Last modified by Mengting Qiu on 2023/12/14 11:15

From version 140.1
edited by Mengting Qiu
on 2023/12/07 14:51
Change comment: There is no comment for this version
To version 113.4
edited by Xiaoling
on 2023/11/10 09:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -8,7 +8,7 @@
8 8  
9 9  
10 10  
11 -**Table of Contents:(% style="display:none" %) (%%)**
11 +**Table of Contents**
12 12  
13 13  {{toc/}}
14 14  
... ... @@ -22,7 +22,7 @@
22 22  == 1.1 What is LoRaWAN Smart Distance Detector ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
26 26  
27 27  DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 28  consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
... ... @@ -31,8 +31,9 @@
31 31  
32 32  DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
33 33  
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
36 36  
37 37  
38 38  == 1.2 ​Features ==
... ... @@ -44,6 +44,7 @@
44 44  * AT Commands to change parameters
45 45  * Remotely configure parameters via LoRaWAN Downlink
46 46  * Alarm & Counting mode
48 +* Datalog Feature
47 47  * Firmware upgradable via program port or LoRa protocol
48 48  * Built-in 2400mAh battery or power by external power source
49 49  
... ... @@ -50,35 +50,121 @@
50 50  == 1.3 Specification ==
51 51  
52 52  
53 -(% style="color:#037691" %)**LiDAR Sensor:**
55 +(% style="color:#037691" %)**Common DC Characteristics:**
54 54  
55 -* Operation Temperature: -40 ~~ 80 °C
56 -* Operation Humidity: 0~~99.9%RH (no Dew)
57 -* Storage Temperature: -10 ~~ 45°C
57 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
58 +* Operating Temperature: -40 ~~ 85°C
59 +
60 +(% style="color:#037691" %)**Probe Specification:**
61 +
58 58  * Measure Range: 3cm~~200cm @ 90% reflectivity
59 59  * Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 60  * ToF FoV: ±9°, Total 18°
61 61  * Light source: VCSEL
62 62  
63 -== 1.4 Power Consumption ==
67 +(% style="color:#037691" %)**LoRa Spec:**
64 64  
69 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
70 +* Max +22 dBm constant RF output vs.
71 +* RX sensitivity: down to -139 dBm.
72 +* Excellent blocking immunity
65 65  
66 -(% style="color:#037691" %)**Battery Power Mode:**
74 +(% style="color:#037691" %)**Battery:**
67 67  
68 -* Idle: 0.003 mA @ 3.3v
69 -* Max : 360 mA
76 +* Li/SOCI2 un-chargeable battery
77 +* Capacity: 8500mAh
78 +* Self-Discharge: <1% / Year @ 25°C
79 +* Max continuously current: 130mA
80 +* Max boost current: 2A, 1 second
70 70  
71 -(% style="color:#037691" %)**Continuously mode**:
82 +(% style="color:#037691" %)**Power Consumption**
72 72  
73 -* Idle: 21 mA @ 3.3v
74 -* Max : 360 mA
84 +* Sleep Mode: 5uA @ 3.3v
85 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
75 75  
76 -= 2. Configure DS20L to connect to LoRaWAN network =
87 +== 1.4 Applications ==
77 77  
89 +
90 +* Horizontal distance measurement
91 +* Parking management system
92 +* Object proximity and presence detection
93 +* Intelligent trash can management system
94 +* Robot obstacle avoidance
95 +* Automatic control
96 +* Sewer
97 +
98 +(% style="display:none" %)
99 +
100 +== 1.5 Sleep mode and working mode ==
101 +
102 +
103 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
104 +
105 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
106 +
107 +
108 +== 1.6 Button & LEDs ==
109 +
110 +
111 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
112 +
113 +
114 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
115 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
116 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
117 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
118 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
119 +)))
120 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
121 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
122 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
123 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
124 +)))
125 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
126 +
127 +== 1.7 BLE connection ==
128 +
129 +
130 +LDS12-LB support BLE remote configure.
131 +
132 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
133 +
134 +* Press button to send an uplink
135 +* Press button to active device.
136 +* Device Power on or reset.
137 +
138 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
139 +
140 +
141 +== 1.8 Pin Definitions ==
142 +
143 +
144 +[[image:image-20230805144259-1.png||height="413" width="741"]]
145 +
146 +== 1.9 Mechanical ==
147 +
148 +
149 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
150 +
151 +
152 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
153 +
154 +
155 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
156 +
157 +
158 +(% style="color:blue" %)**Probe Mechanical:**
159 +
160 +
161 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
162 +
163 +
164 += 2. Configure LDS12-LB to connect to LoRaWAN network =
165 +
78 78  == 2.1 How it works ==
79 79  
80 80  
81 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
169 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
82 82  
83 83  (% style="display:none" %) (%%)
84 84  
... ... @@ -87,49 +87,58 @@
87 87  
88 88  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
89 89  
90 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
178 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
91 91  
92 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
180 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
93 93  
94 -=== Step 1: Create a device in TTN with the OTAA keys from DS20L. ===
95 95  
96 -Each DS20L is shipped with a sticker with the default device EUI as below:
183 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
97 97  
185 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
186 +
98 98  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
99 99  
100 100  
101 -You can enter this key in the LoRaWAN Server portal. Below is TTN V3 screenshot:
190 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
102 102  
103 103  
104 104  (% style="color:blue" %)**Register the device**
105 105  
106 -[[image:image-20231207144600-2.png||height="703" width="756"]]
195 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
107 107  
108 108  
109 -(% style="color:blue" %)**Add DevEUI and AppKey**
198 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
110 110  
111 -[[image:image-20231207145121-5.png||height="540" width="756"]]
200 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
112 112  
113 113  
203 +(% style="color:blue" %)**Add APP EUI in the application**
114 114  
115 -=== Step 2: Activate on DS20L ===
116 116  
117 -[[image:image-20231128133704-1.png||height="189" width="441"]]
206 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
118 118  
119 -Press the button for 5 seconds to activate the DS20L.
120 120  
209 +(% style="color:blue" %)**Add APP KEY**
210 +
211 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
212 +
213 +
214 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
215 +
216 +
217 +Press the button for 5 seconds to activate the LDS12-LB.
218 +
121 121  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
122 122  
123 123  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
124 124  
125 125  
126 -
127 127  == 2.3 ​Uplink Payload ==
128 128  
129 129  === 2.3.1 Device Status, FPORT~=5 ===
130 130  
131 131  
132 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
229 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
133 133  
134 134  The Payload format is as below.
135 135  
... ... @@ -141,9 +141,9 @@
141 141  
142 142  Example parse in TTNv3
143 143  
144 -[[image:image-20231206151412-3.png||height="179" width="1070"]]
241 +[[image:image-20230805103904-1.png||height="131" width="711"]]
145 145  
146 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
243 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
147 147  
148 148  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
149 149  
... ... @@ -197,123 +197,222 @@
197 197  === 2.3.2 Uplink Payload, FPORT~=2 ===
198 198  
199 199  
200 -==== (% style="color:red" %)**MOD~=1**(%%) ====
297 +(((
298 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
201 201  
202 -Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
300 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
203 203  
204 -Uplink Payload totals 10 bytes.
302 +Uplink Payload totals 11 bytes.
303 +)))
205 205  
206 206  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
207 -|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4**
208 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
306 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
307 +**Size(bytes)**
308 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
309 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
310 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
311 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
312 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
313 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
314 +[[Message Type>>||anchor="HMessageType"]]
315 +)))
209 209  
210 -[[image:image-20231206195704-6.png||height="238" width="999"]]
317 +[[image:image-20230805104104-2.png||height="136" width="754"]]
211 211  
212 -(% style="color:blue" %)**Battery Info:**
213 213  
214 -Check the battery voltage for DS20L
320 +==== (% style="color:blue" %)**Battery Info**(%%) ====
215 215  
216 -Ex1: 0x0E10 = 3600mV
217 217  
323 +Check the battery voltage for LDS12-LB.
218 218  
219 -(% style="color:blue" %)**MOD & Alarm & Interrupt:**
325 +Ex1: 0x0B45 = 2885mV
220 220  
221 -(% style="color:red" %)**MOD:**
327 +Ex2: 0x0B49 = 2889mV
222 222  
223 -**Example: ** (0x60>>6) & 0x3f =1
224 224  
225 -**0x01:**  Regularly detect distance and report.
226 -**0x02: ** Uninterrupted measurement (external power supply).
330 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
227 227  
228 -(% style="color:red" %)**Alarm:**
229 229  
230 -When the detection distance exceeds the limit, the alarm flag is set to 1.
333 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
231 231  
232 -(% style="color:red" %)**Interrupt:**
233 233  
234 -Whether it is an external interrupt.
336 +**Example**:
235 235  
338 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
236 236  
237 -(% style="color:blue" %)**Distance info:**
340 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
238 238  
342 +
343 +==== (% style="color:blue" %)**Distance**(%%) ====
344 +
345 +
346 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
347 +
348 +
239 239  **Example**:
240 240  
241 -If payload is: 0708H: distance = 0708H = 1800 mm
351 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
242 242  
243 243  
244 -(% style="color:blue" %)**Sensor State:**
354 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
245 245  
246 -Ex1: 0x00: Normal collection distance
247 247  
248 -Ex2 0x0x: Distance collection is wrong
357 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
249 249  
250 250  
251 -(% style="color:blue" %)**Interript Count:**
360 +**Example**:
252 252  
253 -If payload is:000007D0H: count = 07D0H =2000
362 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
254 254  
364 +Customers can judge whether they need to adjust the environment based on the signal strength.
255 255  
256 256  
257 -==== (% style="color:red" %)**MOD~=2**(%%)** ** ====
367 +**1) When the sensor detects valid data:**
258 258  
259 -Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes.
369 +[[image:image-20230805155335-1.png||height="145" width="724"]]
260 260  
371 +
372 +**2) When the sensor detects invalid data:**
373 +
374 +[[image:image-20230805155428-2.png||height="139" width="726"]]
375 +
376 +
377 +**3) When the sensor is not connected:**
378 +
379 +[[image:image-20230805155515-3.png||height="143" width="725"]]
380 +
381 +
382 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
383 +
384 +
385 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
386 +
387 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
388 +
389 +**Example:**
390 +
391 +If byte[0]&0x01=0x00 : Normal uplink packet.
392 +
393 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
394 +
395 +
396 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
397 +
398 +
399 +Characterize the internal temperature value of the sensor.
400 +
401 +**Example: **
402 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
403 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
404 +
405 +
406 +==== (% style="color:blue" %)**Message Type**(%%) ====
407 +
408 +
409 +(((
410 +For a normal uplink payload, the message type is always 0x01.
411 +)))
412 +
413 +(((
414 +Valid Message Type:
415 +)))
416 +
417 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
418 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
419 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
420 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
421 +
422 +[[image:image-20230805150315-4.png||height="233" width="723"]]
423 +
424 +
425 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
426 +
427 +
428 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
429 +
430 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
431 +
261 261  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
262 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
263 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
433 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
434 +**Size(bytes)**
435 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
436 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
437 +Reserve(0xFF)
438 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
439 +LiDAR temp
440 +)))|(% style="width:85px" %)Unix TimeStamp
264 264  
265 -[[image:1701155150328-206.png]]
442 +**Interrupt flag & Interrupt level:**
266 266  
267 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
444 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
445 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
446 +**Size(bit)**
447 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
448 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
449 +Interrupt flag
450 +)))
268 268  
269 -(% style="color:red" %)**MOD:**
452 +* (((
453 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
454 +)))
270 270  
271 -**Example: ** (0x60>>6) & 0x3f =1
456 +For example, in the US915 band, the max payload for different DR is:
272 272  
273 -**0x01:**  Regularly detect distance and report.
274 -**0x02: ** Uninterrupted measurement (external power supply).
458 +**a) DR0:** max is 11 bytes so one entry of data
275 275  
276 -(% style="color:red" %)**Alarm:**
460 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
277 277  
278 -When the detection distance exceeds the limit, the alarm flag is set to 1.
462 +**c) DR2:** total payload includes 11 entries of data
279 279  
280 -(% style="color:red" %)**Do:**
464 +**d) DR3:** total payload includes 22 entries of data.
281 281  
282 -When the distance exceeds the set threshold, pull the Do pin high.
466 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
283 283  
284 -(% style="color:red" %)**Limit flag:**
285 285  
286 -Mode for setting threshold: **0~~5**
469 +**Downlink:**
287 287  
288 -**0:** does not use upper and lower limits
471 +0x31 64 CC 68 0C 64 CC 69 74 05
289 289  
290 -**1:** Use upper and lower limits
473 +[[image:image-20230805144936-2.png||height="113" width="746"]]
291 291  
292 -**2:** is less than the lower limit value
475 +**Uplink:**
293 293  
294 -**3:** is greater than the lower limit value
477 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
295 295  
296 -**4:** is less than the upper limit
297 297  
298 -**5:** is greater than the upper limit
480 +**Parsed Value:**
299 299  
482 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
300 300  
301 -(% style="color:blue" %)**Upper limit:**
302 302  
303 -The upper limit of the threshold cannot exceed 2000mm.
485 +[360,176,30,High,True,2023-08-04 02:53:00],
304 304  
487 +[355,168,30,Low,False,2023-08-04 02:53:29],
305 305  
306 -(% style="color:blue" %)**Lower limit:**
489 +[245,211,30,Low,False,2023-08-04 02:54:29],
307 307  
308 -The lower limit of the threshold cannot be less than 3mm.
491 +[57,700,30,Low,False,2023-08-04 02:55:29],
309 309  
493 +[361,164,30,Low,True,2023-08-04 02:56:00],
310 310  
311 -== 2.4 Decode payload in The Things Network ==
495 +[337,184,30,Low,False,2023-08-04 02:56:40],
312 312  
497 +[20,4458,30,Low,False,2023-08-04 02:57:40],
313 313  
499 +[362,173,30,Low,False,2023-08-04 02:58:53],
500 +
501 +
502 +**History read from serial port:**
503 +
504 +[[image:image-20230805145056-3.png]]
505 +
506 +
507 +=== 2.3.4 Decode payload in The Things Network ===
508 +
509 +
314 314  While using TTN network, you can add the payload format to decode the payload.
315 315  
316 -[[image:image-20231206143515-1.png||height="534" width="759"]]
512 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
317 317  
318 318  
319 319  (((
... ... @@ -321,11 +321,11 @@
321 321  )))
322 322  
323 323  (((
324 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
520 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
325 325  )))
326 326  
327 327  
328 -== 2.5 ​Show Data in DataCake IoT Server ==
524 +== 2.4 ​Show Data in DataCake IoT Server ==
329 329  
330 330  
331 331  (((
... ... @@ -350,7 +350,7 @@
350 350  
351 351  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
352 352  
353 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
549 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
354 354  
355 355  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
356 356  
... ... @@ -357,23 +357,184 @@
357 357  
358 358  After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
359 359  
360 -[[image:image-20231129100454-2.png||height="501" width="928"]]
556 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
361 361  
362 362  
559 +== 2.5 Datalog Feature ==
560 +
561 +
562 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
563 +
564 +
565 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
566 +
567 +
568 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
569 +
570 +* (((
571 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
572 +)))
573 +* (((
574 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
575 +)))
576 +
577 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
578 +
579 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
580 +
581 +
582 +=== 2.5.2 Unix TimeStamp ===
583 +
584 +
585 +LDS12-LB uses Unix TimeStamp format based on
586 +
587 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
588 +
589 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
590 +
591 +Below is the converter example
592 +
593 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
594 +
595 +
596 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
597 +
598 +
599 +=== 2.5.3 Set Device Time ===
600 +
601 +
602 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
603 +
604 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
605 +
606 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
607 +
608 +
609 +=== 2.5.4 Poll sensor value ===
610 +
611 +
612 +Users can poll sensor values based on timestamps. Below is the downlink command.
613 +
614 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
615 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
616 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
617 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
618 +
619 +(((
620 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
621 +)))
622 +
623 +(((
624 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
625 +)))
626 +
627 +(((
628 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
629 +)))
630 +
631 +(((
632 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
633 +)))
634 +
635 +
363 363  == 2.6 Frequency Plans ==
364 364  
365 365  
366 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
639 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
367 367  
368 368  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
369 369  
370 370  
371 -= 3. Configure DS20L =
644 +== 2.7 LiDAR ToF Measurement ==
372 372  
646 +=== 2.7.1 Principle of Distance Measurement ===
647 +
648 +
649 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
650 +
651 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
652 +
653 +
654 +=== 2.7.2 Distance Measurement Characteristics ===
655 +
656 +
657 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
658 +
659 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
660 +
661 +
662 +(((
663 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
664 +)))
665 +
666 +(((
667 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
668 +)))
669 +
670 +(((
671 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
672 +)))
673 +
674 +
675 +(((
676 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
677 +)))
678 +
679 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
680 +
681 +(((
682 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
683 +)))
684 +
685 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
686 +
687 +(((
688 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
689 +)))
690 +
691 +
692 +=== 2.7.3 Notice of usage ===
693 +
694 +
695 +Possible invalid /wrong reading for LiDAR ToF tech:
696 +
697 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
698 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
699 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
700 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
701 +
702 +=== 2.7.4  Reflectivity of different objects ===
703 +
704 +
705 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
706 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
707 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
708 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
709 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
710 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
711 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
712 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
713 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
714 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
715 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
716 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
717 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
718 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
719 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
720 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
721 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
722 +Unpolished white metal surface
723 +)))|(% style="width:93px" %)130%
724 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
725 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
726 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
727 +
728 += 3. Configure LDS12-LB =
729 +
373 373  == 3.1 Configure Methods ==
374 374  
375 375  
376 -DS20L supports below configure method:
733 +LDS12-LB supports below configure method:
377 377  
378 378  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
379 379  
... ... @@ -395,10 +395,10 @@
395 395  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
396 396  
397 397  
398 -== 3.3 Commands special design for DS20L ==
755 +== 3.3 Commands special design for LDS12-LB ==
399 399  
400 400  
401 -These commands only valid for DS20L, as below:
758 +These commands only valid for LDS12-LB, as below:
402 402  
403 403  
404 404  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -440,7 +440,7 @@
440 440  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
441 441  )))
442 442  * (((
443 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
800 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
444 444  
445 445  
446 446  
... ... @@ -463,7 +463,7 @@
463 463  the mode is 0 =Disable Interrupt
464 464  )))
465 465  |(% style="width:154px" %)(((
466 -AT+INTMOD=3
823 +AT+INTMOD=2
467 467  
468 468  (default)
469 469  )))|(% style="width:196px" %)(((
... ... @@ -484,104 +484,39 @@
484 484  
485 485  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
486 486  
487 -=== 3.3.3 Set work mode ===
844 +=== 3.3.3  Set Power Output Duration ===
488 488  
846 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
489 489  
490 -Feature: Switch working mode
848 +~1. first enable the power output to external sensor,
491 491  
492 -(% style="color:blue" %)**AT Command: AT+MOD**
850 +2. keep it on as per duration, read sensor value and construct uplink payload
493 493  
494 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
495 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
496 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
497 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
498 -OK
499 -Attention:Take effect after ATZ
500 -)))
852 +3. final, close the power output.
501 501  
502 -(% style="color:blue" %)**Downlink Command:**
854 +(% style="color:blue" %)**AT Command: AT+3V3T**
503 503  
504 -* **Example: **0x0A01 ~/~/  Same as AT+MOD=1
505 -
506 -* **Example:** 0x0A02  ~/~/  Same as AT+MOD=2
507 -
508 -=== 3.3.4 Set threshold and threshold mode ===
509 -
510 -
511 -Feature, Set threshold and threshold mode
512 -
513 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
514 -
515 -(% style="color:blue" %)**AT Command: AT+DOL**
516 -
517 517  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
518 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
519 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
520 -0,0,0,0,400
857 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
858 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
521 521  OK
522 -)))
523 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
860 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
861 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
862 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
524 524  
525 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
526 -|(% rowspan="11" style="color:blue; width:120px" %)(((
527 -
864 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
865 +Format: Command Code (0x07) followed by 3 bytes.
528 528  
867 +The first byte is 01,the second and third bytes are the time to turn on.
529 529  
869 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
870 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
871 +* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
530 530  
531 -
532 -
533 -
534 -
535 -
536 -
537 -
538 -**AT+DOL=5,1800,0,0,400**
539 -)))|(% rowspan="6" style="width:240px" %)(((
540 -
541 -
542 -
543 -
544 -
545 -
546 -The first bit sets the limit mode
547 -)))|(% style="width:150px" %)0: Do not use upper and lower limits
548 -|(% style="width:251px" %)1: Use upper and lower limits
549 -|(% style="width:251px" %)2: Less than the lower limit
550 -|(% style="width:251px" %)3: Greater than the lower limit
551 -|(% style="width:251px" %)4: Less than the upper limit
552 -|(% style="width:251px" %)5: Greater than the upper limit
553 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
554 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
555 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
556 -|(% style="width:251px" %)1 Person or object counting statistics
557 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
558 -0~~10000ms
559 -
560 -
561 -)))
562 -
563 -(% style="color:blue" %)**Downlink Command: 0x07**
564 -
565 -Format: Command Code (0x07) followed by 9 bytes.
566 -
567 -If the downlink payload=**07 01 0708 0064 00 0190**, it means set the END Node's limit mode to 0x01,upper limit value to 0x0708=1800(mm), lower limit value to 0x0064=100(mm), to over-limit alarm(0x00) ,the sampling time to 0x0190=400(ms), while type code is 0x07.
568 -
569 -* Example 0: Downlink Payload: 07 00 0000 0000 00 0190  **~-~-->**  AT+MOD=0,0,0,0,400
570 -
571 -* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
572 -
573 -* Example 2: Downlink Payload: 070200000064000190  **~-~-->**  AT+MOD=2,0,100,0,400
574 -
575 -* Example 3: Downlink Payload: 070300000064000190  **~-~-->**  AT+MOD=3,1800,100,0,400
576 -
577 -* Example 4: Downlink Payload: 070407080000000190  **~-~-->**  AT+MOD=4,0,100,0,400
578 -
579 -* Example 5: Downlink Payload: 070507080000000190  **~-~-->**  AT+MOD=5,1800,100,0,400
580 -
581 581  = 4. Battery & Power Consumption =
582 582  
583 583  
584 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
876 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
585 585  
586 586  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
587 587  
... ... @@ -590,7 +590,7 @@
590 590  
591 591  
592 592  (% class="wikigeneratedid" %)
593 -User can change firmware DS20L to:
885 +User can change firmware LDS12-LB to:
594 594  
595 595  * Change Frequency band/ region.
596 596  
... ... @@ -598,7 +598,7 @@
598 598  
599 599  * Fix bugs.
600 600  
601 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
893 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
602 602  
603 603  Methods to Update Firmware:
604 604  
... ... @@ -608,39 +608,12 @@
608 608  
609 609  = 6. FAQ =
610 610  
611 -== 6.1 What is the frequency plan for DS20L? ==
903 +== 6.1 What is the frequency plan for LDS12-LB? ==
612 612  
613 613  
614 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
906 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
615 615  
616 616  
617 -== 6.2 DS20L programming line ==
618 -
619 -
620 -缺图 后续补上
621 -
622 -feature:
623 -
624 -for AT commands
625 -
626 -Update the firmware of DS20L
627 -
628 -Support interrupt mode
629 -
630 -
631 -== 6.3 LiDAR probe position ==
632 -
633 -
634 -[[image:1701155390576-216.png||height="285" width="307"]]
635 -
636 -The black oval hole in the picture is the LiDAR probe.
637 -
638 -
639 -== 6.4 Interface definition ==
640 -
641 -[[image:image-20231128151132-2.png||height="305" width="557"]]
642 -
643 -
644 644  = 7. Trouble Shooting =
645 645  
646 646  == 7.1 AT Command input doesn't work ==
... ... @@ -673,7 +673,7 @@
673 673  = 8. Order Info =
674 674  
675 675  
676 -Part Number: (% style="color:blue" %)**DS20L-XXX**
941 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
677 677  
678 678  (% style="color:red" %)**XXX**(%%): **The default frequency band**
679 679  
... ... @@ -698,7 +698,7 @@
698 698  
699 699  (% style="color:#037691" %)**Package Includes**:
700 700  
701 -* DS20L LoRaWAN Smart Distance Detector x 1
966 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
702 702  
703 703  (% style="color:#037691" %)**Dimension and weight**:
704 704  
1701149922873-259.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701155076393-719.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155150328-206.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155390576-216.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -293.9 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.6 KB
Content
image-20231128151132-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -281.2 KB
Content
image-20231129085201-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -70.6 KB
Content
image-20231129100454-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -70.1 KB
Content
image-20231206143515-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -89.5 KB
Content
image-20231206144950-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -41.0 KB
Content
image-20231206151412-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -58.8 KB
Content
image-20231206154621-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -71.2 KB
Content
image-20231206194804-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -53.7 KB
Content
image-20231206195704-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -64.1 KB
Content
image-20231207142208-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -27.2 KB
Content
image-20231207144600-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -55.4 KB
Content
image-20231207144837-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20231207144856-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20231207145121-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -33.3 KB
Content