Last modified by Mengting Qiu on 2023/12/14 11:15

From version 171.3
edited by Mengting Qiu
on 2023/12/12 11:48
Change comment: There is no comment for this version
To version 113.2
edited by Xiaoling
on 2023/11/10 09:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -8,7 +8,7 @@
8 8  
9 9  
10 10  
11 -**Table of Contents:(% style="display:none" %) (%%)**
11 +**Table of Contents**
12 12  
13 13  {{toc/}}
14 14  
... ... @@ -19,80 +19,170 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
22 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
33 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
35 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
37 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
39 +[[image:image-20231110091506-4.png||height="391" width="768"]]
40 +
41 +
38 38  == 1.2 ​Features ==
39 39  
40 40  
41 -* LoRaWAN Class A protocol
42 -* LiDAR distance detector, range 3 ~~ 200cm
43 -* Periodically detect or continuously detect mode
45 +* LoRaWAN 1.0.3 Class A
46 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Ultra-low power consumption
48 +* Laser technology for distance detection
49 +* Measure Distance: 0.1m~~12m
50 +* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
51 +* Monitor Battery Level
52 +* Support Bluetooth v5.1 and LoRaWAN remote configure
53 +* Support wireless OTA update firmware
44 44  * AT Commands to change parameters
45 -* Remotely configure parameters via LoRaWAN Downlink
46 -* Alarm & Counting mode
47 -* Firmware upgradable via program port or LoRa protocol
48 -* Built-in 2400mAh battery or power by external power source
55 +* Downlink to change configure
56 +* 8500mAh Battery for long term use
49 49  
50 50  == 1.3 Specification ==
51 51  
52 -(% style="color:#037691" %)**LiDAR Sensor:**
53 53  
54 -* Operation Temperature: -40 ~~ 80 °C
55 -* Operation Humidity: 0~~99.9%RH (no Dew)
56 -* Storage Temperature: -10 ~~ 45°C
57 -* Measure Range: 3cm~~200cm @ 90% reflectivity
58 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
59 -* ToF FoV: ±9°, Total 18°
60 -* Light source: VCSEL
61 +(% style="color:#037691" %)**Common DC Characteristics:**
61 61  
62 -== 1.4 Power Consumption ==
63 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 +* Operating Temperature: -40 ~~ 85°C
63 63  
66 +(% style="color:#037691" %)**Probe Specification:**
64 64  
65 -(% style="color:#037691" %)**Battery Power Mode:**
68 +* Storage temperature:-20℃~~75℃
69 +* Operating temperature : -20℃~~60℃
70 +* Measure Distance:
71 +** 0.1m ~~ 12m @ 90% Reflectivity
72 +** 0.1m ~~ 4m @ 10% Reflectivity
73 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
74 +* Distance resolution : 1cm
75 +* Ambient light immunity : 70klux
76 +* Enclosure rating : IP65
77 +* Light source : LED
78 +* Central wavelength : 850nm
79 +* FOV : 3.6°
80 +* Material of enclosure : ABS+PC
81 +* Wire length : 25cm
66 66  
67 -* Idle: 3uA @ 3.3v
68 -* Max : 360 mA
83 +(% style="color:#037691" %)**LoRa Spec:**
69 69  
70 -(% style="color:#037691" %)**Continuously mode**:
85 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
86 +* Max +22 dBm constant RF output vs.
87 +* RX sensitivity: down to -139 dBm.
88 +* Excellent blocking immunity
71 71  
72 -* Idle: 21 mA @ 3.3v
73 -* Max : 360 mA
90 +(% style="color:#037691" %)**Battery:**
74 74  
75 -== 1.5 Use Case ==
92 +* Li/SOCI2 un-chargeable battery
93 +* Capacity: 8500mAh
94 +* Self-Discharge: <1% / Year @ 25°C
95 +* Max continuously current: 130mA
96 +* Max boost current: 2A, 1 second
76 76  
77 -(% class="mark" %)**Regular Distance Detect**
98 +(% style="color:#037691" %)**Power Consumption**
78 78  
79 -[[image:image-20231211220922-1.png||height="352" width="605"]]
100 +* Sleep Mode: 5uA @ 3.3v
101 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80 80  
103 +== 1.4 Applications ==
81 81  
82 -(% class="mark" %)**Counting / Alarm**
83 83  
84 -[[image:image-20231211221253-2.png]]
106 +* Horizontal distance measurement
107 +* Parking management system
108 +* Object proximity and presence detection
109 +* Intelligent trash can management system
110 +* Robot obstacle avoidance
111 +* Automatic control
112 +* Sewer
85 85  
114 +(% style="display:none" %)
86 86  
87 -[[image:image-20231211221436-3.png]]
116 +== 1.5 Sleep mode and working mode ==
88 88  
89 89  
90 -= 2. Configure DS20L to connect to LoRaWAN network =
119 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
91 91  
121 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
122 +
123 +
124 +== 1.6 Button & LEDs ==
125 +
126 +
127 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
128 +
129 +
130 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
131 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
132 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
133 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
134 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
135 +)))
136 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
137 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
138 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
139 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
140 +)))
141 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
142 +
143 +== 1.7 BLE connection ==
144 +
145 +
146 +LDS12-LB support BLE remote configure.
147 +
148 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
149 +
150 +* Press button to send an uplink
151 +* Press button to active device.
152 +* Device Power on or reset.
153 +
154 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
155 +
156 +
157 +== 1.8 Pin Definitions ==
158 +
159 +
160 +[[image:image-20230805144259-1.png||height="413" width="741"]]
161 +
162 +== 1.9 Mechanical ==
163 +
164 +
165 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
166 +
167 +
168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
169 +
170 +
171 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
172 +
173 +
174 +(% style="color:blue" %)**Probe Mechanical:**
175 +
176 +
177 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
178 +
179 +
180 += 2. Configure LDS12-LB to connect to LoRaWAN network =
181 +
92 92  == 2.1 How it works ==
93 93  
94 94  
95 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
185 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
96 96  
97 97  (% style="display:none" %) (%%)
98 98  
... ... @@ -101,53 +101,58 @@
101 101  
102 102  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
103 103  
104 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
194 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
105 105  
106 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
196 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
107 107  
108 -=== Step 1: Create a device in TTN with the OTAA keys from DS20L. ===
109 109  
110 -Each DS20L is shipped with a sticker with the default device EUI as below:
199 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
111 111  
201 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
202 +
112 112  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
113 113  
114 114  
115 -You can enter this key in the LoRaWAN Server portal. Below is TTN V3 screenshot:
206 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
116 116  
117 117  
118 118  (% style="color:blue" %)**Register the device**
119 119  
120 -[[image:image-20231207144600-2.png||height="703" width="756"]]
211 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
121 121  
122 122  
123 -(% style="color:blue" %)**Add DevEUI and AppKey**
214 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
124 124  
125 -[[image:image-20231207145121-5.png||height="540" width="756"]]
216 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
126 126  
127 127  
219 +(% style="color:blue" %)**Add APP EUI in the application**
128 128  
129 -=== Step 2: Activate DS20L ===
130 130  
131 -[[image:image-20231128133704-1.png||height="189" width="441"]]
222 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
132 132  
133 -Press the button for 5 seconds to activate the DS20L.
134 134  
135 -The switch is switched to (% style="color:blue" %)**E** (%%)and the external power supply is used.
225 +(% style="color:blue" %)**Add APP KEY**
136 136  
137 -The switch is switched to (% style="color:blue" %)**I** (%%)and DS20L will be power by the built-in battery.
227 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
138 138  
229 +
230 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
231 +
232 +
233 +Press the button for 5 seconds to activate the LDS12-LB.
234 +
139 139  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
140 140  
141 141  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
142 142  
143 143  
144 -
145 145  == 2.3 ​Uplink Payload ==
146 146  
147 147  === 2.3.1 Device Status, FPORT~=5 ===
148 148  
149 149  
150 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
245 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
151 151  
152 152  The Payload format is as below.
153 153  
... ... @@ -159,9 +159,9 @@
159 159  
160 160  Example parse in TTNv3
161 161  
162 -[[image:image-20231206151412-3.png||height="179" width="1070"]]
257 +[[image:image-20230805103904-1.png||height="131" width="711"]]
163 163  
164 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
259 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
165 165  
166 166  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
167 167  
... ... @@ -215,370 +215,450 @@
215 215  === 2.3.2 Uplink Payload, FPORT~=2 ===
216 216  
217 217  
218 -==== (% style="color:red" %)**AT+MOD~=1**(%%) ====
313 +(((
314 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
219 219  
220 -Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
316 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
221 221  
222 -**Uplink Payload totals 10 bytes.**
318 +Uplink Payload totals 11 bytes.
319 +)))
223 223  
224 224  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
225 -|(% style="background-color:#4f81bd; color:White; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:White; width:30px" %)**2**|(% style="background-color:#4f81bd; color:White; width:130px" %)**1**|(% style="background-color:#4f81bd; color:White; width:70px" %)**2**|(% style="background-color:#4f81bd; color:White; width:100px" %)**1**|(% style="background-color:#4f81bd; color:White; width:120px" %)**4**
226 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+ Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
322 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
323 +**Size(bytes)**
324 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
325 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
326 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
327 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
328 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
329 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
330 +[[Message Type>>||anchor="HMessageType"]]
331 +)))
227 227  
228 -**MOD+ Alarm+ Interrupt:**
333 +[[image:image-20230805104104-2.png||height="136" width="754"]]
229 229  
230 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:400px" %)
231 -|(% style="background-color:#4f81bd; color:White; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:White; width:60px" %)**[bit7:bit6]**|(% style="background-color:#4f81bd; color:White; width:70px" %)**bit5**|(% style="background-color:#4f81bd; color:White; width:120px" %)**bit4**
232 -|(% style="width:80px" %)Value|(% style="width:80px" %)MOD|(% style="width:89px" %)Digital Interrupt
233 - |(% style="width:167px" %)(((
234 -Distance Alarm
235 235  
236 -0: No Alarm;
336 +==== (% style="color:blue" %)**Battery Info**(%%) ====
237 237  
238 -1: Alarm
239 -)))
240 240  
241 -Example parse in TTNv3
339 +Check the battery voltage for LDS12-LB.
242 242  
243 -[[image:image-20231209152917-1.png||height="300" width="1172"]]
341 +Ex1: 0x0B45 = 2885mV
244 244  
245 -(% style="color:blue" %)**Battery Info:**
343 +Ex2: 0x0B49 = 2889mV
246 246  
247 -Check the battery voltage for DS20L
248 248  
249 -Ex1: 0x0E10 = 3600mV
346 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
250 250  
251 251  
252 -(% style="color:blue" %)**MOD & Alarm & Interrupt:**
349 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
253 253  
254 -(% style="color:red" %)**MOD:**
255 255  
256 -**Example: ** (0x60>>6) & 0x3f =1
352 +**Example**:
257 257  
258 -**0x01:**  Regularly detect distance and report.
259 -**0x02: ** Uninterrupted measurement (external power supply).
354 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
260 260  
261 -(% style="color:red" %)**Alarm:**
356 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
262 262  
263 -When the detection distance exceeds the limit, the alarm flag is set to 1.
264 264  
265 -(% style="color:red" %)**Interrupt:**
359 +==== (% style="color:blue" %)**Distance**(%%) ====
266 266  
267 -Whether it is an external interrupt.
268 268  
362 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
269 269  
270 -(% style="color:blue" %)**Distance info:**
271 271  
272 272  **Example**:
273 273  
274 -If payload is: 0708H: distance = 0708H = 1800 mm
367 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
275 275  
276 276  
277 -(% style="color:blue" %)**Sensor State:**
370 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
278 278  
279 -Ex1: 0x00: Distance Reading is valid
280 280  
281 -Ex2: 0x0x: Distance Reading is invalid
373 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
282 282  
283 283  
284 -(% style="color:blue" %)**Interrupt Count:**
376 +**Example**:
285 285  
286 -If payload is:000007D0H: count = 07D0H =2000
378 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
287 287  
380 +Customers can judge whether they need to adjust the environment based on the signal strength.
288 288  
289 289  
290 -==== (% style="color:red" %)**AT+MOD~=2**(%%)** ** ====
383 +**1) When the sensor detects valid data:**
291 291  
385 +[[image:image-20230805155335-1.png||height="145" width="724"]]
292 292  
293 -The power consumption of uninterrupted measurement is high, and the device needs to use external power supply.(The switch is switched to E and the external power supply is used.)
294 294  
295 -[[image:image-20231128133704-1.png||height="189" width="441"]]
388 +**2) When the sensor detects invalid data:**
296 296  
390 +[[image:image-20230805155428-2.png||height="139" width="726"]]
297 297  
298 -* **Set over-limit alarm mode: AT+DOL=3,500,244,**(% style="color:red" %)0(%%)**,120**
299 299  
300 -(% class="wikigeneratedid" id="HUninterruptedmeasurement.Whenthedistanceexceedsthelimit2CtheoutputIOissethighandreportsarereportedeveryfiveminutes.Thetimecanbesetandpoweredbyanexternalpowersupply.UplinkPayloadtotals11bytes." %)
301 -Uninterrupted measurement. When the distance exceeds the limit, the output IO high, instant alarm.
393 +**3) When the sensor is not connected:**
302 302  
303 -(% class="wikigeneratedid" %)
304 -**Uplink Payload totals 9 bytes.**
395 +[[image:image-20230805155515-3.png||height="143" width="725"]]
305 305  
306 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:680px" %)
307 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
308 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:210px" %)MOD+ DO+ Alarm+ DO flag+ Limit flag|(% style="width:74px" %)Distance |(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
309 309  
310 -**MOD+DO+ Alarm+ Do flag+ Limit flag:**
398 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
311 311  
312 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:680px" %)
313 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[bit7:bit6]**|(% style="background-color:#4f81bd; color:white; width:90px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:90px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:120px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:100px" %)**[bit2:bit1:bit0]**
314 -|(% style="width:50px" %)Value|(% style="width:60px" %)MOD|(% style="width:89px" %)(((
400 +
401 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
402 +
403 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
404 +
405 +**Example:**
406 +
407 +If byte[0]&0x01=0x00 : Normal uplink packet.
408 +
409 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
410 +
411 +
412 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
413 +
414 +
415 +Characterize the internal temperature value of the sensor.
416 +
417 +**Example: **
418 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
419 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
420 +
421 +
422 +==== (% style="color:blue" %)**Message Type**(%%) ====
423 +
424 +
315 315  (((
316 -DO
426 +For a normal uplink payload, the message type is always 0x01.
317 317  )))
318 318  
319 319  (((
320 -0:Within limit
321 -
322 -1:Out of limit
430 +Valid Message Type:
323 323  )))
324 -)))|(% style="width:73px" %)(((
325 -Alarm
326 326  
327 -0: No Alarm;
433 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
434 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
435 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
436 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
328 328  
329 -1: Alarm
330 -)))|(% style="width:150px" %)(((
331 -DO flag
438 +[[image:image-20230805150315-4.png||height="233" width="723"]]
332 332  
333 -0:the over-limit alarm mode
334 334  
335 -1:the person or object count mode
336 -)))|(% style="width:103px" %)Limit flag
337 -(0~~3)
441 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
338 338  
339 -Example parse in TTNv3
340 340  
341 -[[image:image-20231209171127-3.png||height="374" width="1209"]]
444 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
342 342  
343 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
446 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
344 344  
345 -(% style="color:red" %)**MOD:**
448 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
449 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
450 +**Size(bytes)**
451 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
452 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
453 +Reserve(0xFF)
454 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
455 +LiDAR temp
456 +)))|(% style="width:85px" %)Unix TimeStamp
346 346  
347 -**Example: ** (0x60>>6) & 0x3f =1
458 +**Interrupt flag & Interrupt level:**
348 348  
349 -**0x01:**  Regularly detect distance and report.
350 -**0x02: ** Uninterrupted measurement (external power supply).
460 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
461 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
462 +**Size(bit)**
463 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
464 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
465 +Interrupt flag
466 +)))
351 351  
352 -(% style="color:red" %)**Alarm:**
468 +* (((
469 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
470 +)))
353 353  
354 -When the detection distance exceeds the limit, the alarm flag is set to 1.
472 +For example, in the US915 band, the max payload for different DR is:
355 355  
356 -(% style="color:red" %)**DO:**
474 +**a) DR0:** max is 11 bytes so one entry of data
357 357  
358 -Shows the DO pin status, while there is alarm trigger, The DO pin will be set to high (3.3v), It will be set to 0 low level when there is no alarm.
476 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
359 359  
360 -(% style="color:red" %)**Threshold Flag for Alarm:**
478 +**c) DR2:** total payload includes 11 entries of data
361 361  
362 -Mode for setting threshold: **0~~3**
480 +**d) DR3:** total payload includes 22 entries of data.
363 363  
364 -**0:** Distance limit range is not enabled, alarm:0.
482 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
365 365  
366 -**1:** Trigger Alarm if distance exceed the range between lower and upper.
367 367  
368 -**2:** Trigger Alarm if distance smaller than the upper limit.
485 +**Downlink:**
369 369  
370 -**3: **Trigger Alarm if distance bigger than the lower limit .
487 +0x31 64 CC 68 0C 64 CC 69 74 05
371 371  
489 +[[image:image-20230805144936-2.png||height="113" width="746"]]
372 372  
373 -(% style="color:blue" %)**Distance:**
491 +**Uplink:**
374 374  
375 - Actual sampling distance values.
493 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
376 376  
377 -**Example:**
378 378  
379 -**AT+DOL=1,500,244,**(% style="color:red" %)0(%%)**,120  **
496 +**Parsed Value:**
380 380  
381 -The distance is detected every 120ms.
498 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
382 382  
383 -When the actual detection value is within the range of [244mm,500mm], the data is uploaded in the normal TDC time.
384 384  
385 -When the actual detection value is outside the range of [244mm,500mm], the uplink data will be immediately alerted.
501 +[360,176,30,High,True,2023-08-04 02:53:00],
386 386  
387 -If payload is: 0708H: distance = 0708H = 1800 mm
503 +[355,168,30,Low,False,2023-08-04 02:53:29],
388 388  
505 +[245,211,30,Low,False,2023-08-04 02:54:29],
389 389  
390 -(% style="color:blue" %)**Upper limit:**
507 +[57,700,30,Low,False,2023-08-04 02:55:29],
391 391  
392 -Show the pre-set upper limit in Hex, Unit: mm.
509 +[361,164,30,Low,True,2023-08-04 02:56:00],
393 393  
394 -Ex: 01F4(H)=500mm
511 +[337,184,30,Low,False,2023-08-04 02:56:40],
395 395  
513 +[20,4458,30,Low,False,2023-08-04 02:57:40],
396 396  
397 -(% style="color:blue" %)**Lower limit:**
515 +[362,173,30,Low,False,2023-08-04 02:58:53],
398 398  
399 -Show the pre-set lower limit in Hex, Unit: mm.
400 400  
401 -Ex: 0xF4(H)=244mm
518 +**History read from serial port:**
402 402  
520 +[[image:image-20230805145056-3.png]]
403 403  
404 -* **Set the person or object count mode: AT+DOL=1,500,244,**(% style="color:red" %)1(%%)**,120**
405 405  
406 -Continuous measurement, detect and count people or things passing by in distance limit mode.
523 +=== 2.3.4 Decode payload in The Things Network ===
407 407  
408 -**Uplink Payload totals 11 bytes.**
409 409  
410 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:680px" %)
411 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
412 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:210px" %)MOD+ DO+ Alarm+ DO flag+ Limit flag|(% style="width:176px" %)Distance limit alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
526 +While using TTN network, you can add the payload format to decode the payload.
413 413  
414 -**MOD+DO+ Alarm+ Do flag+ Limit flag:**
528 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
415 415  
416 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:680px" %)
417 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[bit7:bit6]**|(% style="background-color:#4f81bd; color:white; width:90px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:90px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:120px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:100px" %)**[bit2:bit1:bit0]**
418 -|(% style="width:50px" %)Value|(% style="width:60px" %)MOD|(% style="width:89px" %)(((
530 +
419 419  (((
420 -DO
532 +The payload decoder function for TTN is here:
421 421  )))
422 422  
423 423  (((
424 -0:Within limit
536 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
537 +)))
425 425  
426 -1:Out of limit
539 +
540 +== 2.4 ​Show Data in DataCake IoT Server ==
541 +
542 +
543 +(((
544 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
427 427  )))
428 -)))|(% style="width:73px" %)(((
429 -Alarm
430 430  
431 -0: No Alarm;
432 432  
433 -1: Alarm
434 -)))|(% style="width:150px" %)(((
435 -DO flag
548 +(((
549 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
550 +)))
436 436  
437 -0:the over-limit alarm mode
552 +(((
553 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
554 +)))
438 438  
439 -1:the person or object count mode
440 -)))|(% style="width:103px" %)Limit flag
441 -(0~~3)
442 442  
443 -Example parse in TTNv3
557 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
444 444  
445 -[[image:image-20231209173457-5.png||height="277" width="1098"]]
446 446  
447 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
560 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
448 448  
449 -(% style="color:red" %)**MOD:**
450 450  
451 -**Example: ** (0x60>>6) & 0x3f =1
563 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
452 452  
453 -**0x01:**  Regularly detect distance and report.
454 -**0x02: ** Uninterrupted measurement (external power supply).
565 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
455 455  
456 -(% style="color:red" %)**Alarm:**
567 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
457 457  
458 -When the detection distance exceeds the limit, the alarm flag is set to 1.
459 459  
460 -(% style="color:red" %)**Do:**
570 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
461 461  
462 -Shows the DO pin status, while there is alarm trigger, The DO pin will be set to high (3.3v), It will be set to 0 low level when there is no alarm.
572 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
463 463  
464 -(% style="color:red" %)**Threshold Flag for Alarm:**
465 465  
466 -Mode for setting threshold: **0~~3**
575 +== 2.5 Datalog Feature ==
467 467  
468 -**0:** does not use upper and lower limits
469 469  
470 -**1:** Use upper and lower limits
578 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
471 471  
472 -**2:** Less than the upper limit
473 473  
474 -**3: **Greater than the lower limit
581 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
475 475  
476 476  
477 -(% style="color:blue" %)**Distance limit alarm count:**
584 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
478 478  
479 -People or objects are collected and counted within a limited distance.
586 +* (((
587 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
588 +)))
589 +* (((
590 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
591 +)))
480 480  
481 -The detection of a stationary person or object at each sampling time will be repeated three times, and the fourth sampling count will be added by 1.
593 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
482 482  
483 -**Example:**
595 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
484 484  
485 -**AT+DOL=1,500,244,**(% style="color:red" %)1(%%)**,120   **
486 486  
487 -People or objects passing within the distance range of [244mm,500mm] are detected and counted every 120ms.
598 +=== 2.5.2 Unix TimeStamp ===
488 488  
489 -If payload is: 0x56H, interrupt count =0x56H =86
490 490  
601 +LDS12-LB uses Unix TimeStamp format based on
491 491  
492 -(% style="color:blue" %)**Upper limit:**
603 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
493 493  
494 -Show the pre-set upper limit in Hex, Unit: mm.
605 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
495 495  
496 -Ex: 01F4(H)=500mm
607 +Below is the converter example
497 497  
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
498 498  
499 -(% style="color:blue" %)**Lower limit:**
500 500  
501 -Show the pre-set lower limit in Hex, Unit: mm.
612 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
502 502  
503 -Ex: 0xF4(H)=244mm
504 504  
615 +=== 2.5.3 Set Device Time ===
505 505  
506 -== 2.4 Decode payload in The Things Network ==
507 507  
618 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
508 508  
509 -While using TTN network, you can add the payload format to decode the payload.
620 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
510 510  
511 -[[image:image-20231206143515-1.png||height="534" width="759"]]
622 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
512 512  
513 513  
514 -(((
515 -The payload decoder function for TTN is here:
516 -)))
625 +=== 2.5.4 Poll sensor value ===
517 517  
518 -(((
519 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
520 -)))
521 521  
628 +Users can poll sensor values based on timestamps. Below is the downlink command.
522 522  
523 -== 2.5 ​Show Data in DataCake IoT Server ==
630 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
631 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
632 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
633 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
524 524  
635 +(((
636 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
637 +)))
525 525  
526 526  (((
527 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, onhuman-friendlya in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
640 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
528 528  )))
529 529  
530 -
531 531  (((
532 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
644 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
533 533  )))
534 534  
535 535  (((
536 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
648 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
537 537  )))
538 538  
539 539  
540 -[[image:image-20231207153532-6.png||height="562" width="861"]]
652 +== 2.6 Frequency Plans ==
541 541  
542 542  
543 -[[image:image-20231207155940-8.png]]
655 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
544 544  
545 -For more detailed instructions, refer to the following instructions: [[Welcome - Datacake Docs>>url:https://docs.datacake.de/]]
657 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
546 546  
547 -[[image:image-20231207160733-11.png||height="429" width="759"]]
548 548  
660 +== 2.7 LiDAR ToF Measurement ==
549 549  
550 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
662 +=== 2.7.1 Principle of Distance Measurement ===
551 551  
552 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
553 553  
554 -[[image:image-20231207160343-10.png||height="665" width="705"]]
665 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
555 555  
667 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
556 556  
557 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
558 558  
559 -[[image:image-20231129100454-2.png||height="501" width="928"]]
670 +=== 2.7.2 Distance Measurement Characteristics ===
560 560  
561 561  
562 -== 2.6 Frequency Plans ==
673 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
563 563  
675 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
564 564  
565 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
566 566  
567 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
678 +(((
679 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
680 +)))
568 568  
682 +(((
683 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
684 +)))
569 569  
570 -= 3. Configure DS20L =
686 +(((
687 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
688 +)))
571 571  
690 +
691 +(((
692 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
693 +)))
694 +
695 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
696 +
697 +(((
698 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
699 +)))
700 +
701 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
702 +
703 +(((
704 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
705 +)))
706 +
707 +
708 +=== 2.7.3 Notice of usage ===
709 +
710 +
711 +Possible invalid /wrong reading for LiDAR ToF tech:
712 +
713 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
714 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
715 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
716 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
717 +
718 +=== 2.7.4  Reflectivity of different objects ===
719 +
720 +
721 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
722 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
723 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
724 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
725 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
726 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
727 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
728 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
729 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
730 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
731 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
732 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
733 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
734 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
735 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
736 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
737 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
738 +Unpolished white metal surface
739 +)))|(% style="width:93px" %)130%
740 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
741 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
742 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
743 +
744 += 3. Configure LDS12-LB =
745 +
572 572  == 3.1 Configure Methods ==
573 573  
574 574  
575 -DS20L supports below configure method:
749 +LDS12-LB supports below configure method:
576 576  
751 +* AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
752 +
577 577  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
578 578  
579 579  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
580 580  
581 -
582 582  == 3.2 General Commands ==
583 583  
584 584  
... ... @@ -593,10 +593,10 @@
593 593  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
594 594  
595 595  
596 -== 3.3 Commands special design for DS20L ==
771 +== 3.3 Commands special design for LDS12-LB ==
597 597  
598 598  
599 -Below commands only valid for DS20L, as below:
774 +These commands only valid for LDS12-LB, as below:
600 600  
601 601  
602 602  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -638,7 +638,7 @@
638 638  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
639 639  )))
640 640  * (((
641 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
816 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
642 642  
643 643  
644 644  
... ... @@ -661,7 +661,7 @@
661 661  the mode is 0 =Disable Interrupt
662 662  )))
663 663  |(% style="width:154px" %)(((
664 -AT+INTMOD=3
839 +AT+INTMOD=2
665 665  
666 666  (default)
667 667  )))|(% style="width:196px" %)(((
... ... @@ -682,121 +682,39 @@
682 682  
683 683  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
684 684  
685 -=== 3.3.3 Set work mode ===
860 +=== 3.3.3  Set Power Output Duration ===
686 686  
862 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
687 687  
688 -Feature: Switch working mode
864 +~1. first enable the power output to external sensor,
689 689  
690 -(% style="color:blue" %)**AT Command: AT+MOD**
866 +2. keep it on as per duration, read sensor value and construct uplink payload
691 691  
692 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
693 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
694 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
695 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
696 -OK
697 -Attention:Take effect after ATZ
698 -)))
868 +3. final, close the power output.
699 699  
700 -(% style="color:blue" %)**Downlink Command:**
870 +(% style="color:blue" %)**AT Command: AT+3V3T**
701 701  
702 -* **Example: **0x0A01 ~/~/  Same as AT+MOD=1
703 -
704 -* **Example:** 0x0A02  ~/~/  Same as AT+MOD=2
705 -
706 -=== 3.3.4 Set threshold and threshold mode ===
707 -
708 -
709 -Feature, Set threshold and threshold mode
710 -
711 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
712 -
713 -(% style="color:blue" %)**AT Command: AT+DOL**
714 -
715 715  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
716 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
717 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
718 -0,0,0,0,400
873 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
874 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
719 719  OK
720 -)))
721 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
876 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
877 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
878 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
722 722  
723 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
724 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %) Parameter
725 -|(% rowspan="11" style="color:blue; width:120px" %)(((
726 -
880 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
881 +Format: Command Code (0x07) followed by 3 bytes.
727 727  
883 +The first byte is 01,the second and third bytes are the time to turn on.
728 728  
885 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
886 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
887 +* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
729 729  
730 -
731 -
732 -
733 -
734 -
735 -
736 -
737 -**AT+DOL=1,1800,3,0,400**
738 -)))|(% rowspan="4" style="width:240px" %)(((
739 -
740 -
741 -
742 -
743 -The first bit sets the limit mode
744 -)))|(% style="width:150px" %)0: Do not use upper and lower limits
745 -|(% style="width:251px" %)1: Use upper and lower limits
746 -|(% style="width:251px" %)2:Less than the upper limit
747 -|(% style="width:251px" %)3: Greater than the lower limit
748 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
749 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
750 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
751 -|(% style="width:251px" %)1 Person or object counting statistics
752 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
753 -100~~10000ms
754 -
755 -
756 -)))
757 -
758 -(% style="color:blue" %)**Downlink Command: 0x07**
759 -
760 -Format: Command Code (0x07) followed by 9 bytes.
761 -
762 -If the downlink payload=**07 01 0708 0064 00 0190**, it means set the END Node's limit mode to 0x01,upper limit value to 0x0708=1800(mm), lower limit value to 0x0064=100(mm), to over-limit alarm(0x00) ,the sampling time to 0x0190=400(ms), while type code is 0x07.
763 -
764 -* Example 0: Downlink Payload: 07 00 0000 0000 00 0190  **~-~-->**  AT+MOD=0,0,0,0,400
765 -
766 -* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
767 -
768 -* Example 2: Downlink Payload: 070200000064000190  **~-~-->**  AT+MOD=2,1800,100,0,400
769 -
770 -* Example 3: Downlink Payload: 070300000064000190  **~-~-->**  AT+MOD=3,0,100,0,400
771 -
772 -(% style="color:Red" %)**Note: The over-limit alarm is applied to MOD1 and MOD2.**
773 -
774 -**For example:**
775 -
776 -* **AT+MOD=1**
777 -
778 - **AT+DOL=1,500,244,**(% style="color:blue" %)0(%%)**,300**
779 -
780 -Send data according to the normal TDC time. If the mode limit is exceeded, the alarm flag is set to 1:
781 -
782 -[[image:image-20231211113204-2.png||height="292" width="1093"]]
783 -
784 -* **AT+MOD=2  **
785 -
786 - **AT+DOL=1,500,244,**(% style="color:blue" %)0(%%)**,300**
787 -
788 -If the mode limit is exceeded, the data is immediately uplink and the alarm flag is set to 1:
789 -
790 -[[image:image-20231211114932-3.png||height="277" width="1248"]]
791 -
792 -
793 -
794 -
795 -
796 796  = 4. Battery & Power Consumption =
797 797  
798 798  
799 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
892 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
800 800  
801 801  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
802 802  
... ... @@ -805,7 +805,7 @@
805 805  
806 806  
807 807  (% class="wikigeneratedid" %)
808 -User can change firmware DS20L to:
901 +User can change firmware LDS12-LB to:
809 809  
810 810  * Change Frequency band/ region.
811 811  
... ... @@ -813,7 +813,7 @@
813 813  
814 814  * Fix bugs.
815 815  
816 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
909 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
817 817  
818 818  Methods to Update Firmware:
819 819  
... ... @@ -823,39 +823,12 @@
823 823  
824 824  = 6. FAQ =
825 825  
826 -== 6.1 What is the frequency plan for DS20L? ==
919 +== 6.1 What is the frequency plan for LDS12-LB? ==
827 827  
828 828  
829 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
922 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
830 830  
831 831  
832 -== 6.2 DS20L programming line ==
833 -
834 -
835 -缺图 后续补上
836 -
837 -feature:
838 -
839 -for AT commands
840 -
841 -Update the firmware of DS20L
842 -
843 -Support interrupt mode
844 -
845 -
846 -== 6.3 LiDAR probe position ==
847 -
848 -
849 -[[image:1701155390576-216.png||height="285" width="307"]]
850 -
851 -The black oval hole in the picture is the LiDAR probe.
852 -
853 -
854 -== 6.4 Interface definition ==
855 -
856 -[[image:image-20231128151132-2.png||height="305" width="557"]]
857 -
858 -
859 859  = 7. Trouble Shooting =
860 860  
861 861  == 7.1 AT Command input doesn't work ==
... ... @@ -888,7 +888,7 @@
888 888  = 8. Order Info =
889 889  
890 890  
891 -Part Number: (% style="color:blue" %)**DS20L-XXX**
957 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
892 892  
893 893  (% style="color:red" %)**XXX**(%%): **The default frequency band**
894 894  
... ... @@ -913,7 +913,7 @@
913 913  
914 914  (% style="color:#037691" %)**Package Includes**:
915 915  
916 -* DS20L LoRaWAN Smart Distance Detector x 1
982 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
917 917  
918 918  (% style="color:#037691" %)**Dimension and weight**:
919 919  
1701149922873-259.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701155076393-719.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155150328-206.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155390576-216.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -293.9 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.6 KB
Content
image-20231128151132-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -281.2 KB
Content
image-20231129085201-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -70.6 KB
Content
image-20231129100454-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -70.1 KB
Content
image-20231206143515-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -89.5 KB
Content
image-20231206144950-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -41.0 KB
Content
image-20231206151412-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -58.8 KB
Content
image-20231206154621-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -71.2 KB
Content
image-20231206194804-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -53.7 KB
Content
image-20231206195704-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -64.1 KB
Content
image-20231207142208-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -27.2 KB
Content
image-20231207144600-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -55.4 KB
Content
image-20231207144837-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20231207144856-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20231207145121-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -33.3 KB
Content
image-20231207153532-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -164.7 KB
Content
image-20231207154046-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -23.0 KB
Content
image-20231207155940-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -41.7 KB
Content
image-20231207160053-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -95.5 KB
Content
image-20231207160343-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -80.5 KB
Content
image-20231207160733-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -136.0 KB
Content
image-20231209152917-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -65.9 KB
Content
image-20231209155616-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -57.1 KB
Content
image-20231209171127-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -80.8 KB
Content
image-20231209171549-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231209173457-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20231211113113-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -64.5 KB
Content
image-20231211113204-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -59.7 KB
Content
image-20231211114932-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -57.3 KB
Content
image-20231211220922-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -411.2 KB
Content
image-20231211221253-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -90.8 KB
Content
image-20231211221436-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content