Last modified by Mengting Qiu on 2023/12/14 11:15

From version 70.7
edited by Xiaoling
on 2023/06/12 17:33
Change comment: There is no comment for this version
To version 67.20
edited by Xiaoling
on 2023/05/30 15:29
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DDS75-LB -- LoRaWAN Distance Detection Sensor User Manual
1 +SW3L-LB -- LoRaWAN Flow Sensor User Manual
Content
... ... @@ -1,9 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230612170349-1.png||height="656" width="656"]]
2 +[[image:image-20230530140053-1.jpeg||height="645" width="645"]]
3 3  
4 4  
5 5  
6 6  
7 +
7 7  **Table of Contents:**
8 8  
9 9  {{toc/}}
... ... @@ -15,13 +15,15 @@
15 15  
16 16  = 1. Introduction =
17 17  
18 -== 1.1 What is LoRaWAN Distance Detection Sensor ==
19 +== 1.1 What is SW3L-LB LoRaWAN Flow Sensor ==
19 19  
20 20  
21 -The Dragino DDS75-LB is a (% style="color:blue" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:blue" %)** ultrasonic sensing technology**(%%) for (% style="color:blue" %)**distance measurement**(%%), and (% style="color:blue" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The DDS75-LB can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22 +The Dragino SW3L-LB is a (% style="color:blue" %)**LoRaWAN Flow Sensor**(%%). It detects water flow volume and uplink to IoT server via LoRaWAN network. User can use this to(% style="color:blue" %)** monitor the water usage for buildings.**
22 22  
23 -It detects the distance(% style="color:blue" %)**  between the measured object and the sensor**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
24 +The SW3L-LB will send water flow volume every 20 minutes. It can also (% style="color:blue" %)**detect the water flow status**(%%) and (% style="color:blue" %)**send Alarm**(%%), to avoid the waste for water usage such as broken toilet case.
24 24  
26 +SW3L-LB is designed for both indoor and outdoor use. It has a weatherproof enclosure and industrial level battery to work in low to high temperatures.
27 +
25 25  The LoRa wireless technology used in SW3L-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
26 26  
27 27  SW3L-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
... ... @@ -30,9 +30,10 @@
30 30  
31 31  Each SW3L-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
32 32  
33 -[[image:image-20230612170943-2.png||height="525" width="912"]]
34 34  
37 +[[image:image-20230530135919-1.png||height="404" width="806"]]
35 35  
39 +
36 36  == 1.2 ​Features ==
37 37  
38 38  
... ... @@ -39,47 +39,19 @@
39 39  * LoRaWAN 1.0.3 Class A
40 40  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
41 41  * Ultra-low power consumption
42 -* Distance Detection by Ultrasonic technology
43 -* Flat object range 280mm - 7500mm
44 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
45 -* Cable Length : 25cm
46 +* Upload water flow volume
47 +* Monitor water waste
48 +* AT Commands to change parameters
49 +* supports Datalog feature
46 46  * Support Bluetooth v5.1 and LoRaWAN remote configure
47 47  * Support wireless OTA update firmware
48 -* AT Commands to change parameters
52 +* Uplink on periodically and open/close event
49 49  * Downlink to change configure
50 -* IP66 Waterproof Enclosure
51 51  * 8500mAh Battery for long term use
52 52  
53 53  == 1.3 Specification ==
54 54  
55 55  
56 -(% style="color:#037691" %)**Rated environmental conditions:**
57 -
58 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
59 -|(% style="background-color:#d9e2f3; color:#0070c0; width:163px" %)**Item**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)(((
60 -**Minimum value**
61 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)(((
62 -**Typical value**
63 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:87px" %)(((
64 -**Maximum value**
65 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Unit**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Remarks**
66 -|(% style="width:174px" %)Storage temperature|(% style="width:86px" %)-25|(% style="width:66px" %)25|(% style="width:90px" %)80|(% style="width:48px" %)℃|(% style="width:203px" %)
67 -|(% style="width:174px" %)Storage humidity|(% style="width:86px" %) |(% style="width:66px" %)65%|(% style="width:90px" %)90%|(% style="width:48px" %)RH|(% style="width:203px" %)(1)
68 -|(% style="width:174px" %)Operating temperature|(% style="width:86px" %)-15|(% style="width:66px" %)25|(% style="width:90px" %)60|(% style="width:48px" %)℃|(% style="width:203px" %)
69 -|(% style="width:174px" %)Working humidity|(% style="width:86px" %)(((
70 -
71 -
72 -
73 -)))|(% style="width:66px" %)65%|(% style="width:90px" %)80%|(% style="width:48px" %)RH|(% style="width:203px" %)(1)
74 -
75 -(((
76 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);       **
77 -
78 -**~ b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
79 -
80 -
81 -)))
82 -
83 83  (% style="color:#037691" %)**Common DC Characteristics:**
84 84  
85 85  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -105,42 +105,23 @@
105 105  * Sleep Mode: 5uA @ 3.3v
106 106  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
107 107  
84 +== 1.4 Applications ==
108 108  
109 -== 1.4 Effective measurement range Reference beam pattern ==
110 110  
87 +* Flow Sensor application
88 +* Water Control
89 +* Toilet Flow Sensor
90 +* Monitor Waste water
111 111  
112 -**~1. The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
92 +== 1.5 Sleep mode and working mode ==
113 113  
114 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654852253176-749.png?rev=1.1||alt="1654852253176-749.png"]]
115 115  
116 -
117 -**2. The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
118 -
119 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654852175653-550.png?rev=1.1||alt="1654852175653-550.png"]]
120 -
121 -
122 -== 1.5 Applications ==
123 -
124 -
125 -* Horizontal distance measurement
126 -* Liquid level measurement
127 -* Parking management system
128 -* Object proximity and presence detection
129 -* Intelligent trash can management system
130 -* Robot obstacle avoidance
131 -* Automatic control
132 -* Sewer
133 -* Bottom water level monitoring
134 -
135 -== 1.6 Sleep mode and working mode ==
136 -
137 -
138 138  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
139 139  
140 140  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
141 141  
142 142  
143 -== 1.7 Button & LEDs ==
100 +== 1.6 Button & LEDs ==
144 144  
145 145  
146 146  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -159,10 +159,10 @@
159 159  )))
160 160  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
161 161  
162 -== 1.8 BLE connection ==
119 +== 1.7 BLE connection ==
163 163  
164 164  
165 -DDS75-LB support BLE remote configure.
122 +SW3L-LB support BLE remote configure.
166 166  
167 167  
168 168  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -174,13 +174,23 @@
174 174  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
175 175  
176 176  
177 -== 1.9 Pin Definitions ==
134 +== 1.8 Pin Definitions ==
178 178  
179 179  [[image:image-20230523174230-1.png]]
180 180  
181 181  
182 -== ==
139 +== 1.9 Flow Sensor Spec ==
183 183  
141 +
142 +(((
143 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
144 +|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Model**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Probe**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Diameter**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Range**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Max Pressure**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**Measure**
145 +|(% style="width:88px" %)SW3L-004|(% style="width:75px" %)DW-004|(% style="width:107px" %)G1/2" /DN15|(% style="width:101px" %)1~~30L/min|(% style="width:116px" %)≤ 2.0Mpa|(% style="width:124px" %)450 pulse = 1 L
146 +|(% style="width:88px" %)SW3L-006|(% style="width:75px" %)DW-006|(% style="width:107px" %)G3/4" /DN20|(% style="width:101px" %)1~~60L/min|(% style="width:116px" %)≤ 1.2Mpa|(% style="width:124px" %)390 pulse = 1 L
147 +|(% style="width:88px" %)SW3L-010|(% style="width:75px" %)DW-010|(% style="width:107px" %)G 1" /DN25|(% style="width:101px" %)2~~100L/min|(% style="width:116px" %)≤ 2.0Mpa|(% style="width:124px" %)64 pulse = 1 L
148 +)))
149 +
150 +
184 184  == 2.10 Mechanical ==
185 185  
186 186  
... ... @@ -193,8 +193,23 @@
193 193  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
194 194  
195 195  
196 -= 2. Configure DDS75-LB to connect to LoRaWAN network =
163 +(% style="color:blue" %)**DW-004 Flow Sensor: diameter: G1/2” / DN15.  450 pulse = 1 L**
197 197  
165 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519091350-1.png?width=722&height=385&rev=1.1||alt="image-20220519091350-1.png"]]
166 +
167 +
168 +(% style="color:blue" %)**006: DW-006 Flow Sensor: diameter: G3/4” / DN20.  390 pulse = 1 L**
169 +
170 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519091423-2.png?width=723&height=258&rev=1.1||alt="image-20220519091423-2.png"]]
171 +
172 +
173 +(% style="color:blue" %)**010: DW-010 Flow Sensor: diameter: G 1” / DN25. 64 pulse = 1 L**
174 +
175 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519091423-3.png?width=724&height=448&rev=1.1||alt="image-20220519091423-3.png"]]
176 +
177 +
178 += 2. Configure CPL03-LB to connect to LoRaWAN network =
179 +
198 198  == 2.1 How it works ==
199 199  
200 200  
... ... @@ -209,7 +209,7 @@
209 209  
210 210  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
211 211  
212 -[[image:image-20230612171032-3.png||height="492" width="855"]](% style="display:none" %)
194 +[[image:image-20230530135929-2.png||height="404" width="806"]](% style="display:none" %)
213 213  
214 214  
215 215  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SW3L-LB.
... ... @@ -331,7 +331,7 @@
331 331  === 2.3.2 Sensor Configuration, FPORT~=4 ===
332 332  
333 333  
334 -SW3L-LB will only send this command after getting the downlink command (0x26 02) from the server.
316 +SW3L will only send this command after getting the downlink command (0x26 02) from the server.
335 335  
336 336  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
337 337  |(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %) **Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:105px" %)**3**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:96px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:105px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:74px" %)**1**
... ... @@ -353,7 +353,7 @@
353 353  
354 354  
355 355  (((
356 -SW3L-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And SW3L-LB will:
338 +SW3L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And SW3L will:
357 357  )))
358 358  
359 359  (((
... ... @@ -488,7 +488,7 @@
488 488  
489 489  
490 490  (((
491 -SW3L-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5DatalogFeature"]].
473 +SW3L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5DatalogFeature"]].
492 492  )))
493 493  
494 494  (((
... ... @@ -504,23 +504,23 @@
504 504  )))
505 505  
506 506  (((
507 -(% style="color:blue" %)**a) DR0:**(%%) max is 11 bytes so one entry of data
489 +(% style="color:blue" %)**a) DR0:(%%)** max is 11 bytes so one entry of data
508 508  )))
509 509  
510 510  (((
511 -(% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
493 +(% style="color:blue" %)**b) DR1:(%%)** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
512 512  )))
513 513  
514 514  (((
515 -(% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
497 +(% style="color:blue" %)**c) DR2:(%%)** total payload includes 11 entries of data
516 516  )))
517 517  
518 518  (((
519 -(% style="color:blue" %)**d) DR3:**(%%) total payload includes 22 entries of data.
501 +(% style="color:blue" %)**d) DR3:(%%)** total payload includes 22 entries of data.
520 520  )))
521 521  
522 522  (((
523 -If SW3L-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
505 +If SW3L doesn't have any data in the polling time. It will uplink 11 bytes of 0
524 524  )))
525 525  
526 526  (((
... ... @@ -589,19 +589,19 @@
589 589  == 2.5 Datalog Feature ==
590 590  
591 591  
592 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, SW3L-LB will store the reading for future retrieving purposes.
574 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, CPL03-LB will store the reading for future retrieving purposes.
593 593  
594 594  
595 595  === 2.5.1 Ways to get datalog via LoRaWAN ===
596 596  
597 597  
598 -Set PNACKMD=1, SW3L-LB will wait for ACK for every uplink, when there is no LoRaWAN network,SW3L-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
580 +Set PNACKMD=1, CPL03-LB will wait for ACK for every uplink, when there is no LoRaWAN network,CPL03-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
599 599  
600 600  * (((
601 -a) SW3L-LB will do an ACK check for data records sending to make sure every data arrive server.
583 +a) CPL03-LB will do an ACK check for data records sending to make sure every data arrive server.
602 602  )))
603 603  * (((
604 -b) SW3L-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but SW3L-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if SW3L-LB gets a ACK, SW3L-LB will consider there is a network connection and resend all NONE-ACK messages.
586 +b) CPL03-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but CPL03-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if CPL03-LB gets a ACK, CPL03-LB will consider there is a network connection and resend all NONE-ACK messages.
605 605  )))
606 606  
607 607  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -612,7 +612,7 @@
612 612  === 2.5.2 Unix TimeStamp ===
613 613  
614 614  
615 -SW3L-LB uses Unix TimeStamp format based on
597 +CPL03-LB uses Unix TimeStamp format based on
616 616  
617 617  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
618 618  
... ... @@ -631,7 +631,7 @@
631 631  
632 632  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
633 633  
634 -Once SW3L-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to SW3L-LB. If SW3L-LB fails to get the time from the server, SW3L-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
616 +Once CPL03-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL03-LB. If CPL03-LB fails to get the time from the server, CPL03-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
635 635  
636 636  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
637 637  
... ... @@ -659,7 +659,7 @@
659 659  )))
660 660  
661 661  (((
662 -Uplink Internal =5s,means SW3L-LB will send one packet every 5s. range 5~~255s.
644 +Uplink Internal =5s,means CPL03-LB will send one packet every 5s. range 5~~255s.
663 663  )))
664 664  
665 665  
... ... @@ -666,17 +666,17 @@
666 666  == 2.6 Frequency Plans ==
667 667  
668 668  
669 -The SW3L-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
651 +The CPL03-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
670 670  
671 671  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
672 672  
673 673  
674 -= 3. Configure SW3L-LB =
656 += 3. Configure CPL03-LB =
675 675  
676 676  == 3.1 Configure Methods ==
677 677  
678 678  
679 -SW3L-LB supports below configure method:
661 +CPL03-LB supports below configure method:
680 680  
681 681  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
682 682  
... ... @@ -684,6 +684,7 @@
684 684  
685 685  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
686 686  
669 +
687 687  == 3.2 General Commands ==
688 688  
689 689  
... ... @@ -698,10 +698,10 @@
698 698  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
699 699  
700 700  
701 -== 3.3 Commands special design for SW3L-LB ==
684 +== 3.3 Commands special design for CPL03-LB ==
702 702  
703 703  
704 -These commands only valid for SW3L-LB, as below:
687 +These commands only valid for CPL03-LB, as below:
705 705  
706 706  
707 707  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -746,6 +746,9 @@
746 746  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
747 747  )))
748 748  
732 +
733 +
734 +
749 749  === 3.3.2 Quit AT Command ===
750 750  
751 751  
... ... @@ -792,7 +792,7 @@
792 792  )))
793 793  
794 794  (((
795 -Default: 15s, If SW3L-LB didn't see any water flow in 15s, SW3L-LB will consider stop of water flow event.
781 +Default: 15s, If SW3L didn't see any water flow in 15s, SW3L will consider stop of water flow event.
796 796  )))
797 797  
798 798  * (((
... ... @@ -800,7 +800,7 @@
800 800  )))
801 801  
802 802  (((
803 -**Example:** 3 minutes, if SW3L-LB detect a start of water flow event and didn't detect a stop event within Alarm timer, SW3L-LB will send an Alarm to indicate a water flow abnormal alarm.
789 +**Example:** 3 minutes, if SW3L detect a start of water flow event and didn't detect a stop event within Alarm timer, SW3L will send an Alarm to indicate a water flow abnormal alarm.
804 804  )))
805 805  
806 806  (((
... ... @@ -885,6 +885,7 @@
885 885  
886 886  * **Example**: 0XA501  ~/~/  Same as AT+CALCFLAG =1
887 887  
874 +
888 888  === 3.3.7 Set count number ===
889 889  
890 890  
... ... @@ -903,6 +903,11 @@
903 903  
904 904  * **Example**: 0xA6000064  ~/~/  Same as AT+ SETCNT =100
905 905  
893 +
894 +
895 +
896 +
897 +
906 906  === 3.3.8 Set Interrupt Mode ===
907 907  
908 908  
... ... @@ -937,6 +937,9 @@
937 937  
938 938  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
939 939  
932 +
933 +
934 +
940 940  === 3.3.9 Set work mode ===
941 941  
942 942  
... ... @@ -959,7 +959,7 @@
959 959  = 4. Battery & Power Consumption =
960 960  
961 961  
962 -SW3L-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
957 +CPL03-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
963 963  
964 964  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
965 965  
... ... @@ -968,7 +968,7 @@
968 968  
969 969  
970 970  (% class="wikigeneratedid" %)
971 -User can change firmware SW3L-LB to:
966 +User can change firmware CPL03-LB to:
972 972  
973 973  * Change Frequency band/ region.
974 974  
... ... @@ -1041,11 +1041,9 @@
1041 1041  
1042 1042  * (((
1043 1043  calculate flag=2: for SW3L-010 Flow Sensor: 64  pulse = 1 L
1044 -
1045 -
1046 -
1047 1047  )))
1048 1048  
1041 +
1049 1049  = 8. ​Packing Info =
1050 1050  
1051 1051  
... ... @@ -1063,6 +1063,8 @@
1063 1063  
1064 1064  * Weight / pcs : g
1065 1065  
1059 +
1060 +
1066 1066  = 9. Support =
1067 1067  
1068 1068  
image-20230612170349-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -164.2 KB
Content
image-20230612170943-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -86.4 KB
Content
image-20230612171032-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -86.4 KB
Content