Last modified by Mengting Qiu on 2023/12/14 11:15

From version 70.29
edited by Xiaoling
on 2023/06/13 09:55
Change comment: There is no comment for this version
To version 85.1
edited by Saxer Lin
on 2023/07/15 11:46
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DDS75-LB -- LoRaWAN Distance Detection Sensor User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,9 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230612170349-1.png||height="656" width="656"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
6 6  
7 +
8 +
9 +
7 7  **Table of Contents:**
8 8  
9 9  {{toc/}}
... ... @@ -15,24 +15,26 @@
15 15  
16 16  = 1. Introduction =
17 17  
18 -== 1.1 What is LoRaWAN Distance Detection Sensor ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
19 19  
20 20  
21 -The Dragino DDS75-LB is a (% style="color:blue" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:blue" %)** ultrasonic sensing technology**(%%) for (% style="color:blue" %)**distance measurement**(%%), and (% style="color:blue" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The DDS75-LB can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
22 22  
23 -It detects the distance(% style="color:blue" %)**  between the measured object and the sensor**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
24 24  
25 -The LoRa wireless technology used in DDS75-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
26 26  
27 -DDS75-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28 28  
29 -DDS75-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
30 30  
31 -Each DDS75-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
32 32  
33 -[[image:image-20230612170943-2.png||height="525" width="912"]]
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
34 34  
38 +[[image:image-20230615152941-1.png||height="459" width="800"]]
35 35  
40 +
36 36  == 1.2 ​Features ==
37 37  
38 38  
... ... @@ -39,15 +39,14 @@
39 39  * LoRaWAN 1.0.3 Class A
40 40  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
41 41  * Ultra-low power consumption
42 -* Distance Detection by Ultrasonic technology
43 -* Flat object range 280mm - 7500mm
44 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
45 -* Cable Length : 25cm
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
46 46  * Support Bluetooth v5.1 and LoRaWAN remote configure
47 47  * Support wireless OTA update firmware
48 48  * AT Commands to change parameters
49 49  * Downlink to change configure
50 -* IP66 Waterproof Enclosure
51 51  * 8500mAh Battery for long term use
52 52  
53 53  
... ... @@ -59,6 +59,23 @@
59 59  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
60 60  * Operating Temperature: -40 ~~ 85°C
61 61  
66 +(% style="color:#037691" %)**Probe Specification:**
67 +
68 +* Storage temperature:-20℃~~75℃
69 +* Operating temperature : -20℃~~60℃
70 +* Measure Distance:
71 +** 0.1m ~~ 12m @ 90% Reflectivity
72 +** 0.1m ~~ 4m @ 10% Reflectivity
73 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
74 +* Distance resolution : 5mm
75 +* Ambient light immunity : 70klux
76 +* Enclosure rating : IP65
77 +* Light source : LED
78 +* Central wavelength : 850nm
79 +* FOV : 3.6°
80 +* Material of enclosure : ABS+PC
81 +* Wire length : 25cm
82 +
62 62  (% style="color:#037691" %)**LoRa Spec:**
63 63  
64 64  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -80,53 +80,10 @@
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 82  
104 +== 1.4 Applications ==
83 83  
84 -== 1.4 Rated environmental conditions ==
85 85  
86 -
87 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
88 -|(% style="background-color:#d9e2f3; color:#0070c0; width:163px" %)**Item**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)(((
89 -**Minimum value**
90 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)(((
91 -**Typical value**
92 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:87px" %)(((
93 -**Maximum value**
94 -)))|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Unit**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Remarks**
95 -|(% style="width:174px" %)Storage temperature|(% style="width:86px" %)-25|(% style="width:66px" %)25|(% style="width:90px" %)80|(% style="width:48px" %)℃|(% style="width:203px" %)
96 -|(% style="width:174px" %)Storage humidity|(% style="width:86px" %) |(% style="width:66px" %)65%|(% style="width:90px" %)90%|(% style="width:48px" %)RH|(% style="width:203px" %)(1)
97 -|(% style="width:174px" %)Operating temperature|(% style="width:86px" %)-15|(% style="width:66px" %)25|(% style="width:90px" %)60|(% style="width:48px" %)℃|(% style="width:203px" %)
98 -|(% style="width:174px" %)Working humidity|(% style="width:86px" %)(((
99 -
100 -
101 -
102 -)))|(% style="width:66px" %)65%|(% style="width:90px" %)80%|(% style="width:48px" %)RH|(% style="width:203px" %)(1)
103 -
104 -(((
105 -(% style="color:red" %)**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);       **
106 -
107 -(% style="color:red" %)** b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
108 -
109 -
110 -)))
111 -
112 -== 1.5 Effective measurement range Reference beam pattern ==
113 -
114 -
115 -(% style="color:blue" %)**1. The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
116 -
117 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654852253176-749.png?rev=1.1||alt="1654852253176-749.png"]]
118 -
119 -
120 -(% style="color:blue" %)**2. The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
121 -
122 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654852175653-550.png?rev=1.1||alt="1654852175653-550.png"]]
123 -
124 -
125 -== 1.6 Applications ==
126 -
127 -
128 128  * Horizontal distance measurement
129 -* Liquid level measurement
130 130  * Parking management system
131 131  * Object proximity and presence detection
132 132  * Intelligent trash can management system
... ... @@ -133,11 +133,11 @@
133 133  * Robot obstacle avoidance
134 134  * Automatic control
135 135  * Sewer
136 -* Bottom water level monitoring
137 137  
138 138  
116 +(% style="display:none" %)
139 139  
140 -== 1.7 Sleep mode and working mode ==
118 +== 1.5 Sleep mode and working mode ==
141 141  
142 142  
143 143  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
... ... @@ -145,7 +145,7 @@
145 145  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
146 146  
147 147  
148 -== 1.8 Button & LEDs ==
126 +== 1.6 Button & LEDs ==
149 149  
150 150  
151 151  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -165,13 +165,11 @@
165 165  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
166 166  
167 167  
146 +== 1.7 BLE connection ==
168 168  
169 -== 1.9 BLE connection ==
170 170  
149 +LDS12-LB support BLE remote configure.
171 171  
172 -DDS75-LB support BLE remote configure.
173 -
174 -
175 175  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
176 176  
177 177  * Press button to send an uplink
... ... @@ -181,12 +181,12 @@
181 181  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
182 182  
183 183  
184 -== 1.10 Pin Definitions ==
160 +== 1.8 Pin Definitions ==
185 185  
186 -[[image:image-20230523174230-1.png]]
162 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
187 187  
188 188  
189 -== 1.11 Mechanical ==
165 +== 1.9 Mechanical ==
190 190  
191 191  
192 192  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
... ... @@ -201,21 +201,15 @@
201 201  (% style="color:blue" %)**Probe Mechanical:**
202 202  
203 203  
204 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610172003-1.png?rev=1.1||alt="image-20220610172003-1.png"]]
180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
205 205  
206 206  
207 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610172003-2.png?rev=1.1||alt="image-20220610172003-2.png"]]
183 += 2. Configure LDS12-LB to connect to LoRaWAN network =
208 208  
209 -
210 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610172003-2.png?rev=1.1||alt="image-20220610172003-2.png"]]
211 -
212 -
213 -= 2. Configure DDS75-LB to connect to LoRaWAN network =
214 -
215 215  == 2.1 How it works ==
216 216  
217 217  
218 -The DDS75-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS75-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
188 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
219 219  
220 220  (% style="display:none" %) (%%)
221 221  
... ... @@ -226,12 +226,12 @@
226 226  
227 227  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
228 228  
229 -[[image:image-20230612171032-3.png||height="492" width="855"]](% style="display:none" %)
199 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
230 230  
231 231  
232 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS75-LB.
202 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
233 233  
234 -Each DDS75-LB is shipped with a sticker with the default device EUI as below:
204 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
235 235  
236 236  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
237 237  
... ... @@ -260,10 +260,10 @@
260 260  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
261 261  
262 262  
263 -(% style="color:blue" %)**Step 2:**(%%) Activate on DDS75-LB
233 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
264 264  
265 265  
266 -Press the button for 5 seconds to activate the DDS75-LB.
236 +Press the button for 5 seconds to activate the LDS12-LB.
267 267  
268 268  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
269 269  
... ... @@ -270,77 +270,119 @@
270 270  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
271 271  
272 272  
273 -== 2.3  ​Uplink Payload ==
243 +== 2.3 ​Uplink Payload ==
274 274  
275 275  
276 -(((
277 -DDS75-LB will uplink payload via LoRaWAN with below payload format: 
278 -)))
246 +=== 2.3.1 Device Status, FPORT~=5 ===
279 279  
280 -(((
281 -Uplink payload includes in total 8 bytes.
282 -)))
248 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
283 283  
284 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
285 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
250 +The Payload format is as below.
251 +
252 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:529px" %)
253 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
286 286  **Size(bytes)**
287 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
288 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
289 -[[Distance>>||anchor="H2.3.2A0Distance"]]
290 -(unit: mm)
291 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
292 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
293 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
255 +)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2**
256 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
294 294  
295 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
258 +Example parse in TTNv3
296 296  
260 +**Sensor Model**: For LDS12-LB, this value is 0x24
297 297  
298 -=== 2.3.1  Battery Info ===
262 +**Firmware Version**: 0x0100, Means: v1.0.0 version
299 299  
264 +**Frequency Band**:
300 300  
301 -Check the battery voltage for DDS75-LB.
266 +0x01: EU868
302 302  
268 +0x02: US915
269 +
270 +0x03: IN865
271 +
272 +0x04: AU915
273 +
274 +0x05: KZ865
275 +
276 +0x06: RU864
277 +
278 +0x07: AS923
279 +
280 +0x08: AS923-1
281 +
282 +0x09: AS923-2
283 +
284 +0x0a: AS923-3
285 +
286 +0x0b: CN470
287 +
288 +0x0c: EU433
289 +
290 +0x0d: KR920
291 +
292 +0x0e: MA869
293 +
294 +**Sub-Band**:
295 +
296 +AU915 and US915:value 0x00 ~~ 0x08
297 +
298 +CN470: value 0x0B ~~ 0x0C
299 +
300 +Other Bands: Always 0x00
301 +
302 +**Battery Info**:
303 +
304 +Check the battery voltage.
305 +
303 303  Ex1: 0x0B45 = 2885mV
304 304  
305 305  Ex2: 0x0B49 = 2889mV
306 306  
307 307  
308 -=== 2.3.2  Distance ===
311 +=== 2.3.2 Device Status, FPORT~=5 ===
309 309  
310 -
311 311  (((
312 -Get the distance. Flat object range 280mm - 7500mm.
314 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
313 313  )))
314 314  
315 315  (((
316 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
317 -
318 -(% style="color:#4472c4" %)**0B05(H) = 2821 (D) = 2821 mm.**
318 +Uplink payload includes in total 11 bytes.
319 319  )))
320 320  
321 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %)
322 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
323 +**Size(bytes)**
324 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1**
325 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
326 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
327 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)(((
328 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
321 321  
322 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
323 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. All value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
330 +&
324 324  
332 +[[Interrupt_level>>||anchor="H2.3.5InterruptPin"]]
333 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)(((
334 +[[Message Type>>||anchor="H2.3.7MessageType"]]
335 +)))
325 325  
337 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
326 326  
327 -=== 2.3.3  Interrupt Pin ===
328 328  
340 +=== 2.3.2.a Battery Info ===
329 329  
330 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
331 331  
332 -**Example:**
343 +Check the battery voltage for LDS12-LB.
333 333  
334 -0x00: Normal uplink packet.
345 +Ex1: 0x0B45 = 2885mV
335 335  
336 -0x01: Interrupt Uplink Packet.
347 +Ex2: 0x0B49 = 2889mV
337 337  
338 338  
339 -=== 2.3. DS18B20 Temperature sensor ===
350 +=== 2.3.2.b DS18B20 Temperature sensor ===
340 340  
341 341  
342 342  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
343 343  
355 +
344 344  **Example**:
345 345  
346 346  If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -348,41 +348,97 @@
348 348  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
349 349  
350 350  
351 -=== 2.3. Sensor Flag ===
363 +=== 2.3.2.c Distance ===
352 352  
353 353  
366 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
367 +
368 +
369 +**Example**:
370 +
371 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
372 +
373 +
374 +=== 2.3.2.d Distance signal strength ===
375 +
376 +
377 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
378 +
379 +
380 +**Example**:
381 +
382 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
383 +
384 +Customers can judge whether they need to adjust the environment based on the signal strength.
385 +
386 +
387 +=== 2.3.2.e Interrupt Pin & Interrupt Level ===
388 +
389 +
390 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
391 +
392 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
393 +
394 +**Example:**
395 +
396 +0x00: Normal uplink packet.
397 +
398 +0x01: Interrupt Uplink Packet.
399 +
400 +
401 +=== 2.3.2.f LiDAR temp ===
402 +
403 +
404 +Characterize the internal temperature value of the sensor.
405 +
406 +**Example: **
407 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
408 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
409 +
410 +
411 +=== 2.3.2.g Message Type ===
412 +
413 +
354 354  (((
355 -0x01: Detect Ultrasonic Sensor
415 +For a normal uplink payload, the message type is always 0x01.
356 356  )))
357 357  
358 358  (((
359 -0x00: No Ultrasonic Sensor
419 +Valid Message Type:
360 360  )))
361 361  
422 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
423 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
424 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
425 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
362 362  
363 -=== 2.3.6  Decode payload in The Things Network ===
364 364  
428 +=== 2.3.8 Decode payload in The Things Network ===
365 365  
430 +
366 366  While using TTN network, you can add the payload format to decode the payload.
367 367  
368 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
433 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
369 369  
370 -The payload decoder function for TTN V3 is here:
371 371  
372 372  (((
373 -DDS75-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
437 +The payload decoder function for TTN is here:
374 374  )))
375 375  
440 +(((
441 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
442 +)))
376 376  
377 -== 2.4  Uplink Interval ==
378 378  
445 +== 2.4 Uplink Interval ==
379 379  
380 -The DDS75-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
381 381  
448 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
382 382  
383 -== 2.5  ​Show Data in DataCake IoT Server ==
384 384  
451 +== 2.5 ​Show Data in DataCake IoT Server ==
385 385  
453 +
386 386  (((
387 387  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
388 388  )))
... ... @@ -405,7 +405,7 @@
405 405  
406 406  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
407 407  
408 -(% style="color:blue" %)**Step 4**(%%)**: Search the DDS75-LB and add DevEUI.**
476 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
409 409  
410 410  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
411 411  
... ... @@ -415,23 +415,22 @@
415 415  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
416 416  
417 417  
418 -
419 419  == 2.6 Datalog Feature ==
420 420  
421 421  
422 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS75-LB will store the reading for future retrieving purposes.
489 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
423 423  
424 424  
425 425  === 2.6.1 Ways to get datalog via LoRaWAN ===
426 426  
427 427  
428 -Set PNACKMD=1, DDS75-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS75-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
495 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
429 429  
430 430  * (((
431 -a) DDS75-LB will do an ACK check for data records sending to make sure every data arrive server.
498 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
432 432  )))
433 433  * (((
434 -b) DDS75-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS75-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS75-LB gets a ACK, DDS75-LB will consider there is a network connection and resend all NONE-ACK messages.
501 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
435 435  )))
436 436  
437 437  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -442,7 +442,7 @@
442 442  === 2.6.2 Unix TimeStamp ===
443 443  
444 444  
445 -DDS75-LB uses Unix TimeStamp format based on
512 +LDS12-LB uses Unix TimeStamp format based on
446 446  
447 447  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
448 448  
... ... @@ -461,7 +461,7 @@
461 461  
462 462  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
463 463  
464 -Once DDS75-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS75-LB. If DDS75-LB fails to get the time from the server, DDS75-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
531 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
465 465  
466 466  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
467 467  
... ... @@ -489,7 +489,7 @@
489 489  )))
490 490  
491 491  (((
492 -Uplink Internal =5s,means DDS75-LB will send one packet every 5s. range 5~~255s.
559 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
493 493  )))
494 494  
495 495  
... ... @@ -496,17 +496,103 @@
496 496  == 2.7 Frequency Plans ==
497 497  
498 498  
499 -The DDS75-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
566 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
500 500  
501 501  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
502 502  
503 503  
504 -= 3. Configure DDS75-LB =
571 +== 2.8 LiDAR ToF Measurement ==
505 505  
573 +=== 2.8.1 Principle of Distance Measurement ===
574 +
575 +
576 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
577 +
578 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
579 +
580 +
581 +=== 2.8.2 Distance Measurement Characteristics ===
582 +
583 +
584 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
585 +
586 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
587 +
588 +
589 +(((
590 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
591 +)))
592 +
593 +(((
594 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
595 +)))
596 +
597 +(((
598 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
599 +)))
600 +
601 +
602 +(((
603 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
604 +)))
605 +
606 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
607 +
608 +(((
609 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
610 +)))
611 +
612 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
613 +
614 +(((
615 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
616 +)))
617 +
618 +
619 +=== 2.8.3 Notice of usage ===
620 +
621 +
622 +Possible invalid /wrong reading for LiDAR ToF tech:
623 +
624 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
625 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
626 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
627 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
628 +
629 +
630 +=== 2.8.4  Reflectivity of different objects ===
631 +
632 +
633 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
634 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
635 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
636 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
637 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
638 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
639 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
640 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
641 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
642 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
643 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
644 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
645 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
646 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
647 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
648 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
649 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
650 +Unpolished white metal surface
651 +)))|(% style="width:93px" %)130%
652 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
653 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
654 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
655 +
656 +
657 += 3. Configure LDS12-LB =
658 +
506 506  == 3.1 Configure Methods ==
507 507  
508 508  
509 -DDS75-LB supports below configure method:
662 +LDS12-LB supports below configure method:
510 510  
511 511  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
512 512  
... ... @@ -515,7 +515,6 @@
515 515  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
516 516  
517 517  
518 -
519 519  == 3.2 General Commands ==
520 520  
521 521  
... ... @@ -530,10 +530,10 @@
530 530  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
531 531  
532 532  
533 -== 3.3 Commands special design for DDS75-LB ==
685 +== 3.3 Commands special design for LDS12-LB ==
534 534  
535 535  
536 -These commands only valid for DDS75-LB, as below:
688 +These commands only valid for LDS12-LB, as below:
537 537  
538 538  
539 539  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -548,7 +548,7 @@
548 548  )))
549 549  
550 550  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
551 -|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
703 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
552 552  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
553 553  30000
554 554  OK
... ... @@ -575,7 +575,7 @@
575 575  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
576 576  )))
577 577  * (((
578 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
730 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
579 579  
580 580  
581 581  
... ... @@ -591,7 +591,7 @@
591 591  (% style="color:blue" %)**AT Command: AT+INTMOD**
592 592  
593 593  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
594 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
746 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
595 595  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
596 596  0
597 597  OK
... ... @@ -616,100 +616,153 @@
616 616  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
617 617  
618 618  
771 +=== 3.3.3 Get Firmware Version Info ===
619 619  
620 -= 4. Battery & Power Consumption =
621 621  
774 +Feature: use downlink to get firmware version.
622 622  
623 -DDS75-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
776 +(% style="color:blue" %)**Downlink Command: 0x26**
624 624  
625 -[[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
778 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
779 +|(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)**
780 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
626 626  
782 +* Reply to the confirmation package: 26 01
783 +* Reply to non-confirmed packet: 26 00
627 627  
628 -= 5. OTA Firmware update =
785 +Device will send an uplink after got this downlink command. With below payload:
629 629  
787 +Configures info payload:
630 630  
631 -(% class="wikigeneratedid" %)
632 -User can change firmware DDS75-LB to:
789 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
790 +|=(% style="background-color:#4F81BD;color:white" %)(((
791 +**Size(bytes)**
792 +)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
793 +|**Value**|Software Type|(((
794 +Frequency Band
795 +)))|Sub-band|(((
796 +Firmware Version
797 +)))|Sensor Type|Reserve|(((
798 +[[Message Type>>||anchor="H2.3.7MessageType"]]
799 +Always 0x02
800 +)))
633 633  
634 -* Change Frequency band/ region.
802 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
635 635  
636 -* Update with new features.
804 +(% style="color:#037691" %)**Frequency Band**:
637 637  
638 -* Fix bugs.
806 +0x01: EU868
639 639  
640 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/7la95mae0fn03xe/AACtzs-32m22TLb75B-iIr-Qa?dl=0]]**
808 +0x02: US915
641 641  
642 -Methods to Update Firmware:
810 +0x03: IN865
643 643  
644 -* (Recommanded way) OTA firmware update via wireless:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
812 +0x04: AU915
645 645  
646 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
814 +0x05: KZ865
647 647  
816 +0x06: RU864
648 648  
818 +0x07: AS923
649 649  
650 -= 6. FAQ =
820 +0x08: AS923-1
651 651  
652 -== 6.1  What is the frequency plan for DDS75-LB? ==
822 +0x09: AS923-2
653 653  
824 +0xa0: AS923-3
654 654  
655 -DDS75-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
656 656  
827 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
657 657  
658 -== 6.2  Can I use DDS75-LB in condensation environment? ==
829 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
659 659  
831 +(% style="color:#037691" %)**Sensor Type**:
660 660  
661 -DDS75-LB is not suitable to be used in condensation environment. Condensation on the DDS75-LB probe will affect the reading and always got 0.
833 +0x01: LSE01
662 662  
835 +0x02: LDDS75
663 663  
664 -= 7.  Trouble Shooting =
837 +0x03: LDDS20
665 665  
666 -== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
839 +0x04: LLMS01
667 667  
841 +0x05: LSPH01
668 668  
669 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
843 +0x06: LSNPK01
670 670  
845 +0x07: LLDS12
671 671  
672 -== 7.2  AT Command input doesn't work ==
673 673  
848 += 4. Battery & Power Consumption =
674 674  
675 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
676 676  
851 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
677 677  
678 -== 7.3  Why does the sensor reading show 0 or "No sensor" ==
853 +[[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
679 679  
680 680  
681 -~1. The measurement object is very close to the sensor, but in the blind spot of the sensor.
856 += 5. OTA Firmware update =
682 682  
683 -2. Sensor wiring is disconnected
684 684  
685 -3. Not using the correct decoder
859 +(% class="wikigeneratedid" %)
860 +User can change firmware LDS12-LB to:
686 686  
862 +* Change Frequency band/ region.
687 687  
688 -== 7.4  Abnormal readings The gap between multiple readings is too large or the gap between the readings and the actual value is too large ==
864 +* Update with new features.
689 689  
866 +* Fix bugs.
690 690  
691 -1) Please check if there is something on the probe affecting its measurement (condensed water, volatile oil, etc.)
868 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
692 692  
693 -2) Does it change with temperature, temperature will affect its measurement
870 +Methods to Update Firmware:
694 694  
695 -3) If abnormal data occurs, you can turn on DEBUG mode, Please use downlink or AT COMMAN to enter DEBUG mode.
872 +* (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
696 696  
697 -downlink command: (% style="color:blue" %)**F1 01**(%%), AT command: (% style="color:blue" %)**AT+DDEBUG=1**
874 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
698 698  
699 -4) After entering the debug mode, it will send 20 pieces of data at a time, and you can send its uplink to us for analysis
700 700  
701 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20230113135125-2.png?width=1057&height=136&rev=1.1||alt="image-20230113135125-2.png"]]
877 += 6. FAQ =
702 702  
879 +== 6.1 What is the frequency plan for LDS12-LB? ==
703 703  
704 -Its original payload will be longer than other data. Even though it is being parsed, it can be seen that it is abnormal data.
705 705  
706 -Please send the data to us for check.
882 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
707 707  
708 708  
885 += 7. Trouble Shooting =
886 +
887 +== 7.1 AT Command input doesn't work ==
888 +
889 +
890 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
891 +
892 +
893 +== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
894 +
895 +
896 +(((
897 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
898 +)))
899 +
900 +(((
901 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
902 +)))
903 +
904 +
905 +(((
906 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
907 +)))
908 +
909 +(((
910 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
911 +)))
912 +
913 +
709 709  = 8. Order Info =
710 710  
711 711  
712 -Part Number: (% style="color:blue" %)**DDS75-LB-XXX**
917 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
713 713  
714 714  (% style="color:red" %)**XXX**(%%): **The default frequency band**
715 715  
... ... @@ -730,13 +730,12 @@
730 730  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
731 731  
732 732  
733 -
734 734  = 9. ​Packing Info =
735 735  
736 736  
737 737  (% style="color:#037691" %)**Package Includes**:
738 738  
739 -* DDS75-LB LoRaWAN Distance Detection Sensor x 1
943 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
740 740  
741 741  (% style="color:#037691" %)**Dimension and weight**:
742 742  
... ... @@ -749,7 +749,6 @@
749 749  * Weight / pcs : g
750 750  
751 751  
752 -
753 753  = 10. Support =
754 754  
755 755  
image-20230613100900-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +184.0 KB
Content
image-20230613102426-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +89.3 KB
Content
image-20230613102459-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +89.3 KB
Content
image-20230613133647-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +213.6 KB
Content
image-20230613133716-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +165.8 KB
Content
image-20230613140115-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.1 KB
Content
image-20230613140140-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.1 KB
Content
image-20230613143052-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +21.8 KB
Content
image-20230613143125-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.7 KB
Content
image-20230614153353-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content