAN network =
281 281  
282 282  == 2.1 How it works ==
283 283  
284 284  
285 -The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
188 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
286 286  
287 287  (% style="display:none" %) (%%)
288 288  
... ... @@ -293,12 +293,12 @@
293 293  
294 294  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
295 295  
296 -[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
199 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
297 297  
298 298  
299 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
202 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
300 300  
301 -Each DDS20-LB is shipped with a sticker with the default device EUI as below:
204 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
302 302  
303 303  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
304 304  
... ... @@ -327,10 +327,10 @@
327 327  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
328 328  
329 329  
330 -(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
233 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
331 331  
332 332  
333 -Press the button for 5 seconds to activate the DDS20-LB.
236 +Press the button for 5 seconds to activate the LDS12-LB.
334 334  
335 335  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
336 336  
... ... @@ -341,31 +341,33 @@
341 341  
342 342  
343 343  (((
344 -DDS20-LB will uplink payload via LoRaWAN with below payload format: 
247 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
345 345  )))
346 346  
347 347  (((
348 -Uplink payload includes in total 8 bytes.
251 +Uplink payload includes in total 11 bytes.
349 349  )))
350 350  
351 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
352 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
254 +
255 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
256 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
353 353  **Size(bytes)**
354 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
355 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
356 -[[Distance>>||anchor="H2.3.2A0Distance"]]
357 -(unit: mm)
358 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
359 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
360 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
258 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
259 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
260 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
261 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
262 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
263 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
264 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
265 +)))
361 361  
362 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
267 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
363 363  
364 364  
365 365  === 2.3.1  Battery Info ===
366 366  
367 367  
368 -Check the battery voltage for DDS20-LB.
273 +Check the battery voltage for LDS12-LB.
369 369  
370 370  Ex1: 0x0B45 = 2885mV
371 371  
... ... @@ -372,77 +372,105 @@
372 372  Ex2: 0x0B49 = 2889mV
373 373  
374 374  
375 -=== 2.3.2  Distance ===
280 +=== 2.3.2  DS18B20 Temperature sensor ===
376 376  
377 377  
378 -(((
379 -Get the distance. Flat object range 20mm - 2000mm.
380 -)))
283 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
381 381  
382 -(((
383 -For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
384 384  
385 -(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
386 -)))
286 +**Example**:
387 387  
388 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
288 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
389 389  
390 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
290 +If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
391 391  
392 -=== 2.3.3  Interrupt Pin ===
393 393  
293 +=== 2.3.3  Distance ===
394 394  
395 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
396 396  
397 -**Example:**
296 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
398 398  
399 -0x00: Normal uplink packet.
400 400  
401 -0x01: Interrupt Uplink Packet.
299 +**Example**:
402 402  
301 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
403 403  
404 -=== 2.3.4  DS18B20 Temperature sensor ===
405 405  
304 +=== 2.3.4  Distance signal strength ===
406 406  
407 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
408 408  
307 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
308 +
309 +
409 409  **Example**:
410 410  
411 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
312 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
412 412  
413 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
314 +Customers can judge whether they need to adjust the environment based on the signal strength.
414 414  
415 415  
416 -=== 2.3.5  Sensor Flag ===
317 +=== 2.3.5  Interrupt Pin ===
417 417  
418 418  
320 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
321 +
322 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
323 +
324 +**Example:**
325 +
326 +0x00: Normal uplink packet.
327 +
328 +0x01: Interrupt Uplink Packet.
329 +
330 +
331 +=== 2.3.6  LiDAR temp ===
332 +
333 +
334 +Characterize the internal temperature value of the sensor.
335 +
336 +**Example: **
337 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
338 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
339 +
340 +
341 +=== 2.3.7  Message Type ===
342 +
343 +
419 419  (((
420 -0x01: Detect Ultrasonic Sensor
345 +For a normal uplink payload, the message type is always 0x01.
421 421  )))
422 422  
423 423  (((
424 -0x00: No Ultrasonic Sensor
349 +Valid Message Type:
425 425  )))
426 426  
352 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
353 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
354 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
355 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
427 427  
428 -=== 2.3.6  Decode payload in The Things Network ===
357 +=== 2.3.8  Decode payload in The Things Network ===
429 429  
430 430  
431 431  While using TTN network, you can add the payload format to decode the payload.
432 432  
433 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
434 434  
435 -The payload decoder function for TTN V3 is here:
363 +[[image:1654592762713-715.png]]
436 436  
365 +
437 437  (((
438 -DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
367 +The payload decoder function for TTN is here:
439 439  )))
440 440  
370 +(((
371 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
372 +)))
441 441  
374 +
442 442  == 2.4  Uplink Interval ==
443 443  
444 444  
445 -The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
378 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
446 446  
447 447  
448 448  == 2.5  ​Show Data in DataCake IoT Server ==
... ... @@ -470,7 +470,7 @@
470 470  
471 471  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
472 472  
473 -(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
406 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
474 474  
475 475  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
476 476  
... ... @@ -480,23 +480,22 @@
480 480  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
481 481  
482 482  
483 -
484 484  == 2.6 Datalog Feature ==
485 485  
486 486  
487 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
419 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
488 488  
489 489  
490 490  === 2.6.1 Ways to get datalog via LoRaWAN ===
491 491  
492 492  
493 -Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
425 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
494 494  
495 495  * (((
496 -a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
428 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
497 497  )))
498 498  * (((
499 -b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
431 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
500 500  )))
501 501  
502 502  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -507,7 +507,7 @@
507 507  === 2.6.2 Unix TimeStamp ===
508 508  
509 509  
510 -DDS20-LB uses Unix TimeStamp format based on
442 +LDS12-LB uses Unix TimeStamp format based on
511 511  
512 512  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
513 513  
... ... @@ -526,7 +526,7 @@
526 526  
527 527  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
528 528  
529 -Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
461 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
530 530  
531 531  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
532 532  
... ... @@ -554,7 +554,7 @@
554 554  )))
555 555  
556 556  (((
557 -Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
489 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
558 558  )))
559 559  
560 560  
... ... @@ -561,17 +561,105 @@
561 561  == 2.7 Frequency Plans ==
562 562  
563 563  
564 -The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
496 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
565 565  
566 566  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
567 567  
568 568  
569 -= 3. Configure DDS20-LB =
501 +== 2.8 LiDAR ToF Measurement ==
570 570  
503 +=== 2.8.1 Principle of Distance Measurement ===
504 +
505 +
506 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
507 +
508 +
509 +[[image:1654831757579-263.png]]
510 +
511 +
512 +=== 2.8.2 Distance Measurement Characteristics ===
513 +
514 +
515 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
516 +
517 +[[image:1654831774373-275.png]]
518 +
519 +
520 +(((
521 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
522 +)))
523 +
524 +(((
525 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
526 +)))
527 +
528 +(((
529 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
530 +)))
531 +
532 +
533 +(((
534 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
535 +)))
536 +
537 +
538 +[[image:1654831797521-720.png]]
539 +
540 +
541 +(((
542 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
543 +)))
544 +
545 +[[image:1654831810009-716.png]]
546 +
547 +
548 +(((
549 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
550 +)))
551 +
552 +
553 +=== 2.8.3 Notice of usage: ===
554 +
555 +
556 +Possible invalid /wrong reading for LiDAR ToF tech:
557 +
558 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
559 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
560 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
561 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
562 +
563 +=== 2.8.4  Reflectivity of different objects ===
564 +
565 +
566 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
567 +|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
568 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
569 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
570 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
571 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
572 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
573 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
574 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
575 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
576 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
577 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
578 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
579 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
580 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
581 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
582 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
583 +Unpolished white metal surface
584 +)))|(% style="width:93px" %)130%
585 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
586 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
587 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
588 +
589 += 3. Configure LDS12-LB =
590 +
571 571  == 3.1 Configure Methods ==
572 572  
573 573  
574 -DDS20-LB supports below configure method:
594 +LDS12-LB supports below configure method:
575 575  
576 576  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
577 577  
... ... @@ -593,10 +593,10 @@
593 593  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
594 594  
595 595  
596 -== 3.3 Commands special design for DDS20-LB ==
616 +== 3.3 Commands special design for LDS12-LB ==
597 597  
598 598  
599 -These commands only valid for DDS20-LB, as below:
619 +These commands only valid for LDS12-LB, as below:
600 600  
601 601  
602 602  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -675,10 +675,91 @@
675 675  
676 676  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
677 677  
698 +
699 +
700 +=== 3.3.3 Get Firmware Version Info ===
701 +
702 +
703 +Feature: use downlink to get firmware version.
704 +
705 +(% style="color:#037691" %)**Downlink Command: 0x26**
706 +
707 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
708 +|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)**
709 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
710 +
711 +* Reply to the confirmation package: 26 01
712 +* Reply to non-confirmed packet: 26 00
713 +
714 +Device will send an uplink after got this downlink command. With below payload:
715 +
716 +Configures info payload:
717 +
718 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
719 +|=(% style="background-color:#D9E2F3;color:#0070C0" %)(((
720 +**Size(bytes)**
721 +)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
722 +|**Value**|Software Type|(((
723 +Frequency
724 +Band
725 +)))|Sub-band|(((
726 +Firmware
727 +Version
728 +)))|Sensor Type|Reserve|(((
729 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
730 +Always 0x02
731 +)))
732 +
733 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
734 +
735 +(% style="color:#037691" %)**Frequency Band**:
736 +
737 +*0x01: EU868
738 +
739 +*0x02: US915
740 +
741 +*0x03: IN865
742 +
743 +*0x04: AU915
744 +
745 +*0x05: KZ865
746 +
747 +*0x06: RU864
748 +
749 +*0x07: AS923
750 +
751 +*0x08: AS923-1
752 +
753 +*0x09: AS923-2
754 +
755 +*0xa0: AS923-3
756 +
757 +
758 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
759 +
760 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
761 +
762 +(% style="color:#037691" %)**Sensor Type**:
763 +
764 +0x01: LSE01
765 +
766 +0x02: LDDS75
767 +
768 +0x03: LDDS20
769 +
770 +0x04: LLMS01
771 +
772 +0x05: LSPH01
773 +
774 +0x06: LSNPK01
775 +
776 +0x07: LLDS12
777 +
778 +
678 678  = 4. Battery & Power Consumption =
679 679  
680 680  
681 -DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
782 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
682 682  
683 683  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
684 684  
... ... @@ -687,7 +687,7 @@
687 687  
688 688  
689 689  (% class="wikigeneratedid" %)
690 -User can change firmware DDS20-LB to:
791 +User can change firmware LDS12-LB to:
691 691  
692 692  * Change Frequency band/ region.
693 693  
... ... @@ -699,45 +699,44 @@
699 699  
700 700  Methods to Update Firmware:
701 701  
702 -* (Recommanded way) OTA firmware update via wireless:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
803 +* (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
703 703  
704 704  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
705 705  
706 706  = 6. FAQ =
707 707  
708 -== 6.1  What is the frequency plan for DDS20-LB? ==
809 +== 6.1 What is the frequency plan for LDS12-LB? ==
709 709  
710 710  
711 -DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
812 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
712 712  
713 713  
714 -== 6.2  Can I use DDS20-LB in condensation environment? ==
815 += 7Trouble Shooting =
715 715  
817 +== 7.1 AT Command input doesn't work ==
716 716  
717 -DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
718 718  
820 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
719 719  
720 -= 7.  Trouble Shooting =
721 721  
722 -== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
823 +== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
723 723  
724 724  
725 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
826 +(((
827 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
828 +)))
726 726  
830 +(((
831 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
832 +)))
727 727  
728 -== 7.2  AT Command input doesn't work ==
729 729  
730 -
731 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
732 -
733 -
734 -== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
735 -
736 -
737 737  (((
738 -LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallLDDS20"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
836 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
837 +)))
739 739  
740 -If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
839 +(((
840 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
741 741  )))
742 742  
743 743  
... ... @@ -744,7 +744,7 @@
744 744  = 8. Order Info =
745 745  
746 746  
747 -Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
847 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
748 748  
749 749  (% style="color:red" %)**XXX**(%%): **The default frequency band**
750 750  
... ... @@ -764,13 +764,12 @@
764 764  
765 765  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
766 766  
767 -
768 768  = 9. ​Packing Info =
769 769  
770 770  
771 771  (% style="color:#037691" %)**Package Includes**:
772 772  
773 -* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
872 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
774 774  
775 775  (% style="color:#037691" %)**Dimension and weight**:
776 776  
... ... @@ -782,7 +782,6 @@
782 782  
783 783  * Weight / pcs : g
784 784  
785 -
786 786  = 10. Support =
787 787  
788 788  
image-20230614153353-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content