Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 14 added, 0 removed)
- image-20230613100900-1.png
- image-20230613102426-2.png
- image-20230613102459-3.png
- image-20230613133647-1.png
- image-20230613133716-2.png
- image-20230613140115-3.png
- image-20230613140140-4.png
- image-20230613143052-5.png
- image-20230613143125-6.png
- image-20230614153353-1.png
- image-20230614162334-2.png
- image-20230614162359-3.png
- image-20230615152941-1.png
- image-20230615153004-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -D DS75-LB -- LoRaWAN DistanceDetectionSensor User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,9 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023061 2170349-1.png||height="656" width="656"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 6 6 7 + 8 + 9 + 7 7 **Table of Contents:** 8 8 9 9 {{toc/}} ... ... @@ -15,24 +15,26 @@ 15 15 16 16 = 1. Introduction = 17 17 18 -== 1.1 What is LoRaWAN Distance DetectionSensor ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 19 19 20 20 21 -The Dragino D DS75-LB is a (% style="color:blue" %)**DetectionSensor**(%%) for Internet of Things solution. It isusedto measure the distancebetween the sensoranda flatobject.The distancedetectionsensorisamodule that uses (%style="color:blue"%)** ultrasonicsensingtechnology**(%%) for (%style="color:blue"%)**distancemeasurement**(%%),and(%style="color:blue"%)** temperaturecompensation**(%%) isperformed internallytoimprovethe reliabilityof data. TheDDS75-LB can be appliedto scenariossuch ashorizontal distancemeasurement,liquid level measurement, parkingmanagement system, object proximity andpresence detection,intelligent trashcanmanagement system,robotobstacle avoidance,automatic control,sewer, bottom water levelmonitoring, etc.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 22 22 23 - Itdetectsthedistance(%style="color:blue" %)** betweentheasuredobject andthesor**(%%),and uploads thevalue viawirelesstoLoRaWANIoTServer.26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 24 24 25 - TheLoRa wirelesstechnology usedin DDS75-LB allowsdevice tosend dataand reachextremely longrangesat low data-rates.It provides ultra-longrangespreadspectrumcommunication and highinterferenceimmunitywhilstminimizing currentconsumption.28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 26 26 27 - DDS75-LB (%style="color:blue"%)**supportsBLEconfigure**(%%)and (%style="color:blue"%)**wirelessOTAupdate**(%%) whichmakeuserasy touse.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 28 28 29 -D DS75-LBis poweredby(% style="color:blue" %)**8500mAh Li-SOCI2battery**(%%),itis designed forlong term useupto5 years.32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 30 30 31 - EachDDS75-LB is pre-loadwithasetfuniquekeys for LoRaWANregistrations, register thesekeysto localLoRaWANserveranditwill autoconnectafterpower on.34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 32 32 33 - [[image:image-20230612170943-2.png||height="525"width="912"]]36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 34 34 38 +[[image:image-20230615152941-1.png||height="459" width="800"]] 35 35 40 + 36 36 == 1.2 Features == 37 37 38 38 ... ... @@ -39,18 +39,16 @@ 39 39 * LoRaWAN 1.0.3 Class A 40 40 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 41 41 * Ultra-low power consumption 42 -* DistanceDetectionbyUltrasonic technology43 -* Flat objectrange280mm-7500mm44 -* Accuracy: ± (1cm+S*0.3%) (S: Distance)45 -* Cable Length : 25cm47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 46 46 * Support Bluetooth v5.1 and LoRaWAN remote configure 47 47 * Support wireless OTA update firmware 48 48 * AT Commands to change parameters 49 49 * Downlink to change configure 50 -* IP66 Waterproof Enclosure 51 51 * 8500mAh Battery for long term use 52 52 53 - 54 54 == 1.3 Specification == 55 55 56 56 ... ... @@ -59,6 +59,23 @@ 59 59 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 60 60 * Operating Temperature: -40 ~~ 85°C 61 61 65 +(% style="color:#037691" %)**Probe Specification:** 66 + 67 +* Storage temperature:-20℃~~75℃ 68 +* Operating temperature : -20℃~~60℃ 69 +* Measure Distance: 70 +** 0.1m ~~ 12m @ 90% Reflectivity 71 +** 0.1m ~~ 4m @ 10% Reflectivity 72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 74 +* Ambient light immunity : 70klux 75 +* Enclosure rating : IP65 76 +* Light source : LED 77 +* Central wavelength : 850nm 78 +* FOV : 3.6° 79 +* Material of enclosure : ABS+PC 80 +* Wire length : 25cm 81 + 62 62 (% style="color:#037691" %)**LoRa Spec:** 63 63 64 64 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -79,54 +79,10 @@ 79 79 * Sleep Mode: 5uA @ 3.3v 80 80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 81 81 102 +== 1.4 Applications == 82 82 83 83 84 -== 1.4 Rated environmental conditions == 85 - 86 - 87 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %) 88 -|(% style="background-color:#d9e2f3; color:#0070c0; width:163px" %)**Item**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)((( 89 -**Minimum value** 90 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)((( 91 -**Typical value** 92 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:87px" %)((( 93 -**Maximum value** 94 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Unit**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Remarks** 95 -|(% style="width:174px" %)Storage temperature|(% style="width:86px" %)-25|(% style="width:66px" %)25|(% style="width:90px" %)80|(% style="width:48px" %)℃|(% style="width:203px" %) 96 -|(% style="width:174px" %)Storage humidity|(% style="width:86px" %) |(% style="width:66px" %)65%|(% style="width:90px" %)90%|(% style="width:48px" %)RH|(% style="width:203px" %)(1) 97 -|(% style="width:174px" %)Operating temperature|(% style="width:86px" %)-15|(% style="width:66px" %)25|(% style="width:90px" %)60|(% style="width:48px" %)℃|(% style="width:203px" %) 98 -|(% style="width:174px" %)Working humidity|(% style="width:86px" %)((( 99 - 100 - 101 - 102 -)))|(% style="width:66px" %)65%|(% style="width:90px" %)80%|(% style="width:48px" %)RH|(% style="width:203px" %)(1) 103 - 104 -((( 105 -(% style="color:red" %)**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing); ** 106 - 107 -(% style="color:red" %)** b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 108 - 109 - 110 -))) 111 - 112 -== 1.5 Effective measurement range Reference beam pattern == 113 - 114 - 115 -(% style="color:blue" %)**1. The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 116 - 117 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654852253176-749.png?rev=1.1||alt="1654852253176-749.png"]] 118 - 119 - 120 -(% style="color:blue" %)**2. The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 121 - 122 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654852175653-550.png?rev=1.1||alt="1654852175653-550.png"]] 123 - 124 - 125 -== 1.6 Applications == 126 - 127 - 128 128 * Horizontal distance measurement 129 -* Liquid level measurement 130 130 * Parking management system 131 131 * Object proximity and presence detection 132 132 * Intelligent trash can management system ... ... @@ -133,19 +133,18 @@ 133 133 * Robot obstacle avoidance 134 134 * Automatic control 135 135 * Sewer 136 -* Bottom water level monitoring 137 137 113 +(% style="display:none" %) 138 138 115 +== 1.5 Sleep mode and working mode == 139 139 140 -== 1.7 Sleep mode and working mode == 141 141 142 - 143 143 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 144 144 145 145 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 146 146 147 147 148 -== 1. 8Button & LEDs ==123 +== 1.6 Button & LEDs == 149 149 150 150 151 151 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] ... ... @@ -164,14 +164,11 @@ 164 164 ))) 165 165 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 166 166 142 +== 1.7 BLE connection == 167 167 168 168 169 - ==1.9BLEconnection==145 +LDS12-LB support BLE remote configure. 170 170 171 - 172 -DDS75-LB support BLE remote configure. 173 - 174 - 175 175 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 176 176 177 177 * Press button to send an uplink ... ... @@ -181,12 +181,12 @@ 181 181 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 182 182 183 183 184 -== 1. 10Pin Definitions ==156 +== 1.8 Pin Definitions == 185 185 186 -[[image:image-20230 523174230-1.png]]158 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 187 187 188 188 189 -== 1. 11Mechanical ==161 +== 1.9 Mechanical == 190 190 191 191 192 192 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] ... ... @@ -201,21 +201,15 @@ 201 201 (% style="color:blue" %)**Probe Mechanical:** 202 202 203 203 204 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LD DS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610172003-1.png?rev=1.1||alt="image-20220610172003-1.png"]]176 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 205 205 206 206 207 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610172003-2.png?rev=1.1||alt="image-20220610172003-2.png"]]179 += 2. Configure LDS12-LB to connect to LoRaWAN network = 208 208 209 - 210 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610172003-2.png?rev=1.1||alt="image-20220610172003-2.png"]] 211 - 212 - 213 -= 2. Configure DDS75-LB to connect to LoRaWAN network = 214 - 215 215 == 2.1 How it works == 216 216 217 217 218 -The D DS75-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS75-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.184 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 219 219 220 220 (% style="display:none" %) (%%) 221 221 ... ... @@ -226,12 +226,12 @@ 226 226 227 227 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 228 228 229 -[[image:image-2023061 2171032-3.png||height="492" width="855"]](% style="display:none" %)195 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 230 230 231 231 232 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from D DS75-LB.198 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 233 233 234 -Each D DS75-LB is shipped with a sticker with the default device EUI as below:200 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 235 235 236 236 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 237 237 ... ... @@ -260,10 +260,10 @@ 260 260 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 261 261 262 262 263 -(% style="color:blue" %)**Step 2:**(%%) Activate on D DS75-LB229 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 264 264 265 265 266 -Press the button for 5 seconds to activate the D DS75-LB.232 +Press the button for 5 seconds to activate the LDS12-LB. 267 267 268 268 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 269 269 ... ... @@ -270,77 +270,119 @@ 270 270 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 271 271 272 272 273 -== 2.3 239 +== 2.3 Uplink Payload == 274 274 275 275 276 -((( 277 -DDS75-LB will uplink payload via LoRaWAN with below payload format: 278 -))) 242 +=== 2.3.1 Device Status, FPORT~=5 === 279 279 280 -((( 281 -Uplink payload includes in total 8 bytes. 282 -))) 244 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 283 283 284 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 285 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 246 +The Payload format is as below. 247 + 248 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:529px" %) 249 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 286 286 **Size(bytes)** 287 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 288 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 289 -[[Distance>>||anchor="H2.3.2A0Distance"]] 290 -(unit: mm) 291 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 292 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 293 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 251 +)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2** 252 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 294 294 295 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]254 +Example parse in TTNv3 296 296 256 +**Sensor Model**: For LDS12-LB, this value is 0x24 297 297 298 - ===2.3.1Battery Info===258 +**Firmware Version**: 0x0100, Means: v1.0.0 version 299 299 260 +**Frequency Band**: 300 300 301 - Checkthe battery voltage for DDS75-LB.262 +0x01: EU868 302 302 264 +0x02: US915 265 + 266 +0x03: IN865 267 + 268 +0x04: AU915 269 + 270 +0x05: KZ865 271 + 272 +0x06: RU864 273 + 274 +0x07: AS923 275 + 276 +0x08: AS923-1 277 + 278 +0x09: AS923-2 279 + 280 +0x0a: AS923-3 281 + 282 +0x0b: CN470 283 + 284 +0x0c: EU433 285 + 286 +0x0d: KR920 287 + 288 +0x0e: MA869 289 + 290 +**Sub-Band**: 291 + 292 +AU915 and US915:value 0x00 ~~ 0x08 293 + 294 +CN470: value 0x0B ~~ 0x0C 295 + 296 +Other Bands: Always 0x00 297 + 298 +**Battery Info**: 299 + 300 +Check the battery voltage. 301 + 303 303 Ex1: 0x0B45 = 2885mV 304 304 305 305 Ex2: 0x0B49 = 2889mV 306 306 307 307 308 -=== 2.3.2 stance ===307 +=== 2.3.2 Device Status, FPORT~=5 === 309 309 310 - 311 311 ((( 312 - Getthedistance.Flatobjectrange280mm- 7500mm.310 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 313 313 ))) 314 314 315 315 ((( 316 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 317 - 318 -(% style="color:#4472c4" %)**0B05(H) = 2821 (D) = 2821 mm.** 314 +Uplink payload includes in total 11 bytes. 319 319 ))) 320 320 317 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %) 318 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 319 +**Size(bytes)** 320 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1** 321 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)((( 322 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 323 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)((( 324 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]] 321 321 322 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 323 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. All value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 326 +& 324 324 328 +[[Interrupt_level>>||anchor="H2.3.5InterruptPin"]] 329 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)((( 330 +[[Message Type>>||anchor="H2.3.7MessageType"]] 331 +))) 325 325 333 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 326 326 327 -=== 2.3.3 Interrupt Pin === 328 328 336 +==== 2.3.2.a Battery Info ==== 329 329 330 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 331 331 332 - **Example:**339 +Check the battery voltage for LDS12-LB. 333 333 334 -0x0 0:Normaluplink packet.341 +Ex1: 0x0B45 = 2885mV 335 335 336 -0x0 1:InterruptUplink Packet.343 +Ex2: 0x0B49 = 2889mV 337 337 338 338 339 -=== 2.3. 4DS18B20 Temperature sensor ===346 +==== 2.3.2.b DS18B20 Temperature sensor ==== 340 340 341 341 342 342 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 343 343 351 + 344 344 **Example**: 345 345 346 346 If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -348,41 +348,96 @@ 348 348 If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 349 349 350 350 351 -=== 2.3. 5Sensor Flag===359 +==== 2.3.2.c Distance ==== 352 352 353 353 362 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 363 + 364 + 365 +**Example**: 366 + 367 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 368 + 369 + 370 +==== 2.3.2.d Distance signal strength ==== 371 + 372 + 373 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 374 + 375 + 376 +**Example**: 377 + 378 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 379 + 380 +Customers can judge whether they need to adjust the environment based on the signal strength. 381 + 382 + 383 +==== 2.3.2.e Interrupt Pin & Interrupt Level ==== 384 + 385 + 386 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 387 + 388 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 389 + 390 +**Example:** 391 + 392 +0x00: Normal uplink packet. 393 + 394 +0x01: Interrupt Uplink Packet. 395 + 396 + 397 +==== 2.3.2.f LiDAR temp ==== 398 + 399 + 400 +Characterize the internal temperature value of the sensor. 401 + 402 +**Example: ** 403 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 404 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 405 + 406 + 407 +==== 2.3.2.g Message Type ==== 408 + 409 + 354 354 ((( 355 - 0x01:DetectUltrasonicSensor411 +For a normal uplink payload, the message type is always 0x01. 356 356 ))) 357 357 358 358 ((( 359 - 0x00: No UltrasonicSensor415 +Valid Message Type: 360 360 ))) 361 361 418 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 419 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 420 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 421 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 362 362 363 -=== 2.3. 6423 +=== 2.3.8 Decode payload in The Things Network === 364 364 365 365 366 366 While using TTN network, you can add the payload format to decode the payload. 367 367 368 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LD DS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]428 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 369 369 370 -The payload decoder function for TTN V3 is here: 371 371 372 372 ((( 373 - DDS75-LBTTNV3 PayloadDecoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]432 +The payload decoder function for TTN is here: 374 374 ))) 375 375 435 +((( 436 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 437 +))) 376 376 377 -== 2.4 Uplink Interval == 378 378 440 +== 2.4 Uplink Interval == 379 379 380 -The DDS75-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 381 381 443 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 382 382 383 -== 2.5 Show Data in DataCake IoT Server == 384 384 446 +== 2.5 Show Data in DataCake IoT Server == 385 385 448 + 386 386 ((( 387 387 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 388 388 ))) ... ... @@ -405,7 +405,7 @@ 405 405 406 406 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 407 407 408 -(% style="color:blue" %)**Step 4**(%%)**: Search the D DS75-LB and add DevEUI.**471 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 409 409 410 410 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 411 411 ... ... @@ -415,23 +415,22 @@ 415 415 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 416 416 417 417 418 - 419 419 == 2.6 Datalog Feature == 420 420 421 421 422 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, D DS75-LB will store the reading for future retrieving purposes.484 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 423 423 424 424 425 425 === 2.6.1 Ways to get datalog via LoRaWAN === 426 426 427 427 428 -Set PNACKMD=1, D DS75-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS75-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.490 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 429 429 430 430 * ((( 431 -a) D DS75-LB will do an ACK check for data records sending to make sure every data arrive server.493 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 432 432 ))) 433 433 * ((( 434 -b) D DS75-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS75-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS75-LB gets a ACK, DDS75-LB will consider there is a network connection and resend all NONE-ACK messages.496 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 435 435 ))) 436 436 437 437 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -442,7 +442,7 @@ 442 442 === 2.6.2 Unix TimeStamp === 443 443 444 444 445 -D DS75-LB uses Unix TimeStamp format based on507 +LDS12-LB uses Unix TimeStamp format based on 446 446 447 447 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 448 448 ... ... @@ -461,7 +461,7 @@ 461 461 462 462 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 463 463 464 -Once D DS75-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS75-LB. If DDS75-LB fails to get the time from the server, DDS75-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).526 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 465 465 466 466 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 467 467 ... ... @@ -489,7 +489,7 @@ 489 489 ))) 490 490 491 491 ((( 492 -Uplink Internal =5s,means D DS75-LB will send one packet every 5s. range 5~~255s.554 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 493 493 ))) 494 494 495 495 ... ... @@ -496,17 +496,101 @@ 496 496 == 2.7 Frequency Plans == 497 497 498 498 499 -The D DS75-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.561 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 500 500 501 501 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 502 502 503 503 504 -= 3.ConfigureDDS75-LB=566 +== 2.8 LiDAR ToF Measurement == 505 505 568 +=== 2.8.1 Principle of Distance Measurement === 569 + 570 + 571 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 572 + 573 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 574 + 575 + 576 +=== 2.8.2 Distance Measurement Characteristics === 577 + 578 + 579 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 580 + 581 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 582 + 583 + 584 +((( 585 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 586 +))) 587 + 588 +((( 589 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 590 +))) 591 + 592 +((( 593 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 594 +))) 595 + 596 + 597 +((( 598 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 599 +))) 600 + 601 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 602 + 603 +((( 604 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 605 +))) 606 + 607 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 608 + 609 +((( 610 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 611 +))) 612 + 613 + 614 +=== 2.8.3 Notice of usage === 615 + 616 + 617 +Possible invalid /wrong reading for LiDAR ToF tech: 618 + 619 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 620 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 621 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 622 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 623 + 624 +=== 2.8.4 Reflectivity of different objects === 625 + 626 + 627 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 628 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 629 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 630 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 631 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 632 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 633 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 634 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 635 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 636 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 637 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 638 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 639 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 640 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 641 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 642 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 643 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 644 +Unpolished white metal surface 645 +)))|(% style="width:93px" %)130% 646 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 647 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 648 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 649 + 650 += 3. Configure LDS12-LB = 651 + 506 506 == 3.1 Configure Methods == 507 507 508 508 509 -D DS75-LB supports below configure method:655 +LDS12-LB supports below configure method: 510 510 511 511 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 512 512 ... ... @@ -514,8 +514,6 @@ 514 514 515 515 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 516 516 517 - 518 - 519 519 == 3.2 General Commands == 520 520 521 521 ... ... @@ -530,10 +530,10 @@ 530 530 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 531 531 532 532 533 -== 3.3 Commands special design for D DS75-LB ==677 +== 3.3 Commands special design for LDS12-LB == 534 534 535 535 536 -These commands only valid for D DS75-LB, as below:680 +These commands only valid for LDS12-LB, as below: 537 537 538 538 539 539 === 3.3.1 Set Transmit Interval Time === ... ... @@ -548,7 +548,7 @@ 548 548 ))) 549 549 550 550 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 551 -|=(% style="width: 156px;background-color:# D9E2F3;#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;#0070c0" %)**Function**|=(% style="background-color:#D9E2F3;#0070c0" %)**Response**695 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 552 552 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 553 553 30000 554 554 OK ... ... @@ -575,7 +575,7 @@ 575 575 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 576 576 ))) 577 577 * ((( 578 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 722 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 579 579 580 580 581 581 ... ... @@ -591,7 +591,7 @@ 591 591 (% style="color:blue" %)**AT Command: AT+INTMOD** 592 592 593 593 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 594 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**738 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 595 595 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 596 596 0 597 597 OK ... ... @@ -616,11 +616,10 @@ 616 616 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 617 617 618 618 619 - 620 620 = 4. Battery & Power Consumption = 621 621 622 622 623 -D DS75-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.766 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 624 624 625 625 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 626 626 ... ... @@ -629,7 +629,7 @@ 629 629 630 630 631 631 (% class="wikigeneratedid" %) 632 -User can change firmware D DS75-LB to:775 +User can change firmware LDS12-LB to: 633 633 634 634 * Change Frequency band/ region. 635 635 ... ... @@ -637,79 +637,55 @@ 637 637 638 638 * Fix bugs. 639 639 640 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/7 la95mae0fn03xe/AACtzs-32m22TLb75B-iIr-Qa?dl=0]]**783 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 641 641 642 642 Methods to Update Firmware: 643 643 644 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 787 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 645 645 646 646 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 647 647 648 - 649 - 650 650 = 6. FAQ = 651 651 652 -== 6.1 DS75-LB? ==793 +== 6.1 What is the frequency plan for LDS12-LB? == 653 653 654 654 655 -D DS75-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]796 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 656 656 657 657 658 -= =6.2Can IuseDDS75-LB in condensationenvironment?==799 += 7. Trouble Shooting = 659 659 801 +== 7.1 AT Command input doesn't work == 660 660 661 -DDS75-LB is not suitable to be used in condensation environment. Condensation on the DDS75-LB probe will affect the reading and always got 0. 662 662 663 - 664 -= 7. Trouble Shooting = 665 - 666 -== 7.1 Why I can't join TTN V3 in US915 / AU915 bands? == 667 - 668 - 669 -It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 670 - 671 - 672 -== 7.2 AT Command input doesn't work == 673 - 674 - 675 675 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 676 676 677 677 678 -== 7. 3Why doesthesensorreadingshow0or"Nosensor"==807 +== 7.2 Significant error between the output distant value of LiDAR and actual distance == 679 679 680 680 681 -~1. The measurement object is very close to the sensor, but in the blind spot of the sensor. 810 +((( 811 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 812 +))) 682 682 683 -2. Sensor wiring is disconnected 814 +((( 815 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 816 +))) 684 684 685 -3. Not using the correct decoder 686 686 819 +((( 820 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 821 +))) 687 687 688 -== 7.4 Abnormal readings The gap between multiple readings is too large or the gap between the readings and the actual value is too large == 823 +((( 824 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 825 +))) 689 689 690 690 691 -1) Please check if there is something on the probe affecting its measurement (condensed water, volatile oil, etc.) 692 - 693 -2) Does it change with temperature, temperature will affect its measurement 694 - 695 -3) If abnormal data occurs, you can turn on DEBUG mode, Please use downlink or AT COMMAN to enter DEBUG mode. 696 - 697 -downlink command: (% style="color:blue" %)**F1 01**(%%), AT command: (% style="color:blue" %)**AT+DDEBUG=1** 698 - 699 -4) After entering the debug mode, it will send 20 pieces of data at a time, and you can send its uplink to us for analysis 700 - 701 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20230113135125-2.png?width=1057&height=136&rev=1.1||alt="image-20230113135125-2.png"]] 702 - 703 - 704 -Its original payload will be longer than other data. Even though it is being parsed, it can be seen that it is abnormal data. 705 - 706 -Please send the data to us for check. 707 - 708 - 709 709 = 8. Order Info = 710 710 711 711 712 -Part Number: (% style="color:blue" %)**D DS75-LB-XXX**831 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 713 713 714 714 (% style="color:red" %)**XXX**(%%): **The default frequency band** 715 715 ... ... @@ -729,14 +729,12 @@ 729 729 730 730 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 731 731 732 - 733 - 734 734 = 9. Packing Info = 735 735 736 736 737 737 (% style="color:#037691" %)**Package Includes**: 738 738 739 -* D DS75-LB LoRaWAN DistanceDetectionSensor x 1856 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 740 740 741 741 (% style="color:#037691" %)**Dimension and weight**: 742 742 ... ... @@ -748,8 +748,6 @@ 748 748 749 749 * Weight / pcs : g 750 750 751 - 752 - 753 753 = 10. Support = 754 754 755 755
- image-20230613100900-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +184.0 KB - Content
- image-20230613102426-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +89.3 KB - Content
- image-20230613102459-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +89.3 KB - Content
- image-20230613133647-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +213.6 KB - Content
- image-20230613133716-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +165.8 KB - Content
- image-20230613140115-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.1 KB - Content
- image-20230613140140-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.1 KB - Content
- image-20230613143052-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +21.8 KB - Content
- image-20230613143125-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +24.7 KB - Content
- image-20230614153353-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +112.1 KB - Content
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content