Last modified by Mengting Qiu on 2023/12/14 11:15

From version 70.6
edited by Xiaoling
on 2023/06/12 17:29
Change comment: There is no comment for this version
To version 82.5
edited by Xiaoling
on 2023/06/14 16:50
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DDS75-LB -- LoRaWAN Distance Detection Sensor User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,9 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230612170349-1.png||height="656" width="656"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
6 6  
7 +
8 +
9 +
7 7  **Table of Contents:**
8 8  
9 9  {{toc/}}
... ... @@ -15,24 +15,26 @@
15 15  
16 16  = 1. Introduction =
17 17  
18 -== 1.1 What is LoRaWAN Distance Detection Sensor ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
19 19  
20 20  
21 -The Dragino DDS75-LB is a (% style="color:blue" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:blue" %)** ultrasonic sensing technology**(%%) for (% style="color:blue" %)**distance measurement**(%%), and (% style="color:blue" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The DDS75-LB can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
22 22  
23 -It detects the distance(% style="color:blue" %)**  between the measured object and the sensor**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
24 24  
25 -The LoRa wireless technology used in SW3L-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
26 26  
27 -SW3L-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28 28  
29 -SW3L-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
30 30  
31 -Each SW3L-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
32 32  
33 -[[image:image-20230612170943-2.png||height="525" width="912"]]
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
34 34  
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
35 35  
40 +
36 36  == 1.2 ​Features ==
37 37  
38 38  
... ... @@ -39,52 +39,41 @@
39 39  * LoRaWAN 1.0.3 Class A
40 40  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
41 41  * Ultra-low power consumption
42 -* Distance Detection by Ultrasonic technology
43 -* Flat object range 280mm - 7500mm
44 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
45 -* Cable Length : 25cm
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
46 46  * Support Bluetooth v5.1 and LoRaWAN remote configure
47 47  * Support wireless OTA update firmware
48 48  * AT Commands to change parameters
49 49  * Downlink to change configure
50 -* IP66 Waterproof Enclosure
51 51  * 8500mAh Battery for long term use
52 52  
53 53  == 1.3 Specification ==
54 54  
55 55  
56 -(% style="color:#037691" %)**Rated environmental conditions:**
57 -
58 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
59 -|(% style="background-color:#d9e2f3; color:#0070c0; width:163px" %)**Item**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)(((
60 -**Minimum value**
61 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)(((
62 -**Typical value**
63 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:87px" %)(((
64 -**Maximum value**
65 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Unit**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Remarks**
66 -|(% style="width:174px" %)Storage temperature|(% style="width:86px" %)-25|(% style="width:66px" %)25|(% style="width:90px" %)80|(% style="width:48px" %)℃|(% style="width:203px" %)
67 -|(% style="width:174px" %)Storage humidity|(% style="width:86px" %) |(% style="width:66px" %)65%|(% style="width:90px" %)90%|(% style="width:48px" %)RH|(% style="width:203px" %)(1)
68 -|(% style="width:174px" %)Operating temperature|(% style="width:86px" %)-15|(% style="width:66px" %)25|(% style="width:90px" %)60|(% style="width:48px" %)℃|(% style="width:203px" %)
69 -|(% style="width:174px" %)Working humidity|(% style="width:86px" %)(((
70 -
71 -
72 -
73 -)))|(% style="width:66px" %)65%|(% style="width:90px" %)80%|(% style="width:48px" %)RH|(% style="width:203px" %)(1)
74 -
75 -(((
76 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);       **
77 -
78 -**~ b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
79 -
80 -
81 -)))
82 -
83 83  (% style="color:#037691" %)**Common DC Characteristics:**
84 84  
85 85  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
86 86  * Operating Temperature: -40 ~~ 85°C
87 87  
65 +(% style="color:#037691" %)**Probe Specification:**
66 +
67 +* Storage temperature:-20℃~~75℃
68 +* Operating temperature : -20℃~~60℃
69 +* Measure Distance:
70 +** 0.1m ~~ 12m @ 90% Reflectivity
71 +** 0.1m ~~ 4m @ 10% Reflectivity
72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 +* Distance resolution : 5mm
74 +* Ambient light immunity : 70klux
75 +* Enclosure rating : IP65
76 +* Light source : LED
77 +* Central wavelength : 850nm
78 +* FOV : 3.6°
79 +* Material of enclosure : ABS+PC
80 +* Wire length : 25cm
81 +
88 88  (% style="color:#037691" %)**LoRa Spec:**
89 89  
90 90  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -106,24 +106,11 @@
106 106  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
107 107  
108 108  
109 -== 1.4 Effective measurement range Reference beam pattern ==
110 110  
104 +== 1.4 Applications ==
111 111  
112 -**~1. The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
113 113  
114 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654852253176-749.png?rev=1.1||alt="1654852253176-749.png"]]
115 -
116 -
117 -**2. The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
118 -
119 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654852175653-550.png?rev=1.1||alt="1654852175653-550.png"]]
120 -
121 -
122 -== 1.5 Applications ==
123 -
124 -
125 125  * Horizontal distance measurement
126 -* Liquid level measurement
127 127  * Parking management system
128 128  * Object proximity and presence detection
129 129  * Intelligent trash can management system
... ... @@ -130,11 +130,14 @@
130 130  * Robot obstacle avoidance
131 131  * Automatic control
132 132  * Sewer
133 -* Bottom water level monitoring
134 134  
135 -== 1.6 Sleep mode and working mode ==
136 136  
137 137  
117 +(% style="display:none" %)
118 +
119 +== 1.5 Sleep mode and working mode ==
120 +
121 +
138 138  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
139 139  
140 140  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -162,9 +162,8 @@
162 162  == 1.7 BLE connection ==
163 163  
164 164  
165 -SW3L-LB support BLE remote configure.
149 +LDS12-LB support BLE remote configure.
166 166  
167 -
168 168  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
169 169  
170 170  * Press button to send an uplink
... ... @@ -176,25 +176,13 @@
176 176  
177 177  == 1.8 Pin Definitions ==
178 178  
179 -[[image:image-20230523174230-1.png]]
162 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
180 180  
181 181  
182 -== 1.9 Flow Sensor Spec ==
183 183  
166 +== 1.9 Mechanical ==
184 184  
185 -(((
186 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
187 -|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Model**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Probe**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Diameter**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Range**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Max Pressure**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**Measure**
188 -|(% style="width:88px" %)SW3L-004|(% style="width:75px" %)DW-004|(% style="width:107px" %)G1/2" /DN15|(% style="width:101px" %)1~~30L/min|(% style="width:116px" %)≤ 2.0Mpa|(% style="width:124px" %)450 pulse = 1 L
189 -|(% style="width:88px" %)SW3L-006|(% style="width:75px" %)DW-006|(% style="width:107px" %)G3/4" /DN20|(% style="width:101px" %)1~~60L/min|(% style="width:116px" %)≤ 1.2Mpa|(% style="width:124px" %)390 pulse = 1 L
190 -|(% style="width:88px" %)SW3L-010|(% style="width:75px" %)DW-010|(% style="width:107px" %)G 1" /DN25|(% style="width:101px" %)2~~100L/min|(% style="width:116px" %)≤ 2.0Mpa|(% style="width:124px" %)64 pulse = 1 L
191 -)))
192 192  
193 -
194 -
195 -== 2.10 Mechanical ==
196 -
197 -
198 198  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
199 199  
200 200  
... ... @@ -204,27 +204,19 @@
204 204  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
205 205  
206 206  
207 -(% style="color:blue" %)**DW-004 Flow Sensor: diameter: G1/2” / DN15.  450 pulse = 1 L**
178 +(% style="color:blue" %)**Probe Mechanical:**
208 208  
209 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519091350-1.png?width=722&height=385&rev=1.1||alt="image-20220519091350-1.png"]]
210 210  
211 211  
212 -(% style="color:blue" %)**006: DW-006 Flow Sensor: diameter: G3/4” / DN20.  390 pulse = 1 L**
182 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
213 213  
214 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519091423-2.png?width=723&height=258&rev=1.1||alt="image-20220519091423-2.png"]]
215 215  
185 += 2. Configure LDS12-LB to connect to LoRaWAN network =
216 216  
217 -(% style="color:blue" %)**010: DW-010 Flow Sensor: diameter: G 1” / DN25. 64 pulse = 1 L**
218 -
219 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519091423-3.png?width=724&height=448&rev=1.1||alt="image-20220519091423-3.png"]]
220 -
221 -
222 -= 2. Configure SW3L-LB to connect to LoRaWAN network =
223 -
224 224  == 2.1 How it works ==
225 225  
226 226  
227 -The SW3L-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SW3L-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
190 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
228 228  
229 229  (% style="display:none" %) (%%)
230 230  
... ... @@ -235,12 +235,12 @@
235 235  
236 236  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
237 237  
238 -[[image:image-20230612171032-3.png||height="492" width="855"]](% style="display:none" %)
201 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
239 239  
240 240  
241 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SW3L-LB.
204 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
242 242  
243 -Each SW3L-LB is shipped with a sticker with the default device EUI as below:
206 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
244 244  
245 245  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
246 246  
... ... @@ -269,10 +269,10 @@
269 269  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
270 270  
271 271  
272 -(% style="color:blue" %)**Step 2:**(%%) Activate on SW3L-LB
235 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
273 273  
274 274  
275 -Press the button for 5 seconds to activate the SW3L-LB.
238 +Press the button for 5 seconds to activate the LDS12-LB.
276 276  
277 277  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
278 278  
... ... @@ -279,430 +279,361 @@
279 279  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
280 280  
281 281  
282 -== 2.3 ​Uplink Payload ==
245 +== 2.3  ​Uplink Payload ==
283 283  
284 -=== 2.3.1 Device Status, FPORT~=5 ===
285 285  
248 +(((
249 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
250 +)))
286 286  
287 -Include device configure status. Once SW3L-LB Joined the network, it will uplink this message to the server. After that, SW3L-LB will uplink Device Status every 12 hours.
252 +(((
253 +Uplink payload includes in total 11 bytes.
254 +)))
288 288  
289 -Users can use the downlink command(**0x26 01**) to ask SW3L-LB to send device configure detail, include device configure status. SW3L-LB will uplink a payload via FPort=5 to server.
290 290  
291 -The Payload format is as below.
257 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
258 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
259 +**Size(bytes)**
260 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
261 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
262 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
263 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
264 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
265 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
266 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
267 +)))
292 292  
269 +[[image:1654833689380-972.png]]
293 293  
294 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
295 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
296 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
297 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
298 298  
299 -Example parse in TTNv3
272 +=== 2.3.1  Battery Info ===
300 300  
301 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/1652925144491-755.png?width=732&height=139&rev=1.1||alt="1652925144491-755.png"]]
302 302  
275 +Check the battery voltage for LDS12-LB.
303 303  
304 -(% style="color:#037691" %)**Sensor Model**(%%): For SW3L-LB, this value is 0x11
277 +Ex1: 0x0B45 = 2885mV
305 305  
306 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
279 +Ex2: 0x0B49 = 2889mV
307 307  
308 -(% style="color:#037691" %)**Frequency Band**:
309 309  
310 -*0x01: EU868
282 +=== 2.3.2  DS18B20 Temperature sensor ===
311 311  
312 -*0x02: US915
313 313  
314 -*0x03: IN865
285 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
315 315  
316 -*0x04: AU915
317 317  
318 -*0x05: KZ865
288 +**Example**:
319 319  
320 -*0x06: RU864
290 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
321 321  
322 -*0x07: AS923
292 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
323 323  
324 -*0x08: AS923-1
325 325  
326 -*0x09: AS923-2
295 +=== 2.3.3  Distance ===
327 327  
328 -*0x0a: AS923-3
329 329  
330 -*0x0b: CN470
298 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
331 331  
332 -*0x0c: EU433
333 333  
334 -*0x0d: KR920
301 +**Example**:
335 335  
336 -*0x0e: MA869
303 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
337 337  
338 338  
339 -(% style="color:#037691" %)**Sub-Band**:
306 +=== 2.3.4  Distance signal strength ===
340 340  
341 -AU915 and US915:value 0x00 ~~ 0x08
342 342  
343 -CN470: value 0x0B ~~ 0x0C
309 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
344 344  
345 -Other Bands: Always 0x00
346 346  
312 +**Example**:
347 347  
348 -(% style="color:#037691" %)**Battery Info**:
314 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
349 349  
350 -Check the battery voltage.
316 +Customers can judge whether they need to adjust the environment based on the signal strength.
351 351  
352 -Ex1: 0x0B45 = 2885mV
353 353  
354 -Ex2: 0x0B49 = 2889mV
319 +=== 2.3.5  Interrupt Pin ===
355 355  
356 356  
357 -=== 2.3.2 Sensor Configuration, FPORT~=4 ===
322 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
358 358  
324 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
359 359  
360 -SW3L-LB will only send this command after getting the downlink command (0x26 02) from the server.
326 +**Example:**
361 361  
362 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
363 -|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %) **Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:105px" %)**3**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:96px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:105px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:74px" %)**1**
364 -|**Value**|(% style="width:104px" %)TDC(unit:sec)|(% style="width:43px" %)N/A|(% style="width:91px" %)Stop Timer|(% style="width:100px" %)Alarm Timer|(% style="width:69px" %)Reserve
328 +0x00: Normal uplink packet.
365 365  
366 -* (% style="color:#037691" %)**TDC: (default: 0x0004B0)**
330 +0x01: Interrupt Uplink Packet.
367 367  
368 -Uplink interval for the total pulse count, default value is 0x0004B0 which is 1200 seconds = 20 minutes.
369 369  
333 +=== 2.3.6  LiDAR temp ===
370 370  
371 -* (% style="color:#037691" %)**STOP Duration & Alarm Timer**
372 372  
373 -Shows the configure value of [[Alarm for continuously water flow>>||anchor="H3.3.4Alarmforcontinuouslywaterflow"]]
336 +Characterize the internal temperature value of the sensor.
374 374  
375 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095747-2.png?width=723&height=113&rev=1.1||alt="image-20220519095747-2.png"]]
338 +**Example: **
339 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
340 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
376 376  
377 377  
378 -=== 2.3.3 Water Flow Value, Uplink FPORT~=2 ===
343 +=== 2.3.7  Message Type ===
379 379  
380 380  
381 381  (((
382 -SW3L-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And SW3L-LB will:
347 +For a normal uplink payload, the message type is always 0x01.
383 383  )))
384 384  
385 385  (((
386 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
351 +Valid Message Type:
387 387  )))
388 388  
389 -(((
390 -Uplink Payload totals 11 bytes.
391 -)))
354 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
355 +|=(% style="width: 161px;background-color:#D9E2F3;color:#0070C0" %)**Message Type Code**|=(% style="width: 164px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Payload**
356 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
357 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
392 392  
393 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
394 -|=(% colspan="6" style="width: 510px;background-color:#D9E2F3;color:#0070C0" %)**Water Flow Value,  FPORT=2**
395 -|(% style="width:60px" %)**Size(bytes)**|(% style="width:130px" %)**1**|(% style="width:130px" %)**4**|(% style="width:30px" %)**1**|(% style="width:50px" %)**1**|(% style="width:80px" %)**4**
396 -|(% style="width:110px" %)**Value**|(% style="width:81px" %)Calculate Flag & [[Alarm>>||anchor="H3.3.4Alarmforcontinuouslywaterflow"]]|(% style="width:95px" %)(((
397 -Total pulse Or Last Pulse
398 -)))|(% style="width:55px" %)MOD|(% style="width:115px" %)Reserve(0x01)|(% style="width:129px" %)[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
399 399  
400 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:470px" %)
401 -|=(% colspan="4" style="width: 470px;background-color:#D9E2F3;color:#0070C0" %)**Status & Alarm field**
402 -|(% style="width:60px" %)**Size(bit)**|(% style="width:80px" %)**6**|(% style="width:310px" %)**1**|(% style="width:20px" %)**1**
403 -|(% style="width:88px" %)**Value**|(% style="width:117px" %)Calculate Flag|(% style="width:221px" %)Alarm: 0: No Alarm; 1: Alarm|(% style="width:64px" %)N/A
360 +=== 2.3.8  Decode payload in The Things Network ===
404 404  
405 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095946-3.png?width=736&height=284&rev=1.1||alt="image-20220519095946-3.png"]]
406 406  
363 +While using TTN network, you can add the payload format to decode the payload.
407 407  
408 -* (((
409 -(% style="color:#037691" %)**Calculate Flag**
410 -)))
411 411  
412 -(((
413 -The calculate flag is a user defined field, IoT server can use this flag to handle different meters with different pulse factors. For example, if there are 100 Flow Sensors, meters 1 ~~50 are 1 liter/pulse and meters 51 ~~ 100 has 1.5 liter/pulse.
414 -)))
366 +[[image:1654592762713-715.png]]
415 415  
416 -(((
417 -**Example: in the default payload:**
418 -)))
419 419  
420 -* (((
421 -calculate flag=0: for SW3L-004 Flow Sensor: 450 pulse = 1 L
422 -)))
423 -* (((
424 -calculate flag=1: for SW3L-006 Flow Sensor: 390 pulse = 1 L
425 -)))
426 -* (((
427 -calculate flag=2: for SW3L-010 Flow Sensor: 64 pulse = 1 L
428 -)))
429 -
430 430  (((
431 -Default value: 0. 
370 +The payload decoder function for TTN is here:
432 432  )))
433 433  
434 434  (((
435 -Range (6 bits): (b)000000 ~~ (b) 111111
436 -
437 -If user use with a meter for example is 0.02L/pulse. To proper decode the correct value in server,
438 -
439 -1) User can set the Calculate Flag of this sensor to 3.
440 -
441 -2) In server side, when a sensor data arrive, the decoder will check the value of Calculate Flag, It the value is 3, the total volume = 0.02 x Pulse Count.
374 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
442 442  )))
443 443  
444 -(((
445 -(% style="color:red" %)**NOTE: User need to set Calculate Flag to proper value before use Flow Sensor. Downlink or AT Command see: **(%%)Refer: [[Set Calculate Flag>>||anchor="H3.3.6Setthecalculateflag"]]
446 -)))
447 447  
448 -* (((
449 -(% style="color:#037691" %)**Alarm**
450 -)))
378 +== 2.4  Uplink Interval ==
451 451  
452 -(((
453 -See [[Alarm for continuously water flow>>||anchor="H3.3.4Alarmforcontinuouslywaterflow"]]
454 -)))
455 455  
456 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095946-4.png?width=724&height=65&rev=1.1||alt="image-20220519095946-4.png"]]
381 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
457 457  
458 458  
459 -* (((
460 -(% style="color:#037691" %)**Total pulse**
461 -)))
384 +== 2.5  ​Show Data in DataCake IoT Server ==
462 462  
463 -(((
464 -Total pulse/counting since factory
465 -)))
466 466  
467 467  (((
468 -Range (4 Bytes) : 0x00000000~~ 0xFFFFFFFF .
388 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
469 469  )))
470 470  
471 -* (((
472 -(% style="color:#037691" %)**Last Pulse**
473 -)))
474 474  
475 475  (((
476 -Total pulse since last FPORT=2 uplink. (Default 20 minutes)
393 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
477 477  )))
478 478  
479 479  (((
480 -Range (4 Bytes) : 0x00000000~~ 0xFFFFFFFF .
397 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
481 481  )))
482 482  
483 -* (((
484 -(% style="color:#037691" %)**MOD: Default =0**
485 -)))
486 486  
487 -(((
488 -MOD=0 ~-~-> Uplink Total Pulse since factory
489 -)))
401 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
490 490  
491 -(((
492 -MOD=1 ~-~-> Uplink total pulse since last FPORT=2 uplink.
493 -)))
494 494  
495 -* (((
496 -(% style="color:#037691" %)**Water Flow Value**
497 -)))
404 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
498 498  
499 -(((
500 -**Total Water Flow Volume = (Calculate Flag) x (Total Pulse)=9597/450=21.3L**
501 -)))
502 502  
503 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095946-5.png?width=727&height=50&rev=1.1||alt="image-20220519095946-5.png"]]
407 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
504 504  
409 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
505 505  
506 -(((
507 -**Total Water Flow for TDC timer = (Calculate Flag) x (Last Pulse)=79/450=0.2L**
508 -)))
411 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
509 509  
510 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095946-6.png?width=733&height=43&rev=1.1||alt="image-20220519095946-6.png"]] ** **
511 511  
414 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
512 512  
513 -=== 2.3.4 Historical Water Flow Status, FPORT~=3 ===
416 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
514 514  
515 515  
516 -(((
517 -SW3L-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5DatalogFeature"]].
518 -)))
419 +== 2.6 Datalog Feature ==
519 519  
520 -(((
521 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time water flow status.
522 -)))
523 523  
524 -* (((
525 -Each data entry is 11 bytes and has the same structure as [[real time water flow status>>||anchor="H2.3.3A0WaterFlowValue2CUplinkFPORT3D2"]], to save airtime and battery, SW3L will send max bytes according to the current DR and Frequency bands.
526 -)))
422 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
527 527  
528 -(((
529 -For example, in the US915 band, the max payload for different DR is:
530 -)))
531 531  
532 -(((
533 -(% style="color:blue" %)**a) DR0:**(%%) max is 11 bytes so one entry of data
534 -)))
425 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
535 535  
536 -(((
537 -(% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
538 -)))
539 539  
540 -(((
541 -(% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
542 -)))
428 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
543 543  
544 -(((
545 -(% style="color:blue" %)**d) DR3:**(%%) total payload includes 22 entries of data.
430 +* (((
431 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
546 546  )))
547 -
548 -(((
549 -If SW3L-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
433 +* (((
434 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
550 550  )))
551 551  
552 -(((
553 -(% style="color:#037691" %)**Downlink:**
554 -)))
437 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
555 555  
556 -(((
557 -0x31 62 46 B1 F0 62 46 B3 94 07
558 -)))
439 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
559 559  
560 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/1652926690850-712.png?width=726&height=115&rev=1.1||alt="1652926690850-712.png"]]
561 561  
442 +=== 2.6.2 Unix TimeStamp ===
562 562  
563 -(((
564 -(% style="color:#037691" %)**Uplink:**
565 -)))
566 566  
567 -(((
568 -00 00 01 00 00 00 00 62 46 B2 26 00 00 01 00 00 00 00 62 46 B2 5D 00 00 01 00 00 00 00 62 46 B2 99 00 00 01 00 00 00 00 62 46 B2 D5 00 00 01 00 00 01 15 62 46 B3 11 00 00 01 00 00 01 1F 62 46 B3 7E
569 -)))
445 +LDS12-LB uses Unix TimeStamp format based on
570 570  
571 -(((
572 -(% style="color:#037691" %)**Parsed Value:**
573 -)))
447 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
574 574  
575 -(((
576 -[Alarm, Calculate Flag, MOD, Total pulse or Last Pulse,** **Water Flow Value, TIME]
577 -)))
449 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
578 578  
451 +Below is the converter example
579 579  
580 -(((
581 -[FALSE,0,0,0,0.0,2022-04-01 08:04:54],
582 -)))
453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
583 583  
584 -(((
585 -[FALSE,0,0,0,0.0,2022-04-01 08:05:49],
586 -)))
587 587  
588 -(((
589 -[FALSE,0,0,0,0.0,2022-04-01 08:06:49],
590 -)))
456 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
591 591  
592 -(((
593 -[FALSE,0,0,0,0.0,2022-04-01 08:07:49],
594 -)))
595 595  
596 -(((
597 -[FALSE,0,0,277,0.6,2022-04-01 08:08:49],
598 -)))
459 +=== 2.6.3 Set Device Time ===
599 599  
600 -(((
601 -[FALSE,0,0,287,0.6,2022-04-01 08:10:38],
602 -)))
603 603  
604 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/1652926777796-267.png?width=724&height=279&rev=1.1||alt="1652926777796-267.png"]]
462 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
605 605  
464 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
606 606  
607 -== 2.4 Payload Decoder file ==
466 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
608 608  
609 609  
610 -In TTN, use can add a custom payload so it shows friendly reading
469 +=== 2.6.4 Poll sensor value ===
611 611  
612 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
613 613  
472 +Users can poll sensor values based on timestamps. Below is the downlink command.
614 614  
615 -== 2.5 Datalog Feature ==
474 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
475 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
476 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
477 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
616 616  
479 +(((
480 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
481 +)))
617 617  
618 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, SW3L-LB will store the reading for future retrieving purposes.
483 +(((
484 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
485 +)))
619 619  
487 +(((
488 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
489 +)))
620 620  
621 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
491 +(((
492 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
493 +)))
622 622  
623 623  
624 -Set PNACKMD=1, SW3L-LB will wait for ACK for every uplink, when there is no LoRaWAN network,SW3L-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
496 +== 2.7 Frequency Plans ==
625 625  
626 -* (((
627 -a) SW3L-LB will do an ACK check for data records sending to make sure every data arrive server.
628 -)))
629 -* (((
630 -b) SW3L-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but SW3L-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if SW3L-LB gets a ACK, SW3L-LB will consider there is a network connection and resend all NONE-ACK messages.
631 -)))
632 632  
633 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
499 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
634 634  
635 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
501 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
636 636  
637 637  
638 -=== 2.5.2 Unix TimeStamp ===
504 +== 2.8 LiDAR ToF Measurement ==
639 639  
506 +=== 2.8.1 Principle of Distance Measurement ===
640 640  
641 -SW3L-LB uses Unix TimeStamp format based on
642 642  
643 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
509 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
644 644  
645 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
646 646  
647 -Below is the converter example
512 +[[image:1654831757579-263.png]]
648 648  
649 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
650 650  
515 +=== 2.8.2 Distance Measurement Characteristics ===
651 651  
652 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
653 653  
518 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
654 654  
655 -=== 2.5.3 Set Device Time ===
520 +[[image:1654831774373-275.png]]
656 656  
657 657  
658 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
523 +(((
524 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
525 +)))
659 659  
660 -Once SW3L-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to SW3L-LB. If SW3L-LB fails to get the time from the server, SW3L-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
527 +(((
528 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
529 +)))
661 661  
662 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
531 +(((
532 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
533 +)))
663 663  
664 664  
665 -=== 2.5.4 Poll sensor value ===
536 +(((
537 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
538 +)))
666 666  
667 667  
668 -Users can poll sensor values based on timestamps. Below is the downlink command.
541 +[[image:1654831797521-720.png]]
669 669  
670 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
671 -|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
672 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
673 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
674 674  
675 675  (((
676 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
545 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
677 677  )))
678 678  
679 -(((
680 -For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
681 -)))
548 +[[image:1654831810009-716.png]]
682 682  
683 -(((
684 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
685 -)))
686 686  
687 687  (((
688 -Uplink Internal =5s,means SW3L-LB will send one packet every 5s. range 5~~255s.
552 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
689 689  )))
690 690  
691 691  
692 -== 2.6 Frequency Plans ==
556 +=== 2.8.3 Notice of usage: ===
693 693  
694 694  
695 -The SW3L-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
559 +Possible invalid /wrong reading for LiDAR ToF tech:
696 696  
697 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
561 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
562 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
563 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
564 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
698 698  
699 699  
700 -= 3. Configure SW3L-LB =
567 +=== 2.8.4  Reflectivity of different objects ===
701 701  
569 +
570 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
571 +|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
572 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
573 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
574 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
575 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
576 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
577 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
578 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
579 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
580 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
581 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
582 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
583 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
584 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
585 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
586 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
587 +Unpolished white metal surface
588 +)))|(% style="width:93px" %)130%
589 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
590 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
591 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
592 +
593 +
594 += 3. Configure LDS12-LB =
595 +
702 702  == 3.1 Configure Methods ==
703 703  
704 704  
705 -SW3L-LB supports below configure method:
599 +LDS12-LB supports below configure method:
706 706  
707 707  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
708 708  
... ... @@ -724,10 +724,10 @@
724 724  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
725 725  
726 726  
727 -== 3.3 Commands special design for SW3L-LB ==
621 +== 3.3 Commands special design for LDS12-LB ==
728 728  
729 729  
730 -These commands only valid for SW3L-LB, as below:
624 +These commands only valid for LDS12-LB, as below:
731 731  
732 732  
733 733  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -769,223 +769,130 @@
769 769  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
770 770  )))
771 771  * (((
772 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
666 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
773 773  )))
774 774  
775 -=== 3.3.2 Quit AT Command ===
776 776  
670 +=== 3.3.2 Set Interrupt Mode ===
777 777  
778 -Feature: Quit AT Command mode, so user needs to input the password again before using AT Commands.
779 779  
780 -(% style="color:blue" %)**AT Command: AT+DISAT**
673 +Feature, Set Interrupt mode for PA8 of pin.
781 781  
782 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:452px" %)
783 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 198px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 99px;background-color:#D9E2F3;color:#0070C0" %)**Response**
784 -|(% style="width:155px" %)AT+DISAT|(% style="width:198px" %)Quit AT Commands mode|(% style="width:96px" %)OK
675 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
785 785  
786 -(% style="color:blue" %)**Downlink Command:**
677 +(% style="color:blue" %)**AT Command: AT+INTMOD**
787 787  
788 -No downlink command for this feature.
789 -
790 -
791 -=== 3.3.3 Get Device Status ===
792 -
793 -
794 -Send a LoRaWAN downlink to ask device send Alarm settings.
795 -
796 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
797 -
798 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
799 -
800 -
801 -=== 3.3.4 Alarm for continuously water flow ===
802 -
803 -
804 -(((
805 -This feature is to monitor and send Alarm for continuously water flow.
679 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
680 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
681 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
682 +0
683 +OK
684 +the mode is 0 =Disable Interrupt
806 806  )))
686 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
687 +Set Transmit Interval
688 +0. (Disable Interrupt),
689 +~1. (Trigger by rising and falling edge)
690 +2. (Trigger by falling edge)
691 +3. (Trigger by rising edge)
692 +)))|(% style="width:157px" %)OK
807 807  
808 -(((
809 -Example case is for Toilet water monitoring, if some one push toilet button, the toilet will have water flow. If the toilet button has broken and can't returned to original state, the water flow will keep for hours or days which cause huge waste for water.
810 -)))
694 +(% style="color:blue" %)**Downlink Command: 0x06**
811 811  
812 -(((
813 -To monitor this faulty and send alarm, there are two settings:
814 -)))
696 +Format: Command Code (0x06) followed by 3 bytes.
815 815  
816 -* (((
817 -(% style="color:#4f81bd" %)**Stop Duration: Unit: Second**
818 -)))
698 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
819 819  
820 -(((
821 -Default: 15s, If SW3L-LB didn't see any water flow in 15s, SW3L-LB will consider stop of water flow event.
822 -)))
700 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
823 823  
824 -* (((
825 -(% style="color:#4f81bd" %)**Alarm Timer: Units: Minute; Default 0 minutes (means Alarm disable)**
826 -)))
702 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
827 827  
828 -(((
829 -**Example:** 3 minutes, if SW3L-LB detect a start of water flow event and didn't detect a stop event within Alarm timer, SW3L-LB will send an Alarm to indicate a water flow abnormal alarm.
830 -)))
831 831  
832 -(((
833 -So for example, If we set stop duration=15s and Alarm Timer=3minutes. If the toilet water flow continuously for more than 3 minutes, Sensor will send an alarm (in Confirmed MODE) to platform.
834 -)))
835 835  
836 -(((
837 -(% style="color:red" %)**Note:** **After this alarm is send, sensor will consider a stop of water flow and count for another new event. So if water flow waste last for 1 hour, Sensor will keep sending alarm every 3 minutes.**
838 -)))
839 839  
840 -(((
841 -(% style="color:#4f81bd" %)**AT Command**(%%) to configure:
842 -)))
707 +=== 3.3.3 Get Firmware Version Info ===
843 843  
844 -* (((
845 -AT+PTRIG=15,3  ~-~-> Set Stop duration: 15s, Alarm Timer: 3 minutes.
846 -)))
847 847  
848 -* (((
849 -AT+ PTRIG=15,0  ~-~-> Default Value, disable water waste Alarm.
850 -)))
710 +Feature: use downlink to get firmware version.
851 851  
852 -(((
853 -(% style="color:#4f81bd" %)**Downlink Command**(%%) to configure: 
854 -)))
712 +(% style="color:#037691" %)**Downlink Command: 0x26**
855 855  
856 -(((
857 -Command: **0xAA aa bb cc**
858 -)))
714 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
715 +|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)**
716 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
859 859  
860 -(((
861 -AA: Command Type Code
862 -)))
718 +* Reply to the confirmation package: 26 01
719 +* Reply to non-confirmed packet: 26 00
863 863  
864 -(((
865 -aa: Stop duration
866 -)))
721 +Device will send an uplink after got this downlink command. With below payload:
867 867  
868 -(((
869 -bb cc: Alarm Timer
870 -)))
723 +Configures info payload:
871 871  
872 -(((
873 -If user send 0xAA 0F 00 03: equal to AT+PTRIG=15,3
725 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
726 +|=(% style="background-color:#D9E2F3;color:#0070C0" %)(((
727 +**Size(bytes)**
728 +)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
729 +|**Value**|Software Type|(((
730 +Frequency
731 +Band
732 +)))|Sub-band|(((
733 +Firmware
734 +Version
735 +)))|Sensor Type|Reserve|(((
736 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
737 +Always 0x02
874 874  )))
875 875  
740 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
876 876  
877 -=== 3.3.5 Clear Flash Record ===
742 +(% style="color:#037691" %)**Frequency Band**:
878 878  
744 +*0x01: EU868
879 879  
880 -Feature: Clear flash storage for data log feature.
746 +*0x02: US915
881 881  
882 -(% style="color:blue" %)**AT Command: AT+CLRDTA**
748 +*0x03: IN865
883 883  
884 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
885 -|=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 169px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Response**
886 -|(% style="width:157px" %)AT+CLRDTA|(% style="width:169px" %)Clear flash storage for data log feature.|Clear all stored sensor data… OK
750 +*0x04: AU915
887 887  
888 -(((
889 -(% style="color:blue" %)**Downlink Command:**
890 -)))
752 +*0x05: KZ865
891 891  
892 -(((
893 -* **Example**: 0xA301  ~/~/  Same as AT+CLRDTA
894 -)))
754 +*0x06: RU864
895 895  
756 +*0x07: AS923
896 896  
758 +*0x08: AS923-1
897 897  
898 -=== 3.3.6 Set the calculate flag ===
760 +*0x09: AS923-2
899 899  
762 +*0xa0: AS923-3
900 900  
901 -Feature: Set the calculate flag
902 902  
903 -(% style="color:blue" %)**AT Command: AT+CALCFLAG**
765 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
904 904  
905 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:461px" %)
906 -|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 193px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**Response**
907 -|(% style="width:158px" %)AT+CALCFLAG =1|(% style="width:192px" %)Set the calculate flag to 1.|(% style="width:109px" %)OK
908 -|(% style="width:158px" %)AT+CALCFLAG =2|(% style="width:192px" %)Set the calculate flag to 2.|(% style="width:109px" %)OK
767 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
909 909  
910 -(% style="color:blue" %)**Downlink Command:**
769 +(% style="color:#037691" %)**Sensor Type**:
911 911  
912 -* **Example**: 0XA501  ~/~/  Same as AT+CALCFLAG =1
771 +0x01: LSE01
913 913  
914 -=== 3.3.7 Set count number ===
773 +0x02: LDDS75
915 915  
775 +0x03: LDDS20
916 916  
917 -Feature: Manually set the count number
777 +0x04: LLMS01
918 918  
919 -(% style="color:blue" %)**AT Command: AT+SETCNT**
779 +0x05: LSPH01
920 920  
921 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:479px" %)
922 -|=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 96px;background-color:#D9E2F3;color:#0070C0" %)**Response**
923 -|(% style="width:160px" %)AT+ SETCNT =0|(% style="width:221px" %)Set the count number to 0.|(% style="width:95px" %)OK
924 -|(% style="width:160px" %)AT+ SETCNT =100|(% style="width:221px" %)Set the count number to 100.|(% style="width:95px" %)OK
781 +0x06: LSNPK01
925 925  
926 -(% style="color:blue" %)**Downlink Command:**
783 +0x07: LLDS12
927 927  
928 -* **Example**: 0xA6000001  ~/~/  Same as AT+ SETCNT =1
929 929  
930 -* **Example**: 0xA6000064  ~/~/  Same as AT+ SETCNT =100
931 -
932 -=== 3.3.8 Set Interrupt Mode ===
933 -
934 -
935 -Feature, Set Interrupt mode for PA8 of pin.
936 -
937 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
938 -
939 -(% style="color:blue" %)**AT Command: AT+INTMOD**
940 -
941 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
942 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
943 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
944 -0
945 -OK
946 -the mode is 0 =Disable Interrupt
947 -)))
948 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
949 -Set Transmit Interval
950 -0. (Disable Interrupt),
951 -~1. (Trigger by rising and falling edge)
952 -2. (Trigger by falling edge)
953 -3. (Trigger by rising edge)
954 -)))|(% style="width:157px" %)OK
955 -
956 -(% style="color:blue" %)**Downlink Command: 0x06**
957 -
958 -Format: Command Code (0x06) followed by 3 bytes.
959 -
960 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
961 -
962 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
963 -
964 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
965 -
966 -=== 3.3.9 Set work mode ===
967 -
968 -
969 -Feature: Manually set the work mode
970 -
971 -
972 -(% style="color:blue" %)**AT Command: AT+MOD**
973 -
974 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
975 -|=(% style="width: 162px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 193px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 108px;background-color:#D9E2F3;color:#0070C0" %)**Response**
976 -|(% style="width:162px" %)AT+MOD=0|(% style="width:191px" %)Set the work mode to 0.|(% style="width:106px" %)OK
977 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the work mode to 1|(% style="width:106px" %)OK
978 -
979 -(% style="color:blue" %)**Downlink Command:**
980 -
981 -* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
982 -
983 -* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
984 -
985 985  = 4. Battery & Power Consumption =
986 986  
987 987  
988 -SW3L-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
789 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
989 989  
990 990  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
991 991  
... ... @@ -994,7 +994,7 @@
994 994  
995 995  
996 996  (% class="wikigeneratedid" %)
997 -User can change firmware SW3L-LB to:
798 +User can change firmware LDS12-LB to:
998 998  
999 999  * Change Frequency band/ region.
1000 1000  
... ... @@ -1002,82 +1002,80 @@
1002 1002  
1003 1003  * Fix bugs.
1004 1004  
1005 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
806 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
1006 1006  
1007 1007  Methods to Update Firmware:
1008 1008  
1009 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
810 +* (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1010 1010  
1011 -* Update through UART TTL interface. **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
812 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1012 1012  
1013 1013  = 6. FAQ =
1014 1014  
1015 -== 6.1  AT Commands input doesn't work ==
816 +== 6.1 What is the frequency plan for LDS12-LB? ==
1016 1016  
1017 1017  
1018 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
819 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1019 1019  
1020 1020  
1021 -= 7. Order Info =
822 += 7. Trouble Shooting =
1022 1022  
824 +== 7.1 AT Command input doesn't work ==
1023 1023  
1024 -Part Number: (% style="color:blue" %)**SW3L-LB-XXX-YYY**
1025 1025  
1026 -(% style="color:red" %)**XXX**(%%): The default frequency band
827 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1027 1027  
1028 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1029 1029  
1030 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
830 +== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
1031 1031  
1032 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1033 1033  
1034 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1035 -
1036 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1037 -
1038 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1039 -
1040 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1041 -
1042 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1043 -
1044 1044  (((
1045 -(% style="color:blue" %)**YYY**(%%): Flow Sensor Model:
834 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1046 1046  )))
1047 1047  
1048 1048  (((
1049 - **004:** DW-004 Flow Sensor: diameter: G1/2” / DN15.  450 pulse = 1 L
838 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1050 1050  )))
1051 1051  
841 +
1052 1052  (((
1053 - **006:** DW-006 Flow Sensor: diameter: G3/4” / DN20. 390 pulse = 1 L
843 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1054 1054  )))
1055 1055  
1056 1056  (((
1057 - **010:** DW-010 Flow Sensor: diameter: G 1” / DN25. 64 pulse = 1 L
847 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1058 1058  )))
1059 1059  
1060 -* (((
1061 -calculate flag=0: for SW3L-004 Flow Sensor: 450 pulse = 1 L
1062 -)))
1063 1063  
1064 -* (((
1065 -calculate flag=1: for SW3L-006 Flow Sensor: 390 pulse = 1 L
1066 -)))
851 += 8. Order Info =
1067 1067  
1068 -* (((
1069 -calculate flag=2: for SW3L-010 Flow Sensor: 64  pulse = 1 L
1070 1070  
854 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
1071 1071  
1072 -
1073 -)))
856 +(% style="color:red" %)**XXX**(%%): **The default frequency band**
1074 1074  
1075 -= 8. ​Packing Info =
858 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1076 1076  
860 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1077 1077  
862 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
863 +
864 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
865 +
866 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
867 +
868 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
869 +
870 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
871 +
872 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
873 +
874 += 9. ​Packing Info =
875 +
876 +
1078 1078  (% style="color:#037691" %)**Package Includes**:
1079 1079  
1080 -* SW3L-LB LoRaWAN Flow Sensor
879 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
1081 1081  
1082 1082  (% style="color:#037691" %)**Dimension and weight**:
1083 1083  
... ... @@ -1089,7 +1089,7 @@
1089 1089  
1090 1090  * Weight / pcs : g
1091 1091  
1092 -= 9. Support =
891 += 10. Support =
1093 1093  
1094 1094  
1095 1095  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
image-20230613100900-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +184.0 KB
Content
image-20230613102426-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +89.3 KB
Content
image-20230613102459-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +89.3 KB
Content
image-20230613133647-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +213.6 KB
Content
image-20230613133716-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +165.8 KB
Content
image-20230613140115-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.1 KB
Content
image-20230613140140-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.1 KB
Content
image-20230613143052-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +21.8 KB
Content
image-20230613143125-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.7 KB
Content
image-20230614153353-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content