Last modified by Mengting Qiu on 2023/12/14 11:15

From version 79.1
edited by Xiaoling
on 2023/06/13 14:31
Change comment: Uploaded new attachment "image-20230613143125-6.png", version {1}
To version 86.1
edited by Saxer Lin
on 2023/07/15 11:48
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230613133716-2.png||height="717" width="717"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,24 +19,24 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 28  
29 -DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 30  
31 -The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 32  
33 -DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
37 -Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
39 -[[image:image-20230613140115-3.png||height="453" width="800"]]
38 +[[image:image-20230615152941-1.png||height="459" width="800"]]
40 40  
41 41  
42 42  == 1.2 ​Features ==
... ... @@ -45,16 +45,14 @@
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 47  * Ultra-low power consumption
48 -* Liquid Level Measurement by Ultrasonic technology
49 -* Measure through container, No need to contact Liquid
50 -* Valid level range 20mm - 2000mm
51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 -* Cable Length : 25cm
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
53 53  * Support Bluetooth v5.1 and LoRaWAN remote configure
54 54  * Support wireless OTA update firmware
55 55  * AT Commands to change parameters
56 56  * Downlink to change configure
57 -* IP66 Waterproof Enclosure
58 58  * 8500mAh Battery for long term use
59 59  
60 60  == 1.3 Specification ==
... ... @@ -65,6 +65,23 @@
65 65  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
66 66  * Operating Temperature: -40 ~~ 85°C
67 67  
65 +(% style="color:#037691" %)**Probe Specification:**
66 +
67 +* Storage temperature:-20℃~~75℃
68 +* Operating temperature : -20℃~~60℃
69 +* Measure Distance:
70 +** 0.1m ~~ 12m @ 90% Reflectivity
71 +** 0.1m ~~ 4m @ 10% Reflectivity
72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 +* Distance resolution : 5mm
74 +* Ambient light immunity : 70klux
75 +* Enclosure rating : IP65
76 +* Light source : LED
77 +* Central wavelength : 850nm
78 +* FOV : 3.6°
79 +* Material of enclosure : ABS+PC
80 +* Wire length : 25cm
81 +
68 68  (% style="color:#037691" %)**LoRa Spec:**
69 69  
70 70  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -85,334 +85,294 @@
85 85  * Sleep Mode: 5uA @ 3.3v
86 86  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
87 87  
102 +== 1.4 Applications ==
88 88  
89 -== 1.4 Suitable Container & Liquid ==
90 90  
105 +* Horizontal distance measurement
106 +* Parking management system
107 +* Object proximity and presence detection
108 +* Intelligent trash can management system
109 +* Robot obstacle avoidance
110 +* Automatic control
111 +* Sewer
91 91  
92 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
93 -* Container shape is regular, and surface is smooth.
94 -* Container Thickness:
95 -** Pure metal material.  2~~8mm, best is 3~~5mm
96 -** Pure non metal material: <10 mm
97 -* Pure liquid without irregular deposition.(% style="display:none" %)
113 +(% style="display:none" %)
98 98  
115 +== 1.5 Sleep mode and working mode ==
99 99  
100 100  
101 -== 1.5 Install DDS20-LB ==
118 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
102 102  
120 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
103 103  
104 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
105 105  
106 -DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
123 +== 1.6 Button & LEDs ==
107 107  
108 108  
109 -[[image:image-20220615091045-3.png]]
126 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
110 110  
111 111  
112 -
113 -(((
114 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
129 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
131 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
115 115  )))
116 -
117 -(((
118 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
135 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
119 119  )))
140 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
120 120  
121 -[[image:image-20220615092010-11.png]]
142 +== 1.7 BLE connection ==
122 122  
123 123  
124 -No polish needed if the container is shine metal surface without paint or non-metal container.
145 +LDS12-LB support BLE remote configure.
125 125  
126 -[[image:image-20220615092044-12.png]]
147 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
127 127  
149 +* Press button to send an uplink
150 +* Press button to active device.
151 +* Device Power on or reset.
128 128  
153 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
129 129  
130 -(((
131 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
132 -)))
133 133  
134 -(((
135 -Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
136 -)))
156 +== 1.8 Pin Definitions ==
137 137  
158 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
138 138  
139 -(((
140 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
141 -)))
142 142  
143 -[[image:1655256160324-178.png||height="151" width="419"]][[image:image-20220615092327-13.png||height="146" width="260"]]
161 +== 1.9 Mechanical ==
144 144  
145 145  
146 -(((
147 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
148 -)))
164 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
149 149  
150 150  
151 -(((
152 -(% style="color:red" %)**LED Status:**
153 -)))
167 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
154 154  
155 -* (((
156 -Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
157 -)))
158 158  
159 -* (((
160 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
161 -)))
162 -* (((
163 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
164 -)))
170 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
165 165  
166 -(((
167 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
168 -)))
169 169  
173 +(% style="color:blue" %)**Probe Mechanical:**
170 170  
171 -(((
172 -(% style="color:red" %)**Note 2:**
173 -)))
174 174  
175 -(((
176 -(% style="color:red" %)**Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
177 -)))
176 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
178 178  
179 179  
180 -(((
181 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
182 -)))
179 += 2. Configure LDS12-LB to connect to LoRaWAN network =
183 183  
184 -(((
185 -Prepare Eproxy AB glue.
186 -)))
181 +== 2.1 How it works ==
187 187  
188 -(((
189 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
190 -)))
191 191  
192 -(((
193 -Reset DDS20-LB and see if the BLUE LED is slowly blinking.
194 -)))
184 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
195 195  
196 -[[image:image-20220615091045-8.png||height="203" width="341"]] [[image:image-20220615091045-9.png||height="200" width="284"]]
186 +(% style="display:none" %) (%%)
197 197  
188 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
198 198  
199 -(((
200 -(% style="color:red" %)**Note 1:**
201 -)))
202 202  
203 -(((
204 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
205 -)))
191 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
206 206  
193 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
207 207  
208 -(((
209 -(% style="color:red" %)**Note 2:**
210 -)))
195 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
211 211  
212 -(((
213 -(% style="color:red" %)**Eproxy AB glue**(%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
214 -)))
215 215  
198 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
216 216  
217 -== 1.6 Applications ==
200 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
218 218  
202 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
219 219  
220 -* Smart liquid control solution.
221 221  
222 -* Smart liquefied gas solution.
205 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
223 223  
224 224  
225 -== 1.7 Precautions ==
208 +(% style="color:blue" %)**Register the device**
226 226  
210 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
227 227  
228 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
229 229  
230 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
213 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
231 231  
232 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %)
215 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
233 233  
234 234  
218 +(% style="color:blue" %)**Add APP EUI in the application**
235 235  
236 -== 1.8 Sleep mode and working mode ==
237 237  
221 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
238 238  
239 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
240 240  
241 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
224 +(% style="color:blue" %)**Add APP KEY**
242 242  
226 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
243 243  
244 -== 1.9 Button & LEDs ==
245 245  
229 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
246 246  
247 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
248 248  
232 +Press the button for 5 seconds to activate the LDS12-LB.
249 249  
250 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
251 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
252 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
253 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
254 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
255 -)))
256 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
257 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
258 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
259 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
260 -)))
261 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
234 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
262 262  
263 -== 1.10 BLE connection ==
236 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
264 264  
265 265  
266 -DDS45-LB support BLE remote configure.
239 +== 2.3 ​Uplink Payload ==
267 267  
268 268  
269 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
242 +=== 2.3.1 Device Status, FPORT~=5 ===
270 270  
271 -* Press button to send an uplink
272 -* Press button to active device.
273 -* Device Power on or reset.
244 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
274 274  
275 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
246 +The Payload format is as below.
276 276  
248 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:529px" %)
249 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
250 +**Size(bytes)**
251 +)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2**
252 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
277 277  
278 -== 1.11 Pin Definitions ==
254 +Example parse in TTNv3
279 279  
280 -[[image:image-20230523174230-1.png]]
256 +**Sensor Model**: For LDS12-LB, this value is 0x24
281 281  
258 +**Firmware Version**: 0x0100, Means: v1.0.0 version
282 282  
283 -== 1.12 Mechanical ==
260 +**Frequency Band**:
284 284  
262 +0x01: EU868
285 285  
286 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
264 +0x02: US915
287 287  
266 +0x03: IN865
288 288  
289 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
268 +0x04: AU915
290 290  
270 +0x05: KZ865
291 291  
292 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
272 +0x06: RU864
293 293  
274 +0x07: AS923
294 294  
295 -(% style="color:blue" %)**Probe Mechanical:**
276 +0x08: AS923-1
296 296  
297 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS45%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654915562090-396.png?rev=1.1||alt="1654915562090-396.png"]]
278 +0x09: AS923-2
298 298  
280 +0x0a: AS923-3
299 299  
300 -= 2. Configure DDS20-LB to connect to LoRaWAN network =
282 +0x0b: CN470
301 301  
302 -== 2.1 How it works ==
284 +0x0c: EU433
303 303  
286 +0x0d: KR920
304 304  
305 -The DDS45-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS45-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
288 +0x0e: MA869
306 306  
307 -(% style="display:none" %) (%%)
290 +**Sub-Band**:
308 308  
309 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
292 +AU915 and US915:value 0x00 ~~ 0x08
310 310  
294 +CN470: value 0x0B ~~ 0x0C
311 311  
312 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
296 +Other Bands: Always 0x00
313 313  
314 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
298 +**Battery Info**:
315 315  
316 -[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
300 +Check the battery voltage.
317 317  
302 +Ex1: 0x0B45 = 2885mV
318 318  
319 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS45-LB.
304 +Ex2: 0x0B49 = 2889mV
320 320  
321 -Each DDS45-LB is shipped with a sticker with the default device EUI as below:
322 322  
323 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
307 +=== 2.3.2 Device Status, FPORT~=5 ===
324 324  
309 +(((
310 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
311 +)))
325 325  
326 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
313 +(((
314 +Uplink payload includes in total 11 bytes.
315 +)))
327 327  
317 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %)
318 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
319 +**Size(bytes)**
320 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1**
321 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
322 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
323 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)(((
324 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
328 328  
329 -(% style="color:blue" %)**Register the device**
326 +&
330 330  
331 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
328 +[[Interrupt_level>>||anchor="H2.3.5InterruptPin"]]
329 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)(((
330 +[[Message Type>>||anchor="H2.3.7MessageType"]]
331 +)))
332 332  
333 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
333 333  
334 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
335 335  
336 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
336 +==== 2.3.2.a Battery Info ====
337 337  
338 338  
339 -(% style="color:blue" %)**Add APP EUI in the application**
339 +Check the battery voltage for LDS12-LB.
340 340  
341 +Ex1: 0x0B45 = 2885mV
341 341  
342 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
343 +Ex2: 0x0B49 = 2889mV
343 343  
344 344  
345 -(% style="color:blue" %)**Add APP KEY**
346 +==== 2.3.2.b DS18B20 Temperature sensor ====
346 346  
347 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
348 348  
349 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
349 349  
350 -(% style="color:blue" %)**Step 2:**(%%) Activate on DDS45-LB
351 351  
352 +**Example**:
352 352  
353 -Press the button for 5 seconds to activate the DDS45-LB.
354 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
354 354  
355 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
356 +If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
356 356  
357 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
358 358  
359 +==== 2.3.2.c Distance ====
359 359  
360 -== 2.3  ​Uplink Payload ==
361 361  
362 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
362 362  
363 -(((
364 -DDS45-LB will uplink payload via LoRaWAN with below payload format: 
365 -)))
366 366  
367 -(((
368 -Uplink payload includes in total 8 bytes.
369 -)))
365 +**Example**:
370 370  
371 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
372 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
373 -**Size(bytes)**
374 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
375 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
376 -[[Distance>>||anchor="H2.3.2A0Distance"]]
377 -(unit: mm)
378 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
379 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
380 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
367 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
381 381  
382 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
383 383  
370 +==== 2.3.2.d Distance signal strength ====
384 384  
385 -=== 2.3.1  Battery Info ===
386 386  
373 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
387 387  
388 -Check the battery voltage for DDS45-LB.
389 389  
390 -Ex1: 0x0B45 = 2885mV
376 +**Example**:
391 391  
392 -Ex2: 0x0B49 = 2889mV
378 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
393 393  
380 +Customers can judge whether they need to adjust the environment based on the signal strength.
394 394  
395 -=== 2.3.2  Distance ===
396 396  
383 +==== 2.3.2.e Interrupt Pin & Interrupt Level ====
397 397  
398 -(((
399 -Get the distance. Flat object range 30mm - 4500mm.
400 -)))
401 401  
402 -(((
403 -For example, if the data you get from the register is **0x0B 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
404 -
405 -(% style="color:blue" %)**0B05(H) = 2821 (D) = 2821 mm.**
406 -)))
407 -
408 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
409 -* If the sensor value lower than 0x001E (30mm), the sensor value will be 0x00.
410 -
411 -=== 2.3.3  Interrupt Pin ===
412 -
413 -
414 414  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
415 415  
388 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
389 +
416 416  **Example:**
417 417  
418 418  0x00: Normal uplink packet.
... ... @@ -420,53 +420,58 @@
420 420  0x01: Interrupt Uplink Packet.
421 421  
422 422  
423 -=== 2.3. DS18B20 Temperature sensor ===
397 +==== 2.3.2.f LiDAR temp ====
424 424  
425 425  
426 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
400 +Characterize the internal temperature value of the sensor.
427 427  
428 -**Example**:
402 +**Example: **
403 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
404 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
429 429  
430 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
431 431  
432 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
407 +==== 2.3.2.g Message Type ====
433 433  
434 434  
435 -=== 2.3.5  Sensor Flag ===
436 -
437 -
438 438  (((
439 -0x01: Detect Ultrasonic Sensor
411 +For a normal uplink payload, the message type is always 0x01.
440 440  )))
441 441  
442 442  (((
443 -0x00: No Ultrasonic Sensor
415 +Valid Message Type:
444 444  )))
445 445  
418 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
419 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
420 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
421 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
446 446  
447 -=== 2.3.6  Decode payload in The Things Network ===
423 +=== 2.3.8 Decode payload in The Things Network ===
448 448  
449 449  
450 450  While using TTN network, you can add the payload format to decode the payload.
451 451  
452 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
428 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
453 453  
454 -The payload decoder function for TTN V3 is here:
455 455  
456 456  (((
457 -DDS45-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
432 +The payload decoder function for TTN is here:
458 458  )))
459 459  
435 +(((
436 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
437 +)))
460 460  
461 -== 2.4  Uplink Interval ==
462 462  
440 +== 2.4 Uplink Interval ==
463 463  
464 -The DDS45-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
465 465  
443 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
466 466  
467 -== 2.5  ​Show Data in DataCake IoT Server ==
468 468  
446 +== 2.5 ​Show Data in DataCake IoT Server ==
469 469  
448 +
470 470  (((
471 471  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
472 472  )))
... ... @@ -489,7 +489,7 @@
489 489  
490 490  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
491 491  
492 -(% style="color:blue" %)**Step 4**(%%)**: Search the DDS45-LB and add DevEUI.**
471 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
493 493  
494 494  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
495 495  
... ... @@ -499,23 +499,22 @@
499 499  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
500 500  
501 501  
502 -
503 503  == 2.6 Datalog Feature ==
504 504  
505 505  
506 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS45-LB will store the reading for future retrieving purposes.
484 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
507 507  
508 508  
509 509  === 2.6.1 Ways to get datalog via LoRaWAN ===
510 510  
511 511  
512 -Set PNACKMD=1, DDS45-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS45-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
490 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
513 513  
514 514  * (((
515 -a) DDS45-LB will do an ACK check for data records sending to make sure every data arrive server.
493 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
516 516  )))
517 517  * (((
518 -b) DDS45-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS45-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS45-LB gets a ACK, DDS45-LB will consider there is a network connection and resend all NONE-ACK messages.
496 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
519 519  )))
520 520  
521 521  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -526,7 +526,7 @@
526 526  === 2.6.2 Unix TimeStamp ===
527 527  
528 528  
529 -DDS45-LB uses Unix TimeStamp format based on
507 +LDS12-LB uses Unix TimeStamp format based on
530 530  
531 531  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
532 532  
... ... @@ -545,7 +545,7 @@
545 545  
546 546  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
547 547  
548 -Once DDS45-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS45-LB. If DDS45-LB fails to get the time from the server, DDS45-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
526 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
549 549  
550 550  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
551 551  
... ... @@ -573,7 +573,7 @@
573 573  )))
574 574  
575 575  (((
576 -Uplink Internal =5s,means DDS45-LB will send one packet every 5s. range 5~~255s.
554 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
577 577  )))
578 578  
579 579  
... ... @@ -580,17 +580,101 @@
580 580  == 2.7 Frequency Plans ==
581 581  
582 582  
583 -The DDS45-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
561 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
584 584  
585 585  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
586 586  
587 587  
588 -= 3. Configure DDS45-LB =
566 +== 2.8 LiDAR ToF Measurement ==
589 589  
568 +=== 2.8.1 Principle of Distance Measurement ===
569 +
570 +
571 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
572 +
573 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
574 +
575 +
576 +=== 2.8.2 Distance Measurement Characteristics ===
577 +
578 +
579 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
580 +
581 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
582 +
583 +
584 +(((
585 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
586 +)))
587 +
588 +(((
589 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
590 +)))
591 +
592 +(((
593 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
594 +)))
595 +
596 +
597 +(((
598 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
599 +)))
600 +
601 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
602 +
603 +(((
604 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
605 +)))
606 +
607 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
608 +
609 +(((
610 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
611 +)))
612 +
613 +
614 +=== 2.8.3 Notice of usage ===
615 +
616 +
617 +Possible invalid /wrong reading for LiDAR ToF tech:
618 +
619 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
620 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
621 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
622 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
623 +
624 +=== 2.8.4  Reflectivity of different objects ===
625 +
626 +
627 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
628 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
629 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
630 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
631 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
632 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
633 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
634 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
635 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
636 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
637 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
638 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
639 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
640 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
641 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
642 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
643 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
644 +Unpolished white metal surface
645 +)))|(% style="width:93px" %)130%
646 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
647 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
648 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
649 +
650 += 3. Configure LDS12-LB =
651 +
590 590  == 3.1 Configure Methods ==
591 591  
592 592  
593 -DDS45-LB supports below configure method:
655 +LDS12-LB supports below configure method:
594 594  
595 595  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
596 596  
... ... @@ -612,10 +612,10 @@
612 612  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
613 613  
614 614  
615 -== 3.3 Commands special design for DDS45-LB ==
677 +== 3.3 Commands special design for LDS12-LB ==
616 616  
617 617  
618 -These commands only valid for DDS45-LB, as below:
680 +These commands only valid for LDS12-LB, as below:
619 619  
620 620  
621 621  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -630,7 +630,7 @@
630 630  )))
631 631  
632 632  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
633 -|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
695 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
634 634  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
635 635  30000
636 636  OK
... ... @@ -658,6 +658,9 @@
658 658  )))
659 659  * (((
660 660  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
723 +
724 +
725 +
661 661  )))
662 662  
663 663  === 3.3.2 Set Interrupt Mode ===
... ... @@ -670,7 +670,7 @@
670 670  (% style="color:blue" %)**AT Command: AT+INTMOD**
671 671  
672 672  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
673 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
738 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
674 674  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
675 675  0
676 676  OK
... ... @@ -694,10 +694,11 @@
694 694  
695 695  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
696 696  
762 +
697 697  = 4. Battery & Power Consumption =
698 698  
699 699  
700 -DDS45-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
766 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
701 701  
702 702  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
703 703  
... ... @@ -706,7 +706,7 @@
706 706  
707 707  
708 708  (% class="wikigeneratedid" %)
709 -User can change firmware DDS45-LB to:
775 +User can change firmware LDS12-LB to:
710 710  
711 711  * Change Frequency band/ region.
712 712  
... ... @@ -714,77 +714,55 @@
714 714  
715 715  * Fix bugs.
716 716  
717 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/a5ue0nfrzqy9nz6/AABbvlATosDJKDwBmbirVbMYa?dl=0]]**
783 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
718 718  
719 719  Methods to Update Firmware:
720 720  
721 -* (Recommanded way) OTA firmware update via wireless:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
787 +* (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
722 722  
723 723  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
724 724  
725 725  = 6. FAQ =
726 726  
727 -== 6.1  What is the frequency plan for DDS45-LB? ==
793 +== 6.1 What is the frequency plan for LDS12-LB? ==
728 728  
729 729  
730 -DDS45-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
796 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
731 731  
732 732  
733 -== 6.2  Can I use DDS45-LB in condensation environment? ==
799 += 7Trouble Shooting =
734 734  
801 +== 7.1 AT Command input doesn't work ==
735 735  
736 -DDS45-LB is not suitable to be used in condensation environment. Condensation on the DDS45-LB probe will affect the reading and always got 0.
737 737  
738 -
739 -= 7.  Trouble Shooting =
740 -
741 -== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
742 -
743 -
744 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
745 -
746 -
747 -== 7.2  AT Command input doesn't work ==
748 -
749 -
750 750  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
751 751  
752 752  
753 -== 7.3  Why does the sensor reading show 0 or "No sensor" ==
807 +== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
754 754  
755 755  
756 -~1. The measurement object is very close to the sensor, but in the blind spot of the sensor.
810 +(((
811 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
812 +)))
757 757  
758 -2. Sensor wiring is disconnected
814 +(((
815 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
816 +)))
759 759  
760 -3. Not using the correct decoder
761 761  
819 +(((
820 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
821 +)))
762 762  
763 -== 7.4  Abnormal readings The gap between multiple readings is too large or the gap between the readings and the actual value is too large ==
823 +(((
824 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
825 +)))
764 764  
765 765  
766 -1) Please check if there is something on the probe affecting its measurement (condensed water, volatile oil, etc.)
767 -
768 -2) Does it change with temperature, temperature will affect its measurement
769 -
770 -3) If abnormal data occurs, you can turn on DEBUG mode, Please use downlink or AT COMMAN to enter DEBUG mode.
771 -
772 -downlink command: (% style="color:blue" %)**F1 01**(%%), AT command: (% style="color:blue" %)**AT+DDEBUG=1**
773 -
774 -4) After entering the debug mode, it will send 20 pieces of data at a time, and you can send its uplink to us for analysis
775 -
776 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20230113135125-2.png?width=1057&height=136&rev=1.1||alt="image-20230113135125-2.png"]]
777 -
778 -
779 -Its original payload will be longer than other data. Even though it is being parsed, it can be seen that it is abnormal data.
780 -
781 -Please send the data to us for check.
782 -
783 -
784 784  = 8. Order Info =
785 785  
786 786  
787 -Part Number: (% style="color:blue" %)**DDS45-LB-XXX**
831 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
788 788  
789 789  (% style="color:red" %)**XXX**(%%): **The default frequency band**
790 790  
... ... @@ -809,7 +809,7 @@
809 809  
810 810  (% style="color:#037691" %)**Package Includes**:
811 811  
812 -* DDS45-LB LoRaWAN Distance Detection Sensor x 1
856 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
813 813  
814 814  (% style="color:#037691" %)**Dimension and weight**:
815 815  
image-20230614153353-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content