Last modified by Mengting Qiu on 2023/12/14 11:15

From version 79.1
edited by Xiaoling
on 2023/06/13 14:31
Change comment: Uploaded new attachment "image-20230613143125-6.png", version {1}
To version 109.11
edited by Xiaoling
on 2023/08/07 09:45
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230613133716-2.png||height="717" width="717"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,24 +19,24 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 28  
29 -DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 30  
31 -The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 32  
33 -DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
37 -Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
39 -[[image:image-20230613140115-3.png||height="453" width="800"]]
38 +[[image:image-20230615152941-1.png||height="459" width="800"]]
40 40  
41 41  
42 42  == 1.2 ​Features ==
... ... @@ -45,18 +45,18 @@
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 47  * Ultra-low power consumption
48 -* Liquid Level Measurement by Ultrasonic technology
49 -* Measure through container, No need to contact Liquid
50 -* Valid level range 20mm - 2000mm
51 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 -* Cable Length : 25cm
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
53 53  * Support Bluetooth v5.1 and LoRaWAN remote configure
54 54  * Support wireless OTA update firmware
55 55  * AT Commands to change parameters
56 56  * Downlink to change configure
57 -* IP66 Waterproof Enclosure
58 58  * 8500mAh Battery for long term use
59 59  
57 +
58 +
60 60  == 1.3 Specification ==
61 61  
62 62  
... ... @@ -65,6 +65,23 @@
65 65  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
66 66  * Operating Temperature: -40 ~~ 85°C
67 67  
67 +(% style="color:#037691" %)**Probe Specification:**
68 +
69 +* Storage temperature:-20℃~~75℃
70 +* Operating temperature : -20℃~~60℃
71 +* Measure Distance:
72 +** 0.1m ~~ 12m @ 90% Reflectivity
73 +** 0.1m ~~ 4m @ 10% Reflectivity
74 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 +* Distance resolution : 5mm
76 +* Ambient light immunity : 70klux
77 +* Enclosure rating : IP65
78 +* Light source : LED
79 +* Central wavelength : 850nm
80 +* FOV : 3.6°
81 +* Material of enclosure : ABS+PC
82 +* Wire length : 25cm
83 +
68 68  (% style="color:#037691" %)**LoRa Spec:**
69 69  
70 70  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -86,388 +86,452 @@
86 86  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
87 87  
88 88  
89 -== 1.4 Suitable Container & Liquid ==
90 90  
106 +== 1.4 Applications ==
91 91  
92 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
93 -* Container shape is regular, and surface is smooth.
94 -* Container Thickness:
95 -** Pure metal material.  2~~8mm, best is 3~~5mm
96 -** Pure non metal material: <10 mm
97 -* Pure liquid without irregular deposition.(% style="display:none" %)
98 98  
109 +* Horizontal distance measurement
110 +* Parking management system
111 +* Object proximity and presence detection
112 +* Intelligent trash can management system
113 +* Robot obstacle avoidance
114 +* Automatic control
115 +* Sewer
99 99  
100 100  
101 -== 1.5 Install DDS20-LB ==
102 102  
119 +(% style="display:none" %)
103 103  
104 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
121 +== 1.5 Sleep mode and working mode ==
105 105  
106 -DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
107 107  
124 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
108 108  
109 -[[image:image-20220615091045-3.png]]
126 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
110 110  
111 111  
129 +== 1.6 Button & LEDs ==
112 112  
113 -(((
114 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
115 -)))
116 116  
117 -(((
118 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
133 +
134 +
135 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
137 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
119 119  )))
141 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
142 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
143 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
144 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
145 +)))
146 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
120 120  
121 -[[image:image-20220615092010-11.png]]
122 122  
123 123  
124 -No polish needed if the container is shine metal surface without paint or non-metal container.
150 +== 1.7 BLE connection ==
125 125  
126 -[[image:image-20220615092044-12.png]]
127 127  
153 +LDS12-LB support BLE remote configure.
128 128  
155 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
129 129  
130 -(((
131 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
132 -)))
157 +* Press button to send an uplink
158 +* Press button to active device.
159 +* Device Power on or reset.
133 133  
134 -(((
135 -Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
136 -)))
161 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
137 137  
138 138  
139 -(((
140 -It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
141 -)))
164 +== 1.8 Pin Definitions ==
142 142  
143 -[[image:1655256160324-178.png||height="151" width="419"]][[image:image-20220615092327-13.png||height="146" width="260"]]
144 144  
167 +[[image:image-20230805144259-1.png||height="413" width="741"]]
145 145  
146 -(((
147 -After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
148 -)))
169 +== 1.9 Mechanical ==
149 149  
150 150  
151 -(((
152 -(% style="color:red" %)**LED Status:**
153 -)))
172 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
154 154  
155 -* (((
156 -Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
157 -)))
158 158  
159 -* (((
160 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
161 -)))
162 -* (((
163 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
164 -)))
175 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
165 165  
166 -(((
167 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
168 -)))
169 169  
178 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
170 170  
171 -(((
172 -(% style="color:red" %)**Note 2:**
173 -)))
174 174  
175 -(((
176 -(% style="color:red" %)**Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
177 -)))
181 +(% style="color:blue" %)**Probe Mechanical:**
178 178  
179 179  
180 -(((
181 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
182 -)))
184 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
183 183  
184 -(((
185 -Prepare Eproxy AB glue.
186 -)))
187 187  
188 -(((
189 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
190 -)))
187 += 2. Configure LDS12-LB to connect to LoRaWAN network =
191 191  
192 -(((
193 -Reset DDS20-LB and see if the BLUE LED is slowly blinking.
194 -)))
189 +== 2.1 How it works ==
195 195  
196 -[[image:image-20220615091045-8.png||height="203" width="341"]] [[image:image-20220615091045-9.png||height="200" width="284"]]
197 197  
192 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
198 198  
199 -(((
200 -(% style="color:red" %)**Note 1:**
201 -)))
194 +(% style="display:none" %) (%%)
202 202  
203 -(((
204 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
205 -)))
196 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
206 206  
207 207  
208 -(((
209 -(% style="color:red" %)**Note 2:**
210 -)))
199 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
211 211  
212 -(((
213 -(% style="color:red" %)**Eproxy AB glue**(%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
214 -)))
201 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
215 215  
203 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
216 216  
217 -== 1.6 Applications ==
218 218  
206 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
219 219  
220 -* Smart liquid control solution.
208 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
221 221  
222 -* Smart liquefied gas solution.
210 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
223 223  
224 224  
225 -== 1.7 Precautions ==
213 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
226 226  
227 227  
228 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
216 +(% style="color:blue" %)**Register the device**
229 229  
230 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
218 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
231 231  
232 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %)
233 233  
221 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
234 234  
223 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
235 235  
236 -== 1.8 Sleep mode and working mode ==
237 237  
226 +(% style="color:blue" %)**Add APP EUI in the application**
238 238  
239 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
240 240  
241 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
229 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
242 242  
243 243  
244 -== 1.9 Button & LEDs ==
232 +(% style="color:blue" %)**Add APP KEY**
245 245  
234 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
246 246  
247 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
248 248  
237 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
249 249  
250 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
251 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
252 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
253 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
254 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
255 -)))
256 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
257 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
258 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
259 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
260 -)))
261 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
262 262  
263 -== 1.10 BLE connection ==
240 +Press the button for 5 seconds to activate the LDS12-LB.
264 264  
242 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
265 265  
266 -DDS45-LB support BLE remote configure.
244 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
267 267  
268 268  
269 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
247 +== 2.3 ​Uplink Payload ==
270 270  
271 -* Press button to send an uplink
272 -* Press button to active device.
273 -* Device Power on or reset.
249 +=== 2.3.1 Device Status, FPORT~=5 ===
274 274  
275 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
276 276  
252 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
277 277  
278 -== 1.11 Pin Definitions ==
254 +The Payload format is as below.
279 279  
280 -[[image:image-20230523174230-1.png]]
256 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
257 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
258 +**Size(bytes)**
259 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
260 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
281 281  
262 +Example parse in TTNv3
282 282  
283 -== 1.12 Mechanical ==
264 +[[image:image-20230805103904-1.png||height="131" width="711"]]
284 284  
266 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
285 285  
286 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
268 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
287 287  
270 +(% style="color:blue" %)**Frequency Band**:
288 288  
289 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
272 +0x01: EU868
290 290  
274 +0x02: US915
291 291  
292 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
276 +0x03: IN865
293 293  
278 +0x04: AU915
294 294  
295 -(% style="color:blue" %)**Probe Mechanical:**
280 +0x05: KZ865
296 296  
297 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS45%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654915562090-396.png?rev=1.1||alt="1654915562090-396.png"]]
282 +0x06: RU864
298 298  
284 +0x07: AS923
299 299  
300 -= 2. Configure DDS20-LB to connect to LoRaWAN network =
286 +0x08: AS923-1
301 301  
302 -== 2.1 How it works ==
288 +0x09: AS923-2
303 303  
290 +0x0a: AS923-3
304 304  
305 -The DDS45-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS45-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
292 +0x0b: CN470
306 306  
307 -(% style="display:none" %) (%%)
294 +0x0c: EU433
308 308  
309 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
296 +0x0d: KR920
310 310  
298 +0x0e: MA869
311 311  
312 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
300 +(% style="color:blue" %)**Sub-Band**:
313 313  
314 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
302 +AU915 and US915:value 0x00 ~~ 0x08
315 315  
316 -[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
304 +CN470: value 0x0B ~~ 0x0C
317 317  
306 +Other Bands: Always 0x00
318 318  
319 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS45-LB.
308 +(% style="color:blue" %)**Battery Info**:
320 320  
321 -Each DDS45-LB is shipped with a sticker with the default device EUI as below:
310 +Check the battery voltage.
322 322  
323 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
312 +Ex1: 0x0B45 = 2885mV
324 324  
314 +Ex2: 0x0B49 = 2889mV
325 325  
326 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
327 327  
317 +=== 2.3.2 Uplink Payload, FPORT~=2 ===
328 328  
329 -(% style="color:blue" %)**Register the device**
330 330  
331 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
320 +(((
321 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
332 332  
323 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
333 333  
334 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
325 +Uplink Payload totals 11 bytes.
326 +)))
335 335  
336 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
328 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
329 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
330 +**Size(bytes)**
331 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
332 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
333 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
334 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
335 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
336 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
337 +[[Message Type>>||anchor="HMessageType"]]
338 +)))
337 337  
340 +[[image:image-20230805104104-2.png||height="136" width="754"]]
338 338  
339 -(% style="color:blue" %)**Add APP EUI in the application**
340 340  
343 +==== (% style="color:blue" %)**Battery Info**(%%) ====
341 341  
342 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
343 343  
346 +Check the battery voltage for LDS12-LB.
344 344  
345 -(% style="color:blue" %)**Add APP KEY**
348 +Ex1: 0x0B45 = 2885mV
346 346  
347 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
350 +Ex2: 0x0B49 = 2889mV
348 348  
349 349  
350 -(% style="color:blue" %)**Step 2:**(%%) Activate on DDS45-LB
353 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
351 351  
352 352  
353 -Press the button for 5 seconds to activate the DDS45-LB.
356 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
354 354  
355 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
356 356  
357 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
359 +**Example**:
358 358  
361 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
359 359  
360 -== 2.3  ​Uplink Payload ==
363 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
361 361  
362 362  
363 -(((
364 -DDS45-LB will uplink payload via LoRaWAN with below payload format: 
365 -)))
366 +==== (% style="color:blue" %)**Distance**(%%) ====
366 366  
367 -(((
368 -Uplink payload includes in total 8 bytes.
369 -)))
370 370  
371 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
372 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
373 -**Size(bytes)**
374 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
375 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
376 -[[Distance>>||anchor="H2.3.2A0Distance"]]
377 -(unit: mm)
378 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
379 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
380 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
369 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
381 381  
382 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
383 383  
372 +**Example**:
384 384  
385 -=== 2.3.1  Battery Info ===
374 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
386 386  
387 387  
388 -Check the battery voltage for DDS45-LB.
377 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
389 389  
390 -Ex1: 0x0B45 = 2885mV
391 391  
392 -Ex2: 0x0B49 = 2889mV
380 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
393 393  
394 394  
395 -=== 2.3.2  Distance ===
383 +**Example**:
396 396  
385 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
397 397  
398 -(((
399 -Get the distance. Flat object range 30mm - 4500mm.
400 -)))
387 +Customers can judge whether they need to adjust the environment based on the signal strength.
401 401  
402 -(((
403 -For example, if the data you get from the register is **0x0B 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
404 404  
405 -(% style="color:blue" %)**0B05(H) = 2821 (D) = 2821 mm.**
406 -)))
390 +**1) When the sensor detects valid data:**
407 407  
408 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
409 -* If the sensor value lower than 0x001E (30mm), the sensor value will be 0x00.
392 +[[image:image-20230805155335-1.png||height="145" width="724"]]
410 410  
411 -=== 2.3.3  Interrupt Pin ===
412 412  
395 +**2) When the sensor detects invalid data:**
413 413  
414 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
397 +[[image:image-20230805155428-2.png||height="139" width="726"]]
415 415  
416 -**Example:**
417 417  
418 -0x00: Normal uplink packet.
400 +**3) When the sensor is not connected:**
419 419  
420 -0x01: Interrupt Uplink Packet.
402 +[[image:image-20230805155515-3.png||height="143" width="725"]]
421 421  
422 422  
423 -=== 2.3.4  DS18B20 Temperature sensor ===
405 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
424 424  
425 425  
426 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
408 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
427 427  
428 -**Example**:
410 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
429 429  
430 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
412 +**Example:**
431 431  
432 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
414 +If byte[0]&0x01=0x00 : Normal uplink packet.
433 433  
416 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
434 434  
435 -=== 2.3.5  Sensor Flag ===
436 436  
419 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
437 437  
421 +
422 +Characterize the internal temperature value of the sensor.
423 +
424 +**Example: **
425 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
426 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
427 +
428 +
429 +==== (% style="color:blue" %)**Message Type**(%%) ====
430 +
431 +
438 438  (((
439 -0x01: Detect Ultrasonic Sensor
433 +For a normal uplink payload, the message type is always 0x01.
440 440  )))
441 441  
442 442  (((
443 -0x00: No Ultrasonic Sensor
437 +Valid Message Type:
444 444  )))
445 445  
440 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
441 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
442 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
443 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
446 446  
447 -=== 2.3.6  Decode payload in The Things Network ===
445 +[[image:image-20230805150315-4.png||height="233" width="723"]]
448 448  
449 449  
450 -While using TTN network, you can add the payload format to decode the payload.
448 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
451 451  
452 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
453 453  
454 -The payload decoder function for TTN V3 is here:
451 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
455 455  
456 -(((
457 -DDS45-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
453 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
454 +
455 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
456 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
457 +**Size(bytes)**
458 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
459 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
460 +Reserve(0xFF)
461 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
462 +LiDAR temp
463 +)))|(% style="width:85px" %)Unix TimeStamp
464 +
465 +**Interrupt flag & Interrupt level:**
466 +
467 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
468 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
469 +**Size(bit)**
470 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
471 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
472 +Interrupt flag
458 458  )))
459 459  
475 +* (((
476 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
477 +)))
460 460  
461 -== 2.4  Uplink Interval ==
479 +For example, in the US915 band, the max payload for different DR is:
462 462  
481 +**a) DR0:** max is 11 bytes so one entry of data
463 463  
464 -The DDS45-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
483 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
465 465  
485 +**c) DR2:** total payload includes 11 entries of data
466 466  
467 -== 2.5  ​Show Data in DataCake IoT Server ==
487 +**d) DR3:** total payload includes 22 entries of data.
468 468  
489 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
469 469  
491 +
492 +**Downlink:**
493 +
494 +0x31 64 CC 68 0C 64 CC 69 74 05
495 +
496 +[[image:image-20230805144936-2.png||height="113" width="746"]]
497 +
498 +**Uplink:**
499 +
500 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
501 +
502 +
503 +**Parsed Value:**
504 +
505 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
506 +
507 +
508 +[360,176,30,High,True,2023-08-04 02:53:00],
509 +
510 +[355,168,30,Low,False,2023-08-04 02:53:29],
511 +
512 +[245,211,30,Low,False,2023-08-04 02:54:29],
513 +
514 +[57,700,30,Low,False,2023-08-04 02:55:29],
515 +
516 +[361,164,30,Low,True,2023-08-04 02:56:00],
517 +
518 +[337,184,30,Low,False,2023-08-04 02:56:40],
519 +
520 +[20,4458,30,Low,False,2023-08-04 02:57:40],
521 +
522 +[362,173,30,Low,False,2023-08-04 02:58:53],
523 +
524 +
525 +**History read from serial port:**
526 +
527 +[[image:image-20230805145056-3.png]]
528 +
529 +
530 +=== 2.3.4 Decode payload in The Things Network ===
531 +
532 +
533 +While using TTN network, you can add the payload format to decode the payload.
534 +
535 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
536 +
537 +
470 470  (((
539 +The payload decoder function for TTN is here:
540 +)))
541 +
542 +(((
543 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
544 +)))
545 +
546 +
547 +== 2.4 ​Show Data in DataCake IoT Server ==
548 +
549 +
550 +(((
471 471  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
472 472  )))
473 473  
... ... @@ -489,7 +489,7 @@
489 489  
490 490  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
491 491  
492 -(% style="color:blue" %)**Step 4**(%%)**: Search the DDS45-LB and add DevEUI.**
572 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
493 493  
494 494  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
495 495  
... ... @@ -499,23 +499,22 @@
499 499  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
500 500  
501 501  
582 +== 2.5 Datalog Feature ==
502 502  
503 -== 2.6 Datalog Feature ==
504 504  
585 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
505 505  
506 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS45-LB will store the reading for future retrieving purposes.
507 507  
588 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
508 508  
509 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
510 510  
591 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
511 511  
512 -Set PNACKMD=1, DDS45-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS45-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
513 -
514 514  * (((
515 -a) DDS45-LB will do an ACK check for data records sending to make sure every data arrive server.
594 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
516 516  )))
517 517  * (((
518 -b) DDS45-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS45-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS45-LB gets a ACK, DDS45-LB will consider there is a network connection and resend all NONE-ACK messages.
597 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
519 519  )))
520 520  
521 521  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -523,10 +523,10 @@
523 523  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
524 524  
525 525  
526 -=== 2.6.2 Unix TimeStamp ===
605 +=== 2.5.2 Unix TimeStamp ===
527 527  
528 528  
529 -DDS45-LB uses Unix TimeStamp format based on
608 +LDS12-LB uses Unix TimeStamp format based on
530 530  
531 531  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
532 532  
... ... @@ -540,23 +540,23 @@
540 540  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
541 541  
542 542  
543 -=== 2.6.3 Set Device Time ===
622 +=== 2.5.3 Set Device Time ===
544 544  
545 545  
546 546  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
547 547  
548 -Once DDS45-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS45-LB. If DDS45-LB fails to get the time from the server, DDS45-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
627 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
549 549  
550 550  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
551 551  
552 552  
553 -=== 2.6.4 Poll sensor value ===
632 +=== 2.5.4 Poll sensor value ===
554 554  
555 555  
556 556  Users can poll sensor values based on timestamps. Below is the downlink command.
557 557  
558 558  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
559 -|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
638 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
560 560  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
561 561  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
562 562  
... ... @@ -573,24 +573,112 @@
573 573  )))
574 574  
575 575  (((
576 -Uplink Internal =5s,means DDS45-LB will send one packet every 5s. range 5~~255s.
655 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
577 577  )))
578 578  
579 579  
580 -== 2.7 Frequency Plans ==
659 +== 2.6 Frequency Plans ==
581 581  
582 582  
583 -The DDS45-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
662 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
584 584  
585 585  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
586 586  
587 587  
588 -= 3. Configure DDS45-LB =
667 +== 2.7 LiDAR ToF Measurement ==
589 589  
669 +=== 2.7.1 Principle of Distance Measurement ===
670 +
671 +
672 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
673 +
674 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
675 +
676 +
677 +=== 2.7.2 Distance Measurement Characteristics ===
678 +
679 +
680 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
681 +
682 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
683 +
684 +
685 +(((
686 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
687 +)))
688 +
689 +(((
690 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
691 +)))
692 +
693 +(((
694 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
695 +)))
696 +
697 +
698 +(((
699 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
700 +)))
701 +
702 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
703 +
704 +(((
705 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
706 +)))
707 +
708 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
709 +
710 +(((
711 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
712 +)))
713 +
714 +
715 +=== 2.7.3 Notice of usage ===
716 +
717 +
718 +Possible invalid /wrong reading for LiDAR ToF tech:
719 +
720 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
721 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
722 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
723 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
724 +
725 +
726 +
727 +=== 2.7.4  Reflectivity of different objects ===
728 +
729 +
730 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
731 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
732 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
733 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
734 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
735 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
736 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
737 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
738 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
739 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
740 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
741 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
742 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
743 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
744 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
745 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
746 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
747 +Unpolished white metal surface
748 +)))|(% style="width:93px" %)130%
749 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
750 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
751 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
752 +
753 +
754 +
755 += 3. Configure LDS12-LB =
756 +
590 590  == 3.1 Configure Methods ==
591 591  
592 592  
593 -DDS45-LB supports below configure method:
760 +LDS12-LB supports below configure method:
594 594  
595 595  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
596 596  
... ... @@ -598,6 +598,8 @@
598 598  
599 599  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
600 600  
768 +
769 +
601 601  == 3.2 General Commands ==
602 602  
603 603  
... ... @@ -612,10 +612,10 @@
612 612  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
613 613  
614 614  
615 -== 3.3 Commands special design for DDS45-LB ==
784 +== 3.3 Commands special design for LDS12-LB ==
616 616  
617 617  
618 -These commands only valid for DDS45-LB, as below:
787 +These commands only valid for LDS12-LB, as below:
619 619  
620 620  
621 621  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -630,7 +630,7 @@
630 630  )))
631 631  
632 632  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
633 -|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
802 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
634 634  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
635 635  30000
636 636  OK
... ... @@ -658,25 +658,32 @@
658 658  )))
659 659  * (((
660 660  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
830 +
831 +
832 +
661 661  )))
662 662  
663 663  === 3.3.2 Set Interrupt Mode ===
664 664  
665 665  
666 -Feature, Set Interrupt mode for PA8 of pin.
838 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
667 667  
668 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
840 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
669 669  
670 670  (% style="color:blue" %)**AT Command: AT+INTMOD**
671 671  
672 672  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
673 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
845 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
674 674  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
675 675  0
676 676  OK
677 677  the mode is 0 =Disable Interrupt
678 678  )))
679 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
851 +|(% style="width:154px" %)(((
852 +AT+INTMOD=2
853 +
854 +(default)
855 +)))|(% style="width:196px" %)(((
680 680  Set Transmit Interval
681 681  0. (Disable Interrupt),
682 682  ~1. (Trigger by rising and falling edge)
... ... @@ -694,97 +694,110 @@
694 694  
695 695  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
696 696  
697 -= 4. Battery & Power Consumption =
698 698  
699 699  
700 -DDS45-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
875 +=== 3.3.3  Set Power Output Duration ===
701 701  
702 -[[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
877 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
703 703  
879 +~1. first enable the power output to external sensor,
704 704  
705 -= 5. OTA Firmware update =
881 +2. keep it on as per duration, read sensor value and construct uplink payload
706 706  
883 +3. final, close the power output.
707 707  
708 -(% class="wikigeneratedid" %)
709 -User can change firmware DDS45-LB to:
885 +(% style="color:blue" %)**AT Command: AT+3V3T**
710 710  
711 -* Change Frequency band/ region.
887 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
888 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
889 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
890 +OK
891 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
892 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
893 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
712 712  
713 -* Update with new features.
895 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
896 +Format: Command Code (0x07) followed by 3 bytes.
714 714  
715 -* Fix bugs.
898 +The first byte is 01,the second and third bytes are the time to turn on.
716 716  
717 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/a5ue0nfrzqy9nz6/AABbvlATosDJKDwBmbirVbMYa?dl=0]]**
900 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
901 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
902 +* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
718 718  
719 -Methods to Update Firmware:
720 720  
721 -* (Recommanded way) OTA firmware update via wireless:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
722 722  
723 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
906 += 4. Battery & Power Consumption =
724 724  
725 -= 6. FAQ =
726 726  
727 -== 6.1  What is the frequency plan for DDS45-LB? ==
909 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
728 728  
911 +[[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
729 729  
730 -DDS45-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
731 731  
914 += 5. OTA Firmware update =
732 732  
733 -== 6.2  Can I use DDS45-LB in condensation environment? ==
734 734  
917 +(% class="wikigeneratedid" %)
918 +User can change firmware LDS12-LB to:
735 735  
736 -DDS45-LB is not suitable to be used in condensation environment. Condensation on the DDS45-LB probe will affect the reading and always got 0.
920 +* Change Frequency band/ region.
737 737  
922 +* Update with new features.
738 738  
739 -= 7.  Trouble Shooting =
924 +* Fix bugs.
740 740  
741 -== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
926 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
742 742  
928 +Methods to Update Firmware:
743 743  
744 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
930 +* (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
745 745  
932 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
746 746  
747 -== 7.2  AT Command input doesn't work ==
748 748  
749 749  
750 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
936 += 6. FAQ =
751 751  
938 +== 6.1 What is the frequency plan for LDS12-LB? ==
752 752  
753 -== 7.3  Why does the sensor reading show 0 or "No sensor" ==
754 754  
941 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
755 755  
756 -~1. The measurement object is very close to the sensor, but in the blind spot of the sensor.
757 757  
758 -2. Sensor wiring is disconnected
944 += 7. Trouble Shooting =
759 759  
760 -3. Not using the correct decoder
946 +== 7.1 AT Command input doesn't work ==
761 761  
762 762  
763 -== 7.4  Abnormal readings The gap between multiple readings is too large or the gap between the readings and the actual value is too large ==
949 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
764 764  
765 765  
766 -1) Please check if there is something on the probe affecting its measurement (condensed water, volatile oil, etc.)
952 +== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
767 767  
768 -2) Does it change with temperature, temperature will affect its measurement
769 769  
770 -3) If abnormal data occurs, you can turn on DEBUG mode, Please use downlink or AT COMMAN to enter DEBUG mode.
955 +(((
956 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
957 +)))
771 771  
772 -downlink command: (% style="color:blue" %)**F1 01**(%%), AT command: (% style="color:blue" %)**AT+DDEBUG=1**
959 +(((
960 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
961 +)))
773 773  
774 -4) After entering the debug mode, it will send 20 pieces of data at a time, and you can send its uplink to us for analysis
775 775  
776 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20230113135125-2.png?width=1057&height=136&rev=1.1||alt="image-20230113135125-2.png"]]
964 +(((
965 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
966 +)))
777 777  
968 +(((
969 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
970 +)))
778 778  
779 -Its original payload will be longer than other data. Even though it is being parsed, it can be seen that it is abnormal data.
780 780  
781 -Please send the data to us for check.
782 -
783 -
784 784  = 8. Order Info =
785 785  
786 786  
787 -Part Number: (% style="color:blue" %)**DDS45-LB-XXX**
976 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
788 788  
789 789  (% style="color:red" %)**XXX**(%%): **The default frequency band**
790 790  
... ... @@ -804,12 +804,14 @@
804 804  
805 805  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
806 806  
996 +
997 +
807 807  = 9. ​Packing Info =
808 808  
809 809  
810 810  (% style="color:#037691" %)**Package Includes**:
811 811  
812 -* DDS45-LB LoRaWAN Distance Detection Sensor x 1
1003 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
813 813  
814 814  (% style="color:#037691" %)**Dimension and weight**:
815 815  
... ... @@ -821,6 +821,8 @@
821 821  
822 822  * Weight / pcs : g
823 823  
1015 +
1016 +
824 824  = 10. Support =
825 825  
826 826  
image-20230614153353-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content