Last modified by Mengting Qiu on 2023/12/14 11:15

From version 162.1
edited by Mengting Qiu
on 2023/12/11 11:49
Change comment: Uploaded new attachment "image-20231211114932-3.png", version {1}
To version 113.4
edited by Xiaoling
on 2023/11/10 09:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -8,7 +8,7 @@
8 8  
9 9  
10 10  
11 -**Table of Contents:(% style="display:none" %) (%%)**
11 +**Table of Contents**
12 12  
13 13  {{toc/}}
14 14  
... ... @@ -22,7 +22,7 @@
22 22  == 1.1 What is LoRaWAN Smart Distance Detector ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
26 26  
27 27  DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 28  consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
... ... @@ -31,8 +31,9 @@
31 31  
32 32  DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
33 33  
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
36 36  
37 37  
38 38  == 1.2 ​Features ==
... ... @@ -44,6 +44,7 @@
44 44  * AT Commands to change parameters
45 45  * Remotely configure parameters via LoRaWAN Downlink
46 46  * Alarm & Counting mode
48 +* Datalog Feature
47 47  * Firmware upgradable via program port or LoRa protocol
48 48  * Built-in 2400mAh battery or power by external power source
49 49  
... ... @@ -50,35 +50,121 @@
50 50  == 1.3 Specification ==
51 51  
52 52  
53 -(% style="color:#037691" %)**LiDAR Sensor:**
55 +(% style="color:#037691" %)**Common DC Characteristics:**
54 54  
55 -* Operation Temperature: -40 ~~ 80 °C
56 -* Operation Humidity: 0~~99.9%RH (no Dew)
57 -* Storage Temperature: -10 ~~ 45°C
57 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
58 +* Operating Temperature: -40 ~~ 85°C
59 +
60 +(% style="color:#037691" %)**Probe Specification:**
61 +
58 58  * Measure Range: 3cm~~200cm @ 90% reflectivity
59 59  * Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 60  * ToF FoV: ±9°, Total 18°
61 61  * Light source: VCSEL
62 62  
63 -== 1.4 Power Consumption ==
67 +(% style="color:#037691" %)**LoRa Spec:**
64 64  
69 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
70 +* Max +22 dBm constant RF output vs.
71 +* RX sensitivity: down to -139 dBm.
72 +* Excellent blocking immunity
65 65  
66 -(% style="color:#037691" %)**Battery Power Mode:**
74 +(% style="color:#037691" %)**Battery:**
67 67  
68 -* Idle: 0.003 mA @ 3.3v
69 -* Max : 360 mA
76 +* Li/SOCI2 un-chargeable battery
77 +* Capacity: 8500mAh
78 +* Self-Discharge: <1% / Year @ 25°C
79 +* Max continuously current: 130mA
80 +* Max boost current: 2A, 1 second
70 70  
71 -(% style="color:#037691" %)**Continuously mode**:
82 +(% style="color:#037691" %)**Power Consumption**
72 72  
73 -* Idle: 21 mA @ 3.3v
74 -* Max : 360 mA
84 +* Sleep Mode: 5uA @ 3.3v
85 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
75 75  
76 -= 2. Configure DS20L to connect to LoRaWAN network =
87 +== 1.4 Applications ==
77 77  
89 +
90 +* Horizontal distance measurement
91 +* Parking management system
92 +* Object proximity and presence detection
93 +* Intelligent trash can management system
94 +* Robot obstacle avoidance
95 +* Automatic control
96 +* Sewer
97 +
98 +(% style="display:none" %)
99 +
100 +== 1.5 Sleep mode and working mode ==
101 +
102 +
103 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
104 +
105 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
106 +
107 +
108 +== 1.6 Button & LEDs ==
109 +
110 +
111 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
112 +
113 +
114 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
115 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
116 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
117 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
118 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
119 +)))
120 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
121 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
122 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
123 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
124 +)))
125 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
126 +
127 +== 1.7 BLE connection ==
128 +
129 +
130 +LDS12-LB support BLE remote configure.
131 +
132 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
133 +
134 +* Press button to send an uplink
135 +* Press button to active device.
136 +* Device Power on or reset.
137 +
138 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
139 +
140 +
141 +== 1.8 Pin Definitions ==
142 +
143 +
144 +[[image:image-20230805144259-1.png||height="413" width="741"]]
145 +
146 +== 1.9 Mechanical ==
147 +
148 +
149 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
150 +
151 +
152 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
153 +
154 +
155 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
156 +
157 +
158 +(% style="color:blue" %)**Probe Mechanical:**
159 +
160 +
161 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
162 +
163 +
164 += 2. Configure LDS12-LB to connect to LoRaWAN network =
165 +
78 78  == 2.1 How it works ==
79 79  
80 80  
81 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
169 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
82 82  
83 83  (% style="display:none" %) (%%)
84 84  
... ... @@ -87,53 +87,58 @@
87 87  
88 88  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
89 89  
90 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
178 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
91 91  
92 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
180 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
93 93  
94 -=== Step 1: Create a device in TTN with the OTAA keys from DS20L. ===
95 95  
96 -Each DS20L is shipped with a sticker with the default device EUI as below:
183 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
97 97  
185 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
186 +
98 98  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
99 99  
100 100  
101 -You can enter this key in the LoRaWAN Server portal. Below is TTN V3 screenshot:
190 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
102 102  
103 103  
104 104  (% style="color:blue" %)**Register the device**
105 105  
106 -[[image:image-20231207144600-2.png||height="703" width="756"]]
195 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
107 107  
108 108  
109 -(% style="color:blue" %)**Add DevEUI and AppKey**
198 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
110 110  
111 -[[image:image-20231207145121-5.png||height="540" width="756"]]
200 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
112 112  
113 113  
203 +(% style="color:blue" %)**Add APP EUI in the application**
114 114  
115 -=== Step 2: Activate on DS20L ===
116 116  
117 -[[image:image-20231128133704-1.png||height="189" width="441"]]
206 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
118 118  
119 -Press the button for 5 seconds to activate the DS20L.
120 120  
121 -The switch is switched to (% style="color:blue" %)**E** (%%)and the external power supply is used.
209 +(% style="color:blue" %)**Add APP KEY**
122 122  
123 -The switch is switched to (% style="color:blue" %)**I** (%%)and the motherboard battery is used for power supply.
211 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
124 124  
213 +
214 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
215 +
216 +
217 +Press the button for 5 seconds to activate the LDS12-LB.
218 +
125 125  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
126 126  
127 127  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
128 128  
129 129  
130 -
131 131  == 2.3 ​Uplink Payload ==
132 132  
133 133  === 2.3.1 Device Status, FPORT~=5 ===
134 134  
135 135  
136 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
229 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
137 137  
138 138  The Payload format is as below.
139 139  
... ... @@ -145,9 +145,9 @@
145 145  
146 146  Example parse in TTNv3
147 147  
148 -[[image:image-20231206151412-3.png||height="179" width="1070"]]
241 +[[image:image-20230805103904-1.png||height="131" width="711"]]
149 149  
150 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
243 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
151 151  
152 152  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
153 153  
... ... @@ -201,146 +201,222 @@
201 201  === 2.3.2 Uplink Payload, FPORT~=2 ===
202 202  
203 203  
204 -==== (% style="color:red" %)**AT+MOD~=1**(%%) ====
297 +(((
298 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
205 205  
206 -Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
300 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
207 207  
208 -Uplink Payload totals 10 bytes.
302 +Uplink Payload totals 11 bytes.
303 +)))
209 209  
210 210  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
211 -|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4**
212 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
306 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
307 +**Size(bytes)**
308 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
309 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
310 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
311 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
312 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
313 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
314 +[[Message Type>>||anchor="HMessageType"]]
315 +)))
213 213  
214 -[[image:image-20231209152917-1.png||height="300" width="1172"]]
317 +[[image:image-20230805104104-2.png||height="136" width="754"]]
215 215  
216 -(% style="color:blue" %)**Battery Info:**
217 217  
218 -Check the battery voltage for DS20L
320 +==== (% style="color:blue" %)**Battery Info**(%%) ====
219 219  
220 -Ex1: 0x0E10 = 3600mV
221 221  
323 +Check the battery voltage for LDS12-LB.
222 222  
223 -(% style="color:blue" %)**MOD & Alarm & Interrupt:**
325 +Ex1: 0x0B45 = 2885mV
224 224  
225 -(% style="color:red" %)**MOD:**
327 +Ex2: 0x0B49 = 2889mV
226 226  
227 -**Example: ** (0x60>>6) & 0x3f =1
228 228  
229 -**0x01:**  Regularly detect distance and report.
230 -**0x02: ** Uninterrupted measurement (external power supply).
330 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
231 231  
232 -(% style="color:red" %)**Alarm:**
233 233  
234 -When the detection distance exceeds the limit, the alarm flag is set to 1.
333 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
235 235  
236 -(% style="color:red" %)**Interrupt:**
237 237  
238 -Whether it is an external interrupt.
336 +**Example**:
239 239  
338 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
240 240  
241 -(% style="color:blue" %)**Distance info:**
340 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
242 242  
342 +
343 +==== (% style="color:blue" %)**Distance**(%%) ====
344 +
345 +
346 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
347 +
348 +
243 243  **Example**:
244 244  
245 -If payload is: 0708H: distance = 0708H = 1800 mm
351 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
246 246  
247 247  
248 -(% style="color:blue" %)**Sensor State:**
354 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
249 249  
250 -Ex1: 0x00: Normal collection distance
251 251  
252 -Ex2 0x0x: Distance collection is wrong
357 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
253 253  
254 254  
255 -(% style="color:blue" %)**Interript Count:**
360 +**Example**:
256 256  
257 -If payload is:000007D0H: count = 07D0H =2000
362 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
258 258  
364 +Customers can judge whether they need to adjust the environment based on the signal strength.
259 259  
260 260  
261 -==== (% style="color:red" %)**AT+MOD~=2**(%%)** ** ====
367 +**1) When the sensor detects valid data:**
262 262  
369 +[[image:image-20230805155335-1.png||height="145" width="724"]]
263 263  
264 -The power consumption of uninterrupted measurement is high, and the device needs to use external power supply.(The switch is switched to E and the external power supply is used.)
265 265  
266 -[[image:image-20231128133704-1.png||height="189" width="441"]]
372 +**2) When the sensor detects invalid data:**
267 267  
374 +[[image:image-20230805155428-2.png||height="139" width="726"]]
268 268  
269 -* **Set over-limit alarm mode: AT+DOL=3,500,244,**(% style="color:red" %)0(%%)**,120**
270 270  
271 -(% class="wikigeneratedid" id="HUninterruptedmeasurement.Whenthedistanceexceedsthelimit2CtheoutputIOissethighandreportsarereportedeveryfiveminutes.Thetimecanbesetandpoweredbyanexternalpowersupply.UplinkPayloadtotals11bytes." %)
272 -Uninterrupted measurement. When the distance exceeds the limit, the output IO high, instant alarm. Uplink Payload totals 9 bytes.
377 +**3) When the sensor is not connected:**
273 273  
274 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
275 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
276 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance |(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
379 +[[image:image-20230805155515-3.png||height="143" width="725"]]
277 277  
278 -[[image:image-20231209171127-3.png||height="374" width="1209"]]
279 279  
280 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
382 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
281 281  
282 -(% style="color:red" %)**MOD:**
283 283  
284 -**Example: ** (0x60>>6) & 0x3f =1
385 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
285 285  
286 -**0x01:**  Regularly detect distance and report.
287 -**0x02: ** Uninterrupted measurement (external power supply).
387 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
288 288  
289 -(% style="color:red" %)**Alarm:**
389 +**Example:**
290 290  
291 -When the detection distance exceeds the limit, the alarm flag is set to 1.
391 +If byte[0]&0x01=0x00 : Normal uplink packet.
292 292  
293 -(% style="color:red" %)**Do:**
393 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
294 294  
295 -When the distance exceeds the set threshold, pull the Do pin high.
296 296  
297 -(% style="color:red" %)**Limit flag:**
396 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
298 298  
299 -Mode for setting threshold: **0~~3**
300 300  
301 -**0:** does not use upper and lower limits
399 +Characterize the internal temperature value of the sensor.
302 302  
303 -**1:** Use upper and lower limits
401 +**Example: **
402 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
403 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
304 304  
305 -**2:** Less than the upper limit
306 306  
307 -**3: **Greater than the lower limit
406 +==== (% style="color:blue" %)**Message Type**(%%) ====
308 308  
309 309  
310 -(% style="color:blue" %)**Distance:**
409 +(((
410 +For a normal uplink payload, the message type is always 0x01.
411 +)))
311 311  
312 - Actual sampling distance values.
413 +(((
414 +Valid Message Type:
415 +)))
313 313  
417 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
418 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
419 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
420 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
314 314  
315 -(% style="color:blue" %)**Upper limit:**
422 +[[image:image-20230805150315-4.png||height="233" width="723"]]
316 316  
317 -The upper limit of the threshold cannot exceed 2000mm.
318 318  
425 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
319 319  
320 -(% style="color:blue" %)**Lower limit:**
321 321  
322 -The lower limit of the threshold cannot be less than 3mm.
428 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
323 323  
430 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
324 324  
325 -* **Set the person or object count mode: AT+DOL=1,500,244,**(% style="color:red" %)1(%%)**,120**
432 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
433 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
434 +**Size(bytes)**
435 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
436 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
437 +Reserve(0xFF)
438 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
439 +LiDAR temp
440 +)))|(% style="width:85px" %)Unix TimeStamp
326 326  
327 -Continuous measurement, detect and count people or things passing by in distance limit mode.
442 +**Interrupt flag & Interrupt level:**
328 328  
329 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:600px" %)
330 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
331 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:176px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
444 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
445 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
446 +**Size(bit)**
447 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
448 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
449 +Interrupt flag
450 +)))
332 332  
333 -[[image:image-20231209173457-5.png||height="277" width="1098"]]
452 +* (((
453 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
454 +)))
334 334  
456 +For example, in the US915 band, the max payload for different DR is:
335 335  
458 +**a) DR0:** max is 11 bytes so one entry of data
336 336  
460 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
337 337  
338 -== 2.4 Decode payload in The Things Network ==
462 +**c) DR2:** total payload includes 11 entries of data
339 339  
464 +**d) DR3:** total payload includes 22 entries of data.
340 340  
466 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
467 +
468 +
469 +**Downlink:**
470 +
471 +0x31 64 CC 68 0C 64 CC 69 74 05
472 +
473 +[[image:image-20230805144936-2.png||height="113" width="746"]]
474 +
475 +**Uplink:**
476 +
477 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
478 +
479 +
480 +**Parsed Value:**
481 +
482 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
483 +
484 +
485 +[360,176,30,High,True,2023-08-04 02:53:00],
486 +
487 +[355,168,30,Low,False,2023-08-04 02:53:29],
488 +
489 +[245,211,30,Low,False,2023-08-04 02:54:29],
490 +
491 +[57,700,30,Low,False,2023-08-04 02:55:29],
492 +
493 +[361,164,30,Low,True,2023-08-04 02:56:00],
494 +
495 +[337,184,30,Low,False,2023-08-04 02:56:40],
496 +
497 +[20,4458,30,Low,False,2023-08-04 02:57:40],
498 +
499 +[362,173,30,Low,False,2023-08-04 02:58:53],
500 +
501 +
502 +**History read from serial port:**
503 +
504 +[[image:image-20230805145056-3.png]]
505 +
506 +
507 +=== 2.3.4 Decode payload in The Things Network ===
508 +
509 +
341 341  While using TTN network, you can add the payload format to decode the payload.
342 342  
343 -[[image:image-20231206143515-1.png||height="534" width="759"]]
512 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
344 344  
345 345  
346 346  (((
... ... @@ -348,11 +348,11 @@
348 348  )))
349 349  
350 350  (((
351 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
520 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
352 352  )))
353 353  
354 354  
355 -== 2.5 ​Show Data in DataCake IoT Server ==
524 +== 2.4 ​Show Data in DataCake IoT Server ==
356 356  
357 357  
358 358  (((
... ... @@ -369,42 +369,199 @@
369 369  )))
370 370  
371 371  
372 -[[image:image-20231207153532-6.png||height="562" width="861"]]
541 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
373 373  
374 374  
375 -[[image:image-20231207155940-8.png]]
544 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
376 376  
377 -For more detailed instructions, refer to the following instructions: [[Welcome - Datacake Docs>>url:https://docs.datacake.de/]]
378 378  
379 -[[image:image-20231207160733-11.png||height="429" width="759"]]
380 -
381 -
382 382  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
383 383  
384 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
549 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
385 385  
386 -[[image:image-20231207160343-10.png||height="665" width="705"]]
551 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
387 387  
388 388  
389 389  After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
390 390  
391 -[[image:image-20231129100454-2.png||height="501" width="928"]]
556 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
392 392  
393 393  
559 +== 2.5 Datalog Feature ==
560 +
561 +
562 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
563 +
564 +
565 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
566 +
567 +
568 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
569 +
570 +* (((
571 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
572 +)))
573 +* (((
574 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
575 +)))
576 +
577 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
578 +
579 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
580 +
581 +
582 +=== 2.5.2 Unix TimeStamp ===
583 +
584 +
585 +LDS12-LB uses Unix TimeStamp format based on
586 +
587 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
588 +
589 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
590 +
591 +Below is the converter example
592 +
593 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
594 +
595 +
596 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
597 +
598 +
599 +=== 2.5.3 Set Device Time ===
600 +
601 +
602 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
603 +
604 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
605 +
606 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
607 +
608 +
609 +=== 2.5.4 Poll sensor value ===
610 +
611 +
612 +Users can poll sensor values based on timestamps. Below is the downlink command.
613 +
614 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
615 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
616 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
617 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
618 +
619 +(((
620 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
621 +)))
622 +
623 +(((
624 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
625 +)))
626 +
627 +(((
628 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
629 +)))
630 +
631 +(((
632 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
633 +)))
634 +
635 +
394 394  == 2.6 Frequency Plans ==
395 395  
396 396  
397 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
639 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
398 398  
399 399  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
400 400  
401 401  
402 -= 3. Configure DS20L =
644 +== 2.7 LiDAR ToF Measurement ==
403 403  
646 +=== 2.7.1 Principle of Distance Measurement ===
647 +
648 +
649 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
650 +
651 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
652 +
653 +
654 +=== 2.7.2 Distance Measurement Characteristics ===
655 +
656 +
657 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
658 +
659 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
660 +
661 +
662 +(((
663 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
664 +)))
665 +
666 +(((
667 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
668 +)))
669 +
670 +(((
671 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
672 +)))
673 +
674 +
675 +(((
676 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
677 +)))
678 +
679 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
680 +
681 +(((
682 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
683 +)))
684 +
685 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
686 +
687 +(((
688 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
689 +)))
690 +
691 +
692 +=== 2.7.3 Notice of usage ===
693 +
694 +
695 +Possible invalid /wrong reading for LiDAR ToF tech:
696 +
697 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
698 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
699 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
700 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
701 +
702 +=== 2.7.4  Reflectivity of different objects ===
703 +
704 +
705 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
706 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
707 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
708 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
709 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
710 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
711 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
712 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
713 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
714 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
715 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
716 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
717 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
718 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
719 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
720 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
721 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
722 +Unpolished white metal surface
723 +)))|(% style="width:93px" %)130%
724 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
725 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
726 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
727 +
728 += 3. Configure LDS12-LB =
729 +
404 404  == 3.1 Configure Methods ==
405 405  
406 406  
407 -DS20L supports below configure method:
733 +LDS12-LB supports below configure method:
408 408  
409 409  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
410 410  
... ... @@ -426,10 +426,10 @@
426 426  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
427 427  
428 428  
429 -== 3.3 Commands special design for DS20L ==
755 +== 3.3 Commands special design for LDS12-LB ==
430 430  
431 431  
432 -These commands only valid for DS20L, as below:
758 +These commands only valid for LDS12-LB, as below:
433 433  
434 434  
435 435  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -471,7 +471,7 @@
471 471  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
472 472  )))
473 473  * (((
474 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
800 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
475 475  
476 476  
477 477  
... ... @@ -494,7 +494,7 @@
494 494  the mode is 0 =Disable Interrupt
495 495  )))
496 496  |(% style="width:154px" %)(((
497 -AT+INTMOD=3
823 +AT+INTMOD=2
498 498  
499 499  (default)
500 500  )))|(% style="width:196px" %)(((
... ... @@ -515,98 +515,39 @@
515 515  
516 516  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
517 517  
518 -=== 3.3.3 Set work mode ===
844 +=== 3.3.3  Set Power Output Duration ===
519 519  
846 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
520 520  
521 -Feature: Switch working mode
848 +~1. first enable the power output to external sensor,
522 522  
523 -(% style="color:blue" %)**AT Command: AT+MOD**
850 +2. keep it on as per duration, read sensor value and construct uplink payload
524 524  
525 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
526 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
527 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
528 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
529 -OK
530 -Attention:Take effect after ATZ
531 -)))
852 +3. final, close the power output.
532 532  
533 -(% style="color:blue" %)**Downlink Command:**
854 +(% style="color:blue" %)**AT Command: AT+3V3T**
534 534  
535 -* **Example: **0x0A01 ~/~/  Same as AT+MOD=1
536 -
537 -* **Example:** 0x0A02  ~/~/  Same as AT+MOD=2
538 -
539 -=== 3.3.4 Set threshold and threshold mode ===
540 -
541 -
542 -Feature, Set threshold and threshold mode
543 -
544 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
545 -
546 -(% style="color:blue" %)**AT Command: AT+DOL**
547 -
548 548  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
549 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
550 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
551 -0,0,0,0,400
857 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
858 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
552 552  OK
553 -)))
554 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
860 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
861 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
862 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
555 555  
556 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
557 -|(% rowspan="11" style="color:blue; width:120px" %)(((
558 -
864 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
865 +Format: Command Code (0x07) followed by 3 bytes.
559 559  
867 +The first byte is 01,the second and third bytes are the time to turn on.
560 560  
869 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
870 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
871 +* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
561 561  
562 -
563 -
564 -
565 -
566 -
567 -
568 -
569 -**AT+DOL=5,1800,0,0,400**
570 -)))|(% rowspan="4" style="width:240px" %)(((
571 -
572 -
573 -
574 -
575 -
576 -
577 -The first bit sets the limit mode
578 -)))|(% style="width:150px" %)0: Do not use upper and lower limits
579 -|(% style="width:251px" %)1: Use upper and lower limits
580 -|(% style="width:251px" %)2:Less than the upper limit
581 -|(% style="width:251px" %)3: Greater than the lower limit
582 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
583 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
584 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
585 -|(% style="width:251px" %)1 Person or object counting statistics
586 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
587 -100~~10000ms
588 -
589 -
590 -)))
591 -
592 -(% style="color:blue" %)**Downlink Command: 0x07**
593 -
594 -Format: Command Code (0x07) followed by 9 bytes.
595 -
596 -If the downlink payload=**07 01 0708 0064 00 0190**, it means set the END Node's limit mode to 0x01,upper limit value to 0x0708=1800(mm), lower limit value to 0x0064=100(mm), to over-limit alarm(0x00) ,the sampling time to 0x0190=400(ms), while type code is 0x07.
597 -
598 -* Example 0: Downlink Payload: 07 00 0000 0000 00 0190  **~-~-->**  AT+MOD=0,0,0,0,400
599 -
600 -* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
601 -
602 -* Example 2: Downlink Payload: 070200000064000190  **~-~-->**  AT+MOD=2,1800100,0,400
603 -
604 -* Example 3: Downlink Payload: 070300000064000190  **~-~-->**  AT+MOD=3,0,100,0,400
605 -
606 606  = 4. Battery & Power Consumption =
607 607  
608 608  
609 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
876 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
610 610  
611 611  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
612 612  
... ... @@ -615,7 +615,7 @@
615 615  
616 616  
617 617  (% class="wikigeneratedid" %)
618 -User can change firmware DS20L to:
885 +User can change firmware LDS12-LB to:
619 619  
620 620  * Change Frequency band/ region.
621 621  
... ... @@ -623,7 +623,7 @@
623 623  
624 624  * Fix bugs.
625 625  
626 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
893 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
627 627  
628 628  Methods to Update Firmware:
629 629  
... ... @@ -633,39 +633,12 @@
633 633  
634 634  = 6. FAQ =
635 635  
636 -== 6.1 What is the frequency plan for DS20L? ==
903 +== 6.1 What is the frequency plan for LDS12-LB? ==
637 637  
638 638  
639 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
906 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
640 640  
641 641  
642 -== 6.2 DS20L programming line ==
643 -
644 -
645 -缺图 后续补上
646 -
647 -feature:
648 -
649 -for AT commands
650 -
651 -Update the firmware of DS20L
652 -
653 -Support interrupt mode
654 -
655 -
656 -== 6.3 LiDAR probe position ==
657 -
658 -
659 -[[image:1701155390576-216.png||height="285" width="307"]]
660 -
661 -The black oval hole in the picture is the LiDAR probe.
662 -
663 -
664 -== 6.4 Interface definition ==
665 -
666 -[[image:image-20231128151132-2.png||height="305" width="557"]]
667 -
668 -
669 669  = 7. Trouble Shooting =
670 670  
671 671  == 7.1 AT Command input doesn't work ==
... ... @@ -698,7 +698,7 @@
698 698  = 8. Order Info =
699 699  
700 700  
701 -Part Number: (% style="color:blue" %)**DS20L-XXX**
941 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
702 702  
703 703  (% style="color:red" %)**XXX**(%%): **The default frequency band**
704 704  
... ... @@ -723,7 +723,7 @@
723 723  
724 724  (% style="color:#037691" %)**Package Includes**:
725 725  
726 -* DS20L LoRaWAN Smart Distance Detector x 1
966 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
727 727  
728 728  (% style="color:#037691" %)**Dimension and weight**:
729 729  
1701149922873-259.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701155076393-719.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155150328-206.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155390576-216.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -293.9 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.6 KB
Content
image-20231128151132-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -281.2 KB
Content
image-20231129085201-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -70.6 KB
Content
image-20231129100454-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -70.1 KB
Content
image-20231206143515-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -89.5 KB
Content
image-20231206144950-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -41.0 KB
Content
image-20231206151412-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -58.8 KB
Content
image-20231206154621-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -71.2 KB
Content
image-20231206194804-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -53.7 KB
Content
image-20231206195704-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -64.1 KB
Content
image-20231207142208-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -27.2 KB
Content
image-20231207144600-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -55.4 KB
Content
image-20231207144837-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20231207144856-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20231207145121-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -33.3 KB
Content
image-20231207153532-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -164.7 KB
Content
image-20231207154046-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -23.0 KB
Content
image-20231207155940-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -41.7 KB
Content
image-20231207160053-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -95.5 KB
Content
image-20231207160343-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -80.5 KB
Content
image-20231207160733-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -136.0 KB
Content
image-20231209152917-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -65.9 KB
Content
image-20231209155616-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -57.1 KB
Content
image-20231209171127-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -80.8 KB
Content
image-20231209171549-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231209173457-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20231211113113-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -64.5 KB
Content
image-20231211113204-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -59.7 KB
Content
image-20231211114932-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -57.3 KB
Content