Last modified by Mengting Qiu on 2023/12/14 11:15

From version 170.2
edited by Mengting Qiu
on 2023/12/12 10:36
Change comment: There is no comment for this version
To version 113.3
edited by Xiaoling
on 2023/11/10 09:28
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -8,7 +8,7 @@
8 8  
9 9  
10 10  
11 -**Table of Contents:(% style="display:none" %) (%%)**
11 +**Table of Contents**
12 12  
13 13  {{toc/}}
14 14  
... ... @@ -22,7 +22,7 @@
22 22  == 1.1 What is LoRaWAN Smart Distance Detector ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
26 26  
27 27  DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 28  consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
... ... @@ -31,68 +31,155 @@
31 31  
32 32  DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
33 33  
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
36 36  
37 37  
38 38  == 1.2 ​Features ==
39 39  
40 40  
41 -* LoRaWAN Class A protocol
42 -* LiDAR distance detector, range 3 ~~ 200cm
43 -* Periodically detect or continuously detect mode
42 +* LoRaWAN 1.0.3 Class A
43 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
44 +* Ultra-low power consumption
45 +* Laser technology for distance detection
46 +* Measure Distance: 0.1m~~12m
47 +* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
48 +* Monitor Battery Level
49 +* Support Bluetooth v5.1 and LoRaWAN remote configure
50 +* Support wireless OTA update firmware
44 44  * AT Commands to change parameters
45 -* Remotely configure parameters via LoRaWAN Downlink
46 -* Alarm & Counting mode
47 -* Firmware upgradable via program port or LoRa protocol
48 -* Built-in 2400mAh battery or power by external power source
52 +* Downlink to change configure
53 +* 8500mAh Battery for long term use
49 49  
50 50  == 1.3 Specification ==
51 51  
52 -(% style="color:#037691" %)**LiDAR Sensor:**
53 53  
54 -* Operation Temperature: -40 ~~ 80 °C
55 -* Operation Humidity: 0~~99.9%RH (no Dew)
56 -* Storage Temperature: -10 ~~ 45°C
57 -* Measure Range: 3cm~~200cm @ 90% reflectivity
58 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
59 -* ToF FoV: ±9°, Total 18°
60 -* Light source: VCSEL
58 +(% style="color:#037691" %)**Common DC Characteristics:**
61 61  
62 -== 1.4 Power Consumption ==
60 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
61 +* Operating Temperature: -40 ~~ 85°C
63 63  
63 +(% style="color:#037691" %)**Probe Specification:**
64 64  
65 -(% style="color:#037691" %)**Battery Power Mode:**
65 +* Storage temperature:-20℃~~75℃
66 +* Operating temperature : -20℃~~60℃
67 +* Measure Distance:
68 +** 0.1m ~~ 12m @ 90% Reflectivity
69 +** 0.1m ~~ 4m @ 10% Reflectivity
70 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
71 +* Distance resolution : 1cm
72 +* Ambient light immunity : 70klux
73 +* Enclosure rating : IP65
74 +* Light source : LED
75 +* Central wavelength : 850nm
76 +* FOV : 3.6°
77 +* Material of enclosure : ABS+PC
78 +* Wire length : 25cm
66 66  
67 -* Idle: 3uA @ 3.3v
68 -* Max : 360 mA
80 +(% style="color:#037691" %)**LoRa Spec:**
69 69  
70 -(% style="color:#037691" %)**Continuously mode**:
82 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
83 +* Max +22 dBm constant RF output vs.
84 +* RX sensitivity: down to -139 dBm.
85 +* Excellent blocking immunity
71 71  
72 -* Idle: 21 mA @ 3.3v
73 -* Max : 360 mA
87 +(% style="color:#037691" %)**Battery:**
74 74  
75 -== 1.5 Use Case ==
89 +* Li/SOCI2 un-chargeable battery
90 +* Capacity: 8500mAh
91 +* Self-Discharge: <1% / Year @ 25°C
92 +* Max continuously current: 130mA
93 +* Max boost current: 2A, 1 second
76 76  
77 -(% class="mark" %)**Regular Distance Detect**
95 +(% style="color:#037691" %)**Power Consumption**
78 78  
79 -[[image:image-20231211220922-1.png||height="352" width="605"]]
97 +* Sleep Mode: 5uA @ 3.3v
98 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80 80  
100 +== 1.4 Applications ==
81 81  
82 -(% class="mark" %)**Counting / Alarm**
83 83  
84 -[[image:image-20231211221253-2.png]]
103 +* Horizontal distance measurement
104 +* Parking management system
105 +* Object proximity and presence detection
106 +* Intelligent trash can management system
107 +* Robot obstacle avoidance
108 +* Automatic control
109 +* Sewer
85 85  
111 +(% style="display:none" %)
86 86  
87 -[[image:image-20231211221436-3.png]]
113 +== 1.5 Sleep mode and working mode ==
88 88  
89 89  
90 -= 2. Configure DS20L to connect to LoRaWAN network =
116 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
91 91  
118 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
119 +
120 +
121 +== 1.6 Button & LEDs ==
122 +
123 +
124 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
125 +
126 +
127 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
128 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
129 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
130 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
131 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
132 +)))
133 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
134 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
135 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
136 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
137 +)))
138 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
139 +
140 +== 1.7 BLE connection ==
141 +
142 +
143 +LDS12-LB support BLE remote configure.
144 +
145 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
146 +
147 +* Press button to send an uplink
148 +* Press button to active device.
149 +* Device Power on or reset.
150 +
151 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
152 +
153 +
154 +== 1.8 Pin Definitions ==
155 +
156 +
157 +[[image:image-20230805144259-1.png||height="413" width="741"]]
158 +
159 +== 1.9 Mechanical ==
160 +
161 +
162 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
163 +
164 +
165 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
166 +
167 +
168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
169 +
170 +
171 +(% style="color:blue" %)**Probe Mechanical:**
172 +
173 +
174 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
175 +
176 +
177 += 2. Configure LDS12-LB to connect to LoRaWAN network =
178 +
92 92  == 2.1 How it works ==
93 93  
94 94  
95 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
182 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
96 96  
97 97  (% style="display:none" %) (%%)
98 98  
... ... @@ -101,53 +101,58 @@
101 101  
102 102  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
103 103  
104 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
191 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
105 105  
106 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
193 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
107 107  
108 -=== Step 1: Create a device in TTN with the OTAA keys from DS20L. ===
109 109  
110 -Each DS20L is shipped with a sticker with the default device EUI as below:
196 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
111 111  
198 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
199 +
112 112  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
113 113  
114 114  
115 -You can enter this key in the LoRaWAN Server portal. Below is TTN V3 screenshot:
203 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
116 116  
117 117  
118 118  (% style="color:blue" %)**Register the device**
119 119  
120 -[[image:image-20231207144600-2.png||height="703" width="756"]]
208 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
121 121  
122 122  
123 -(% style="color:blue" %)**Add DevEUI and AppKey**
211 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
124 124  
125 -[[image:image-20231207145121-5.png||height="540" width="756"]]
213 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
126 126  
127 127  
216 +(% style="color:blue" %)**Add APP EUI in the application**
128 128  
129 -=== Step 2: Activate DS20L ===
130 130  
131 -[[image:image-20231128133704-1.png||height="189" width="441"]]
219 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
132 132  
133 -Press the button for 5 seconds to activate the DS20L.
134 134  
135 -The switch is switched to (% style="color:blue" %)**E** (%%)and the external power supply is used.
222 +(% style="color:blue" %)**Add APP KEY**
136 136  
137 -The switch is switched to (% style="color:blue" %)**I** (%%)and DS20L will be power by the built-in battery.
224 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
138 138  
226 +
227 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
228 +
229 +
230 +Press the button for 5 seconds to activate the LDS12-LB.
231 +
139 139  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
140 140  
141 141  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
142 142  
143 143  
144 -
145 145  == 2.3 ​Uplink Payload ==
146 146  
147 147  === 2.3.1 Device Status, FPORT~=5 ===
148 148  
149 149  
150 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
242 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
151 151  
152 152  The Payload format is as below.
153 153  
... ... @@ -159,9 +159,9 @@
159 159  
160 160  Example parse in TTNv3
161 161  
162 -[[image:image-20231206151412-3.png||height="179" width="1070"]]
254 +[[image:image-20230805103904-1.png||height="131" width="711"]]
163 163  
164 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
256 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
165 165  
166 166  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
167 167  
... ... @@ -215,289 +215,443 @@
215 215  === 2.3.2 Uplink Payload, FPORT~=2 ===
216 216  
217 217  
218 -==== (% style="color:red" %)**AT+MOD~=1**(%%) ====
310 +(((
311 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
219 219  
220 -Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
313 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
221 221  
222 -**Uplink Payload totals 10 bytes.**
315 +Uplink Payload totals 11 bytes.
316 +)))
223 223  
224 224  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
225 -|(% style="background-color:#4f81bd; color:White; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:White; width:30px" %)**2**|(% style="background-color:#4f81bd; color:White; width:130px" %)**1**|(% style="background-color:#4f81bd; color:White; width:70px" %)**2**|(% style="background-color:#4f81bd; color:White; width:100px" %)**1**|(% style="background-color:#4f81bd; color:White; width:120px" %)**4**
226 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+ Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
319 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
320 +**Size(bytes)**
321 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
322 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
323 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
324 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
325 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
326 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
327 +[[Message Type>>||anchor="HMessageType"]]
328 +)))
227 227  
228 -**MOD+ Alarm+ Interrupt:**
330 +[[image:image-20230805104104-2.png||height="136" width="754"]]
229 229  
230 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:400px" %)
231 -|(% style="background-color:#4f81bd; color:White; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:White; width:60px" %)**[bit7:bit6]**|(% style="background-color:#4f81bd; color:White; width:70px" %)**bit5**|(% style="background-color:#4f81bd; color:White; width:120px" %)**bit4**
232 -|(% style="width:80px" %)Value|(% style="width:80px" %)MOD|(% style="width:89px" %)Digital Interrupt
233 - |(% style="width:167px" %)(((
234 -Distance Alarm
235 235  
236 -0: No Alarm;
333 +==== (% style="color:blue" %)**Battery Info**(%%) ====
237 237  
238 -1: Alarm
239 -)))
240 240  
241 -Example parse in TTNv3
336 +Check the battery voltage for LDS12-LB.
242 242  
243 -[[image:image-20231209152917-1.png||height="300" width="1172"]]
338 +Ex1: 0x0B45 = 2885mV
244 244  
245 -(% style="color:blue" %)**Battery Info:**
340 +Ex2: 0x0B49 = 2889mV
246 246  
247 -Check the battery voltage for DS20L
248 248  
249 -Ex1: 0x0E10 = 3600mV
343 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
250 250  
251 251  
252 -(% style="color:blue" %)**MOD & Alarm & Interrupt:**
346 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
253 253  
254 -(% style="color:red" %)**MOD:**
255 255  
256 -**Example: ** (0x60>>6) & 0x3f =1
349 +**Example**:
257 257  
258 -**0x01:**  Regularly detect distance and report.
259 -**0x02: ** Uninterrupted measurement (external power supply).
351 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
260 260  
261 -(% style="color:red" %)**Alarm:**
353 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
262 262  
263 -When the detection distance exceeds the limit, the alarm flag is set to 1.
264 264  
265 -(% style="color:red" %)**Interrupt:**
356 +==== (% style="color:blue" %)**Distance**(%%) ====
266 266  
267 -Whether it is an external interrupt.
268 268  
359 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
269 269  
270 -(% style="color:blue" %)**Distance info:**
271 271  
272 272  **Example**:
273 273  
274 -If payload is: 0708H: distance = 0708H = 1800 mm
364 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
275 275  
276 276  
277 -(% style="color:blue" %)**Sensor State:**
367 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
278 278  
279 -Ex1: 0x00: Normal collection distance
280 280  
281 -Ex2: 0x0x: Distance collection is wrong
370 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
282 282  
283 283  
284 -(% style="color:blue" %)**Interrupt Count:**
373 +**Example**:
285 285  
286 -If payload is:000007D0H: count = 07D0H =2000
375 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
287 287  
377 +Customers can judge whether they need to adjust the environment based on the signal strength.
288 288  
289 289  
290 -==== (% style="color:red" %)**AT+MOD~=2**(%%)** ** ====
380 +**1) When the sensor detects valid data:**
291 291  
382 +[[image:image-20230805155335-1.png||height="145" width="724"]]
292 292  
293 -The power consumption of uninterrupted measurement is high, and the device needs to use external power supply.(The switch is switched to E and the external power supply is used.)
294 294  
295 -[[image:image-20231128133704-1.png||height="189" width="441"]]
385 +**2) When the sensor detects invalid data:**
296 296  
387 +[[image:image-20230805155428-2.png||height="139" width="726"]]
297 297  
298 -* **Set over-limit alarm mode: AT+DOL=3,500,244,**(% style="color:red" %)0(%%)**,120**
299 299  
300 -(% class="wikigeneratedid" id="HUninterruptedmeasurement.Whenthedistanceexceedsthelimit2CtheoutputIOissethighandreportsarereportedeveryfiveminutes.Thetimecanbesetandpoweredbyanexternalpowersupply.UplinkPayloadtotals11bytes." %)
301 -Uninterrupted measurement. When the distance exceeds the limit, the output IO high, instant alarm. Uplink Payload totals 9 bytes.
390 +**3) When the sensor is not connected:**
302 302  
303 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
304 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
305 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+DO+Limit flag|(% style="width:74px" %)Distance |(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
392 +[[image:image-20230805155515-3.png||height="143" width="725"]]
306 306  
307 -[[image:image-20231209171127-3.png||height="374" width="1209"]]
308 308  
309 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
395 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
310 310  
311 -(% style="color:red" %)**MOD:**
312 312  
313 -**Example: ** (0x60>>6) & 0x3f =1
398 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
314 314  
315 -**0x01:**  Regularly detect distance and report.
316 -**0x02: ** Uninterrupted measurement (external power supply).
400 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
317 317  
318 -(% style="color:red" %)**Alarm:**
402 +**Example:**
319 319  
320 -When the detection distance exceeds the limit, the alarm flag is set to 1.
404 +If byte[0]&0x01=0x00 : Normal uplink packet.
321 321  
322 -(% style="color:red" %)**DO:**
406 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
323 323  
324 -When the distance exceeds the set threshold, pull the Do pin high.
325 325  
326 -(% style="color:red" %)**Limit flag:**
409 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
327 327  
328 -Mode for setting threshold: **0~~3**
329 329  
330 -**0:** does not use upper and lower limits
412 +Characterize the internal temperature value of the sensor.
331 331  
332 -**1:** Use upper and lower limits
414 +**Example: **
415 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
416 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
333 333  
334 -**2:** Less than the upper limit
335 335  
336 -**3: **Greater than the lower limit
419 +==== (% style="color:blue" %)**Message Type**(%%) ====
337 337  
338 338  
339 -(% style="color:blue" %)**Distance:**
422 +(((
423 +For a normal uplink payload, the message type is always 0x01.
424 +)))
340 340  
341 - Actual sampling distance values.
426 +(((
427 +Valid Message Type:
428 +)))
342 342  
343 -**Example:**
430 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
431 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
432 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
433 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
344 344  
345 -**AT+DOL=1,500,244,**(% style="color:red" %)0(%%)**,120  **
435 +[[image:image-20230805150315-4.png||height="233" width="723"]]
346 346  
347 -The distance is detected every 120ms.
348 348  
349 -When the actual detection value is within the range of [244mm,500mm], the data is uploaded in the normal TDC time.
438 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
350 350  
351 -When the actual detection value is outside the range of [244mm,500mm], the uplink data will be immediately alerted.
352 352  
353 -If payload is: 0708H: distance = 0708H = 1800 mm
441 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
354 354  
443 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
355 355  
356 -(% style="color:blue" %)**Upper limit:**
445 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
446 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
447 +**Size(bytes)**
448 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
449 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
450 +Reserve(0xFF)
451 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
452 +LiDAR temp
453 +)))|(% style="width:85px" %)Unix TimeStamp
357 357  
358 -The upper limit of the threshold cannot exceed 2000mm.
455 +**Interrupt flag & Interrupt level:**
359 359  
457 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
458 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
459 +**Size(bit)**
460 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
461 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
462 +Interrupt flag
463 +)))
360 360  
361 -(% style="color:blue" %)**Lower limit:**
465 +* (((
466 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
467 +)))
362 362  
363 -The lower limit of the threshold cannot be less than 3mm.
469 +For example, in the US915 band, the max payload for different DR is:
364 364  
471 +**a) DR0:** max is 11 bytes so one entry of data
365 365  
366 -* **Set the person or object count mode: AT+DOL=1,500,244,**(% style="color:red" %)1(%%)**,120**
473 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
367 367  
368 -Continuous measurement, detect and count people or things passing by in distance limit mode. Uplink Payload totals 11 bytes.
475 +**c) DR2:** total payload includes 11 entries of data
369 369  
370 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:600px" %)
371 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
372 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:176px" %)Distance limit alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
477 +**d) DR3:** total payload includes 22 entries of data.
373 373  
374 -[[image:image-20231209173457-5.png||height="277" width="1098"]]
479 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
375 375  
376 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
377 377  
378 -(% style="color:red" %)**MOD:**
482 +**Downlink:**
379 379  
380 -**Example: ** (0x60>>6) & 0x3f =1
484 +0x31 64 CC 68 0C 64 CC 69 74 05
381 381  
382 -**0x01:**  Regularly detect distance and report.
383 -**0x02: ** Uninterrupted measurement (external power supply).
486 +[[image:image-20230805144936-2.png||height="113" width="746"]]
384 384  
385 -(% style="color:red" %)**Alarm:**
488 +**Uplink:**
386 386  
387 -When the detection distance exceeds the limit, the alarm flag is set to 1.
490 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
388 388  
389 -(% style="color:red" %)**Do:**
390 390  
391 -When the distance exceeds the set threshold, pull the Do pin high.
493 +**Parsed Value:**
392 392  
393 -(% style="color:red" %)**Limit flag:**
495 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
394 394  
395 -Mode for setting threshold: **0~~3**
396 396  
397 -**0:** does not use upper and lower limits
498 +[360,176,30,High,True,2023-08-04 02:53:00],
398 398  
399 -**1:** Use upper and lower limits
500 +[355,168,30,Low,False,2023-08-04 02:53:29],
400 400  
401 -**2:** Less than the upper limit
502 +[245,211,30,Low,False,2023-08-04 02:54:29],
402 402  
403 -**3: **Greater than the lower limit
504 +[57,700,30,Low,False,2023-08-04 02:55:29],
404 404  
506 +[361,164,30,Low,True,2023-08-04 02:56:00],
405 405  
406 -(% style="color:blue" %)**Distance limit alarm count:**
508 +[337,184,30,Low,False,2023-08-04 02:56:40],
407 407  
408 -People or objects are collected and counted within a limited distance.
510 +[20,4458,30,Low,False,2023-08-04 02:57:40],
409 409  
410 -The detection of a stationary person or object at each sampling time will be repeated three times, and the fourth sampling count will be added by 1.
512 +[362,173,30,Low,False,2023-08-04 02:58:53],
411 411  
412 -**Example:**
413 413  
414 -**AT+DOL=1,500,244,**(% style="color:red" %)1(%%)**,120   **
515 +**History read from serial port:**
415 415  
416 -People or objects passing within the distance range of [244mm,500mm] are detected and counted every 120ms.
517 +[[image:image-20230805145056-3.png]]
417 417  
418 -If payload is: 0x56H, interrupt count =0x56H =86
419 419  
520 +=== 2.3.4 Decode payload in The Things Network ===
420 420  
421 -(% style="color:blue" %)**Upper limit:**
422 422  
423 -The upper limit of the threshold cannot exceed 2000mm.
523 +While using TTN network, you can add the payload format to decode the payload.
424 424  
525 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
425 425  
426 -(% style="color:blue" %)**Lower limit:**
427 427  
428 -The lower limit of the threshold cannot be less than 3mm.
528 +(((
529 +The payload decoder function for TTN is here:
530 +)))
429 429  
532 +(((
533 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
534 +)))
430 430  
431 -== 2.4 Decode payload in The Things Network ==
432 432  
537 +== 2.4 ​Show Data in DataCake IoT Server ==
433 433  
434 -While using TTN network, you can add the payload format to decode the payload.
435 435  
436 -[[image:image-20231206143515-1.png||height="534" width="759"]]
540 +(((
541 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
542 +)))
437 437  
438 438  
439 439  (((
440 -The payload decoder function for TTN is here:
546 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
441 441  )))
442 442  
443 443  (((
444 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
550 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
445 445  )))
446 446  
447 447  
448 -== 2.5 ​Show Data in DataCake IoT Server ==
554 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
449 449  
450 450  
557 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
558 +
559 +
560 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
561 +
562 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
563 +
564 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
565 +
566 +
567 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
568 +
569 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
570 +
571 +
572 +== 2.5 Datalog Feature ==
573 +
574 +
575 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
576 +
577 +
578 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
579 +
580 +
581 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
582 +
583 +* (((
584 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
585 +)))
586 +* (((
587 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
588 +)))
589 +
590 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
591 +
592 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
593 +
594 +
595 +=== 2.5.2 Unix TimeStamp ===
596 +
597 +
598 +LDS12-LB uses Unix TimeStamp format based on
599 +
600 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
601 +
602 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
603 +
604 +Below is the converter example
605 +
606 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
607 +
608 +
609 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
610 +
611 +
612 +=== 2.5.3 Set Device Time ===
613 +
614 +
615 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
616 +
617 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
618 +
619 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
620 +
621 +
622 +=== 2.5.4 Poll sensor value ===
623 +
624 +
625 +Users can poll sensor values based on timestamps. Below is the downlink command.
626 +
627 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
628 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
629 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
630 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
631 +
451 451  (((
452 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, onhuman-friendlya in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
633 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
453 453  )))
454 454  
636 +(((
637 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
638 +)))
455 455  
456 456  (((
457 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
641 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
458 458  )))
459 459  
460 460  (((
461 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
645 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
462 462  )))
463 463  
464 464  
465 -[[image:image-20231207153532-6.png||height="562" width="861"]]
649 +== 2.6 Frequency Plans ==
466 466  
467 467  
468 -[[image:image-20231207155940-8.png]]
652 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
469 469  
470 -For more detailed instructions, refer to the following instructions: [[Welcome - Datacake Docs>>url:https://docs.datacake.de/]]
654 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
471 471  
472 -[[image:image-20231207160733-11.png||height="429" width="759"]]
473 473  
657 +== 2.7 LiDAR ToF Measurement ==
474 474  
475 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
659 +=== 2.7.1 Principle of Distance Measurement ===
476 476  
477 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
478 478  
479 -[[image:image-20231207160343-10.png||height="665" width="705"]]
662 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
480 480  
664 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
481 481  
482 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
483 483  
484 -[[image:image-20231129100454-2.png||height="501" width="928"]]
667 +=== 2.7.2 Distance Measurement Characteristics ===
485 485  
486 486  
487 -== 2.6 Frequency Plans ==
670 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
488 488  
672 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
489 489  
490 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
491 491  
492 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
675 +(((
676 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
677 +)))
493 493  
679 +(((
680 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
681 +)))
494 494  
495 -= 3. Configure DS20L =
683 +(((
684 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
685 +)))
496 496  
687 +
688 +(((
689 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
690 +)))
691 +
692 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
693 +
694 +(((
695 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
696 +)))
697 +
698 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
699 +
700 +(((
701 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
702 +)))
703 +
704 +
705 +=== 2.7.3 Notice of usage ===
706 +
707 +
708 +Possible invalid /wrong reading for LiDAR ToF tech:
709 +
710 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
711 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
712 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
713 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
714 +
715 +=== 2.7.4  Reflectivity of different objects ===
716 +
717 +
718 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
719 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
720 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
721 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
722 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
723 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
724 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
725 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
726 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
727 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
728 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
729 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
730 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
731 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
732 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
733 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
734 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
735 +Unpolished white metal surface
736 +)))|(% style="width:93px" %)130%
737 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
738 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
739 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
740 +
741 += 3. Configure LDS12-LB =
742 +
497 497  == 3.1 Configure Methods ==
498 498  
499 499  
500 -DS20L supports below configure method:
746 +LDS12-LB supports below configure method:
501 501  
502 502  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
503 503  
... ... @@ -519,10 +519,10 @@
519 519  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
520 520  
521 521  
522 -== 3.3 Commands special design for DS20L ==
768 +== 3.3 Commands special design for LDS12-LB ==
523 523  
524 524  
525 -Below commands only valid for DS20L, as below:
771 +These commands only valid for LDS12-LB, as below:
526 526  
527 527  
528 528  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -564,7 +564,7 @@
564 564  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
565 565  )))
566 566  * (((
567 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
813 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
568 568  
569 569  
570 570  
... ... @@ -587,7 +587,7 @@
587 587  the mode is 0 =Disable Interrupt
588 588  )))
589 589  |(% style="width:154px" %)(((
590 -AT+INTMOD=3
836 +AT+INTMOD=2
591 591  
592 592  (default)
593 593  )))|(% style="width:196px" %)(((
... ... @@ -608,121 +608,39 @@
608 608  
609 609  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
610 610  
611 -=== 3.3.3 Set work mode ===
857 +=== 3.3.3  Set Power Output Duration ===
612 612  
859 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
613 613  
614 -Feature: Switch working mode
861 +~1. first enable the power output to external sensor,
615 615  
616 -(% style="color:blue" %)**AT Command: AT+MOD**
863 +2. keep it on as per duration, read sensor value and construct uplink payload
617 617  
618 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
619 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
620 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
621 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
622 -OK
623 -Attention:Take effect after ATZ
624 -)))
865 +3. final, close the power output.
625 625  
626 -(% style="color:blue" %)**Downlink Command:**
867 +(% style="color:blue" %)**AT Command: AT+3V3T**
627 627  
628 -* **Example: **0x0A01 ~/~/  Same as AT+MOD=1
629 -
630 -* **Example:** 0x0A02  ~/~/  Same as AT+MOD=2
631 -
632 -=== 3.3.4 Set threshold and threshold mode ===
633 -
634 -
635 -Feature, Set threshold and threshold mode
636 -
637 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
638 -
639 -(% style="color:blue" %)**AT Command: AT+DOL**
640 -
641 641  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
642 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
643 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
644 -0,0,0,0,400
870 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
871 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
645 645  OK
646 -)))
647 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
873 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
874 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
875 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
648 648  
649 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
650 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %) Parameter
651 -|(% rowspan="11" style="color:blue; width:120px" %)(((
652 -
877 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
878 +Format: Command Code (0x07) followed by 3 bytes.
653 653  
880 +The first byte is 01,the second and third bytes are the time to turn on.
654 654  
882 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
883 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
884 +* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
655 655  
656 -
657 -
658 -
659 -
660 -
661 -
662 -
663 -**AT+DOL=1,1800,3,0,400**
664 -)))|(% rowspan="4" style="width:240px" %)(((
665 -
666 -
667 -
668 -
669 -The first bit sets the limit mode
670 -)))|(% style="width:150px" %)0: Do not use upper and lower limits
671 -|(% style="width:251px" %)1: Use upper and lower limits
672 -|(% style="width:251px" %)2:Less than the upper limit
673 -|(% style="width:251px" %)3: Greater than the lower limit
674 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
675 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
676 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
677 -|(% style="width:251px" %)1 Person or object counting statistics
678 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
679 -100~~10000ms
680 -
681 -
682 -)))
683 -
684 -(% style="color:blue" %)**Downlink Command: 0x07**
685 -
686 -Format: Command Code (0x07) followed by 9 bytes.
687 -
688 -If the downlink payload=**07 01 0708 0064 00 0190**, it means set the END Node's limit mode to 0x01,upper limit value to 0x0708=1800(mm), lower limit value to 0x0064=100(mm), to over-limit alarm(0x00) ,the sampling time to 0x0190=400(ms), while type code is 0x07.
689 -
690 -* Example 0: Downlink Payload: 07 00 0000 0000 00 0190  **~-~-->**  AT+MOD=0,0,0,0,400
691 -
692 -* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
693 -
694 -* Example 2: Downlink Payload: 070200000064000190  **~-~-->**  AT+MOD=2,1800,100,0,400
695 -
696 -* Example 3: Downlink Payload: 070300000064000190  **~-~-->**  AT+MOD=3,0,100,0,400
697 -
698 -(% style="color:Red" %)**Note: The over-limit alarm is applied to MOD1 and MOD2.**
699 -
700 -**For example:**
701 -
702 -* **AT+MOD=1**
703 -
704 - **AT+DOL=1,500,244,**(% style="color:blue" %)0(%%)**,300**
705 -
706 -Send data according to the normal TDC time. If the mode limit is exceeded, the alarm flag is set to 1:
707 -
708 -[[image:image-20231211113204-2.png||height="292" width="1093"]]
709 -
710 -* **AT+MOD=2  **
711 -
712 - **AT+DOL=1,500,244,**(% style="color:blue" %)0(%%)**,300**
713 -
714 -If the mode limit is exceeded, the data is immediately uplink and the alarm flag is set to 1:
715 -
716 -[[image:image-20231211114932-3.png||height="277" width="1248"]]
717 -
718 -
719 -
720 -
721 -
722 722  = 4. Battery & Power Consumption =
723 723  
724 724  
725 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
889 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
726 726  
727 727  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
728 728  
... ... @@ -731,7 +731,7 @@
731 731  
732 732  
733 733  (% class="wikigeneratedid" %)
734 -User can change firmware DS20L to:
898 +User can change firmware LDS12-LB to:
735 735  
736 736  * Change Frequency band/ region.
737 737  
... ... @@ -739,7 +739,7 @@
739 739  
740 740  * Fix bugs.
741 741  
742 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
906 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
743 743  
744 744  Methods to Update Firmware:
745 745  
... ... @@ -749,39 +749,12 @@
749 749  
750 750  = 6. FAQ =
751 751  
752 -== 6.1 What is the frequency plan for DS20L? ==
916 +== 6.1 What is the frequency plan for LDS12-LB? ==
753 753  
754 754  
755 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
919 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
756 756  
757 757  
758 -== 6.2 DS20L programming line ==
759 -
760 -
761 -缺图 后续补上
762 -
763 -feature:
764 -
765 -for AT commands
766 -
767 -Update the firmware of DS20L
768 -
769 -Support interrupt mode
770 -
771 -
772 -== 6.3 LiDAR probe position ==
773 -
774 -
775 -[[image:1701155390576-216.png||height="285" width="307"]]
776 -
777 -The black oval hole in the picture is the LiDAR probe.
778 -
779 -
780 -== 6.4 Interface definition ==
781 -
782 -[[image:image-20231128151132-2.png||height="305" width="557"]]
783 -
784 -
785 785  = 7. Trouble Shooting =
786 786  
787 787  == 7.1 AT Command input doesn't work ==
... ... @@ -814,7 +814,7 @@
814 814  = 8. Order Info =
815 815  
816 816  
817 -Part Number: (% style="color:blue" %)**DS20L-XXX**
954 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
818 818  
819 819  (% style="color:red" %)**XXX**(%%): **The default frequency band**
820 820  
... ... @@ -839,7 +839,7 @@
839 839  
840 840  (% style="color:#037691" %)**Package Includes**:
841 841  
842 -* DS20L LoRaWAN Smart Distance Detector x 1
979 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
843 843  
844 844  (% style="color:#037691" %)**Dimension and weight**:
845 845  
1701149922873-259.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701155076393-719.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155150328-206.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155390576-216.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -293.9 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.6 KB
Content
image-20231128151132-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -281.2 KB
Content
image-20231129085201-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -70.6 KB
Content
image-20231129100454-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -70.1 KB
Content
image-20231206143515-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -89.5 KB
Content
image-20231206144950-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -41.0 KB
Content
image-20231206151412-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -58.8 KB
Content
image-20231206154621-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -71.2 KB
Content
image-20231206194804-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -53.7 KB
Content
image-20231206195704-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -64.1 KB
Content
image-20231207142208-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -27.2 KB
Content
image-20231207144600-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -55.4 KB
Content
image-20231207144837-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20231207144856-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20231207145121-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -33.3 KB
Content
image-20231207153532-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -164.7 KB
Content
image-20231207154046-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -23.0 KB
Content
image-20231207155940-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -41.7 KB
Content
image-20231207160053-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -95.5 KB
Content
image-20231207160343-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -80.5 KB
Content
image-20231207160733-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -136.0 KB
Content
image-20231209152917-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -65.9 KB
Content
image-20231209155616-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -57.1 KB
Content
image-20231209171127-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -80.8 KB
Content
image-20231209171549-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231209173457-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20231211113113-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -64.5 KB
Content
image-20231211113204-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -59.7 KB
Content
image-20231211114932-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -57.3 KB
Content
image-20231211220922-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -411.2 KB
Content
image-20231211221253-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -90.8 KB
Content
image-20231211221436-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content