Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
From version 130.2
edited by Mengting Qiu
on 2023/12/06 18:46
on 2023/12/06 18:46
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 15 removed)
- 1701149922873-259.png
- 1701152902759-553.png
- 1701152946067-561.png
- 1701155076393-719.png
- 1701155150328-206.png
- 1701155390576-216.png
- image-20231110102635-5.png
- image-20231128133704-1.png
- image-20231128151132-2.png
- image-20231129085201-1.png
- image-20231129100454-2.png
- image-20231206143515-1.png
- image-20231206144950-2.png
- image-20231206151412-3.png
- image-20231206154621-4.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Xiaoling - Content
-
... ... @@ -8,7 +8,7 @@ 8 8 9 9 10 10 11 -**Table of Contents :(% style="display:none" %) (%%)**11 +**Table of Contents:** 12 12 13 13 {{toc/}} 14 14 ... ... @@ -19,69 +19,170 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==22 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.DS20Lcan measurerangebetween3cm ~~ 200cm.25 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 27 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**29 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.31 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 33 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 - [[image:image-20231110102635-5.png||height="402"width="807"]]35 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 37 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 39 +[[image:image-20231110091506-4.png||height="391" width="768"]] 40 + 41 + 38 38 == 1.2 Features == 39 39 40 40 41 -* LoRaWAN Class A protocol 42 -* LiDAR distance detector, range 3 ~~ 200cm 43 -* Periodically detect or continuously detect mode 45 +* LoRaWAN 1.0.3 Class A 46 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 47 +* Ultra-low power consumption 48 +* Laser technology for distance detection 49 +* Measure Distance: 0.1m~~12m 50 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 51 +* Monitor Battery Level 52 +* Support Bluetooth v5.1 and LoRaWAN remote configure 53 +* Support wireless OTA update firmware 44 44 * AT Commands to change parameters 45 -* Remotely configure parameters via LoRaWAN Downlink 46 -* Alarm & Counting mode 47 -* Firmware upgradable via program port or LoRa protocol 48 -* Built-in 2400mAh battery or power by external power source 55 +* Downlink to change configure 56 +* 8500mAh Battery for long term use 49 49 50 - 51 51 == 1.3 Specification == 52 52 53 53 54 -(% style="color:#037691" %)** LiDARSensor:**61 +(% style="color:#037691" %)**Common DC Characteristics:** 55 55 56 -* Operation Temperature: -40 ~~ 80 °C 57 -* Operation Humidity: 0~~99.9%RH (no Dew) 58 -* Storage Temperature: -10 ~~ 45°C 59 -* Measure Range: 3cm~~200cm @ 90% reflectivity 60 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 61 -* ToF FoV: ±9°, Total 18° 62 -* Light source: VCSEL 63 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 64 +* Operating Temperature: -40 ~~ 85°C 63 63 66 +(% style="color:#037691" %)**Probe Specification:** 64 64 65 -== 1.4 Power Consumption == 68 +* Storage temperature:-20℃~~75℃ 69 +* Operating temperature : -20℃~~60℃ 70 +* Measure Distance: 71 +** 0.1m ~~ 12m @ 90% Reflectivity 72 +** 0.1m ~~ 4m @ 10% Reflectivity 73 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 74 +* Distance resolution : 1cm 75 +* Ambient light immunity : 70klux 76 +* Enclosure rating : IP65 77 +* Light source : LED 78 +* Central wavelength : 850nm 79 +* FOV : 3.6° 80 +* Material of enclosure : ABS+PC 81 +* Wire length : 25cm 66 66 83 +(% style="color:#037691" %)**LoRa Spec:** 67 67 68 -(% style="color:#037691" %)**Battery Power Mode:** 85 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 86 +* Max +22 dBm constant RF output vs. 87 +* RX sensitivity: down to -139 dBm. 88 +* Excellent blocking immunity 69 69 70 -* Idle: 0.003 mA @ 3.3v 71 -* Max : 360 mA 90 +(% style="color:#037691" %)**Battery:** 72 72 73 -(% style="color:#037691" %)**Continuously mode**: 92 +* Li/SOCI2 un-chargeable battery 93 +* Capacity: 8500mAh 94 +* Self-Discharge: <1% / Year @ 25°C 95 +* Max continuously current: 130mA 96 +* Max boost current: 2A, 1 second 74 74 75 -* Idle: 21 mA @ 3.3v 76 -* Max : 360 mA 98 +(% style="color:#037691" %)**Power Consumption** 77 77 100 +* Sleep Mode: 5uA @ 3.3v 101 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 78 78 79 -= 2.Configure DS20L toconnect to LoRaWAN network=103 +== 1.4 Applications == 80 80 105 + 106 +* Horizontal distance measurement 107 +* Parking management system 108 +* Object proximity and presence detection 109 +* Intelligent trash can management system 110 +* Robot obstacle avoidance 111 +* Automatic control 112 +* Sewer 113 + 114 +(% style="display:none" %) 115 + 116 +== 1.5 Sleep mode and working mode == 117 + 118 + 119 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 120 + 121 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 122 + 123 + 124 +== 1.6 Button & LEDs == 125 + 126 + 127 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 128 + 129 + 130 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 131 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 132 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 133 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 134 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 135 +))) 136 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 137 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 138 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 139 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 140 +))) 141 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 142 + 143 +== 1.7 BLE connection == 144 + 145 + 146 +LDS12-LB support BLE remote configure. 147 + 148 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 149 + 150 +* Press button to send an uplink 151 +* Press button to active device. 152 +* Device Power on or reset. 153 + 154 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 155 + 156 + 157 +== 1.8 Pin Definitions == 158 + 159 + 160 +[[image:image-20230805144259-1.png||height="413" width="741"]] 161 + 162 +== 1.9 Mechanical == 163 + 164 + 165 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 166 + 167 + 168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 169 + 170 + 171 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 172 + 173 + 174 +(% style="color:blue" %)**Probe Mechanical:** 175 + 176 + 177 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 178 + 179 + 180 += 2. Configure LDS12-LB to connect to LoRaWAN network = 181 + 81 81 == 2.1 How it works == 82 82 83 83 84 -The DS2 0L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.185 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 85 85 86 86 (% style="display:none" %) (%%) 87 87 ... ... @@ -90,14 +90,15 @@ 90 90 91 91 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 92 92 93 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. (% style="display:none" %)194 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 94 94 95 -[[image:image-20231110 102635-5.png||height="402" width="807"]](% style="display:none" %)196 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %) 96 96 97 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 98 98 99 - EachDS20Lisshipped withastickerwith thedefaultdevice EUI asbelow:199 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 100 100 201 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 202 + 101 101 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 102 102 103 103 ... ... @@ -125,11 +125,10 @@ 125 125 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 126 126 127 127 128 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS2 0L230 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 129 129 130 -[[image:image-20231128133704-1.png||height="189" width="441"]] 131 131 132 -Press the button for 5 seconds to activate the DS2 0L.233 +Press the button for 5 seconds to activate the LDS12-LB. 133 133 134 134 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 135 135 ... ... @@ -141,7 +141,7 @@ 141 141 === 2.3.1 Device Status, FPORT~=5 === 142 142 143 143 144 -Users can use the downlink command(**0x26 01**) to ask DS2 0L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.245 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 145 145 146 146 The Payload format is as below. 147 147 ... ... @@ -153,9 +153,9 @@ 153 153 154 154 Example parse in TTNv3 155 155 156 -[[image:image-2023 1206151412-3.png||height="179" width="1070"]]257 +[[image:image-20230805103904-1.png||height="131" width="711"]] 157 157 158 -(% style="color:blue" %)**Sensor Model**(%%): For DS2 0L, this value is 0x21259 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 159 159 160 160 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 161 161 ... ... @@ -209,123 +209,222 @@ 209 209 === 2.3.2 Uplink Payload, FPORT~=2 === 210 210 211 211 212 -==== (% style="color:red" %)**MOD~=1**(%%) ==== 313 +((( 314 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 213 213 214 - Regularlydetect distanceandreport. When the distanceexceedsthelimit, the alarm flagisset to 1, andtheeportcan betriggered by externalinterrupts.316 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 215 215 216 -Uplink Payload totals 10 bytes. 318 +Uplink Payload totals 11 bytes. 319 +))) 217 217 218 218 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 219 -|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4** 220 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count 322 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 323 +**Size(bytes)** 324 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 325 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 326 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 327 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 328 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 329 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 330 +[[Message Type>>||anchor="HMessageType"]] 331 +))) 221 221 222 -[[image:image-2023 1206154621-4.png||height="214" width="1019"]]333 +[[image:image-20230805104104-2.png||height="136" width="754"]] 223 223 224 -(% style="color:blue" %)**Battery Info:** 225 225 226 - CheckthevoltageforDS20L336 +==== (% style="color:blue" %)**Battery Info**(%%) ==== 227 227 228 -Ex1: 0x0E10 = 3600mV 229 229 339 +Check the battery voltage for LDS12-LB. 230 230 231 - (% style="color:blue"%)**MOD&Alarm& Interrupt:**341 +Ex1: 0x0B45 = 2885mV 232 232 233 - (%style="color:red"%)**MOD:**343 +Ex2: 0x0B49 = 2889mV 234 234 235 -**Example: ** (0x60>>6) & 0x3f =1 236 236 237 -**0x01:** Regularly detect distance and report. 238 -**0x02: ** Uninterrupted measurement (external power supply). 346 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ==== 239 239 240 -(% style="color:red" %)**Alarm:** 241 241 242 - Whenthedetectiondistance exceeds thelimit,the alarmflagisset to 1.349 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 243 243 244 -(% style="color:red" %)**Interrupt:** 245 245 246 - Whether it is an externalinterrupt.352 +**Example**: 247 247 354 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 248 248 249 - (%style="color:blue"%)**Distanceinfo:**356 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 250 250 358 + 359 +==== (% style="color:blue" %)**Distance**(%%) ==== 360 + 361 + 362 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 363 + 364 + 251 251 **Example**: 252 252 253 -If payloadis:0708H:distance=0708H =1800 mm367 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 254 254 255 255 256 -(% style="color:blue" %)** SensorState:**370 +==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 257 257 258 -Ex1: 0x00: Normal collection distance 259 259 260 - Ex20x0x:Distance collection iswrong373 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 261 261 262 262 263 - (% style="color:blue" %)**Interript Count:**376 +**Example**: 264 264 265 -If payload is:0 00007D0H:count= 07D0H=2000378 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 266 266 380 +Customers can judge whether they need to adjust the environment based on the signal strength. 267 267 268 268 269 - ====(%style="color:red"%)**MOD~=2**(%%)** ** ====383 +**1) When the sensor detects valid data:** 270 270 271 - Uninterruptedmeasurement.Whenthedistance exceeds the limit, the output IO is set highand reportsare reported every five minutes. The time can be set and powered by an external power supply.Uplink Payloadotals 11bytes.385 +[[image:image-20230805155335-1.png||height="145" width="724"]] 272 272 387 + 388 +**2) When the sensor detects invalid data:** 389 + 390 +[[image:image-20230805155428-2.png||height="139" width="726"]] 391 + 392 + 393 +**3) When the sensor is not connected:** 394 + 395 +[[image:image-20230805155515-3.png||height="143" width="725"]] 396 + 397 + 398 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 399 + 400 + 401 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 402 + 403 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI . 404 + 405 +**Example:** 406 + 407 +If byte[0]&0x01=0x00 : Normal uplink packet. 408 + 409 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet. 410 + 411 + 412 +==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 413 + 414 + 415 +Characterize the internal temperature value of the sensor. 416 + 417 +**Example: ** 418 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 419 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 420 + 421 + 422 +==== (% style="color:blue" %)**Message Type**(%%) ==== 423 + 424 + 425 +((( 426 +For a normal uplink payload, the message type is always 0x01. 427 +))) 428 + 429 +((( 430 +Valid Message Type: 431 +))) 432 + 433 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 434 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 435 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 436 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 437 + 438 +[[image:image-20230805150315-4.png||height="233" width="723"]] 439 + 440 + 441 +=== 2.3.3 Historical measuring distance, FPORT~=3 === 442 + 443 + 444 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 445 + 446 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 447 + 273 273 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 274 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2** 275 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit 449 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 450 +**Size(bytes)** 451 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 452 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 453 +Reserve(0xFF) 454 +)))|Distance|Distance signal strength|(% style="width:88px" %)((( 455 +LiDAR temp 456 +)))|(% style="width:85px" %)Unix TimeStamp 276 276 277 - [[image:1701155150328-206.png]]458 +**Interrupt flag & Interrupt level:** 278 278 279 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:** 460 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 461 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 462 +**Size(bit)** 463 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 464 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 465 +Interrupt flag 466 +))) 280 280 281 -(% style="color:red" %)**MOD:** 468 +* ((( 469 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 470 +))) 282 282 283 - **Example:**(0x60>>6)&0x3f=1472 +For example, in the US915 band, the max payload for different DR is: 284 284 285 -**0x01:** Regularly detect distance and report. 286 -**0x02: ** Uninterrupted measurement (external power supply). 474 +**a) DR0:** max is 11 bytes so one entry of data 287 287 288 - (%style="color:red"%)**Alarm:**476 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 289 289 290 - Whenthe detectiondistance exceedsthelimit, thealarm flagisset to1.478 +**c) DR2:** total payload includes 11 entries of data 291 291 292 - (%style="color:red"%)**Do:**480 +**d) DR3:** total payload includes 22 entries of data. 293 293 294 - Whendistanceexceedsthesetthreshold,pull theDopinhigh.482 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 295 295 296 -(% style="color:red" %)**Limit flag:** 297 297 298 - Mode for setting threshold:0~~5**485 +**Downlink:** 299 299 300 - **0:**doesnotuseupperandlowerlimits487 +0x31 64 CC 68 0C 64 CC 69 74 05 301 301 302 - **1:** Useupper and lowerlimits489 +[[image:image-20230805144936-2.png||height="113" width="746"]] 303 303 304 -** 2:**is less than the lower limit value491 +**Uplink:** 305 305 306 - **3:**isgreaterthanthelowerlimitvalue493 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 307 307 308 -**4:** is less than the upper limit 309 309 310 -** 5:** is greaterthan the upper limit496 +**Parsed Value:** 311 311 498 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 312 312 313 -(% style="color:blue" %)**Upper limit:** 314 314 315 - The upper limit of the threshold cannot exceed2000mm.501 +[360,176,30,High,True,2023-08-04 02:53:00], 316 316 503 +[355,168,30,Low,False,2023-08-04 02:53:29], 317 317 318 - (% style="color:blue" %)**Lowerlimit:**505 +[245,211,30,Low,False,2023-08-04 02:54:29], 319 319 320 - The lower limit of the threshold cannot beless than3mm.507 +[57,700,30,Low,False,2023-08-04 02:55:29], 321 321 509 +[361,164,30,Low,True,2023-08-04 02:56:00], 322 322 323 - == 2.4Decode payload in The ThingsNetwork==511 +[337,184,30,Low,False,2023-08-04 02:56:40], 324 324 513 +[20,4458,30,Low,False,2023-08-04 02:57:40], 325 325 515 +[362,173,30,Low,False,2023-08-04 02:58:53], 516 + 517 + 518 +**History read from serial port:** 519 + 520 +[[image:image-20230805145056-3.png]] 521 + 522 + 523 +=== 2.3.4 Decode payload in The Things Network === 524 + 525 + 326 326 While using TTN network, you can add the payload format to decode the payload. 327 327 328 -[[image:i mage-20231206143515-1.png||height="534" width="759"]]528 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 329 329 330 330 331 331 ((( ... ... @@ -333,11 +333,11 @@ 333 333 ))) 334 334 335 335 ((( 336 -DS2 0L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]536 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 337 337 ))) 338 338 339 339 340 -== 2. 5Show Data in DataCake IoT Server ==540 +== 2.4 Show Data in DataCake IoT Server == 341 341 342 342 343 343 ((( ... ... @@ -362,7 +362,7 @@ 362 362 363 363 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 364 364 365 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS2 0L and add DevEUI.**565 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 366 366 367 367 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 368 368 ... ... @@ -369,23 +369,184 @@ 369 369 370 370 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 371 371 372 -[[image:image-202 31129100454-2.png||height="501" width="928"]]572 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 373 373 374 374 575 +== 2.5 Datalog Feature == 576 + 577 + 578 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 579 + 580 + 581 +=== 2.5.1 Ways to get datalog via LoRaWAN === 582 + 583 + 584 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 585 + 586 +* ((( 587 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 588 +))) 589 +* ((( 590 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 591 +))) 592 + 593 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 594 + 595 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 596 + 597 + 598 +=== 2.5.2 Unix TimeStamp === 599 + 600 + 601 +LDS12-LB uses Unix TimeStamp format based on 602 + 603 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 604 + 605 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 606 + 607 +Below is the converter example 608 + 609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 610 + 611 + 612 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 613 + 614 + 615 +=== 2.5.3 Set Device Time === 616 + 617 + 618 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 619 + 620 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 621 + 622 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 623 + 624 + 625 +=== 2.5.4 Poll sensor value === 626 + 627 + 628 +Users can poll sensor values based on timestamps. Below is the downlink command. 629 + 630 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 631 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 632 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 633 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 634 + 635 +((( 636 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval. 637 +))) 638 + 639 +((( 640 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]] 641 +))) 642 + 643 +((( 644 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data 645 +))) 646 + 647 +((( 648 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 649 +))) 650 + 651 + 375 375 == 2.6 Frequency Plans == 376 376 377 377 378 -The DS2 0L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.655 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 379 379 380 380 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 381 381 382 382 383 -= 3.ConfigureDS20L=660 +== 2.7 LiDAR ToF Measurement == 384 384 662 +=== 2.7.1 Principle of Distance Measurement === 663 + 664 + 665 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 666 + 667 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 668 + 669 + 670 +=== 2.7.2 Distance Measurement Characteristics === 671 + 672 + 673 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 674 + 675 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 676 + 677 + 678 +((( 679 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 680 +))) 681 + 682 +((( 683 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 684 +))) 685 + 686 +((( 687 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 688 +))) 689 + 690 + 691 +((( 692 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 693 +))) 694 + 695 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 696 + 697 +((( 698 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 699 +))) 700 + 701 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 702 + 703 +((( 704 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 705 +))) 706 + 707 + 708 +=== 2.7.3 Notice of usage === 709 + 710 + 711 +Possible invalid /wrong reading for LiDAR ToF tech: 712 + 713 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 714 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 715 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 716 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 717 + 718 +=== 2.7.4 Reflectivity of different objects === 719 + 720 + 721 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 722 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 723 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 724 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 725 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 726 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 727 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 728 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 729 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 730 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 731 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 732 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 733 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 734 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 735 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 736 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 737 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 738 +Unpolished white metal surface 739 +)))|(% style="width:93px" %)130% 740 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 741 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 742 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 743 + 744 += 3. Configure LDS12-LB = 745 + 385 385 == 3.1 Configure Methods == 386 386 387 387 388 -DS2 0L supports below configure method:749 +LDS12-LB supports below configure method: 389 389 390 390 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 391 391 ... ... @@ -393,7 +393,6 @@ 393 393 394 394 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 395 395 396 - 397 397 == 3.2 General Commands == 398 398 399 399 ... ... @@ -408,10 +408,10 @@ 408 408 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 409 409 410 410 411 -== 3.3 Commands special design for DS2 0L ==771 +== 3.3 Commands special design for LDS12-LB == 412 412 413 413 414 -These commands only valid for DS2 0L, as below:774 +These commands only valid for LDS12-LB, as below: 415 415 416 416 417 417 === 3.3.1 Set Transmit Interval Time === ... ... @@ -453,7 +453,7 @@ 453 453 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 454 454 ))) 455 455 * ((( 456 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 816 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 457 457 458 458 459 459 ... ... @@ -476,7 +476,7 @@ 476 476 the mode is 0 =Disable Interrupt 477 477 ))) 478 478 |(% style="width:154px" %)((( 479 -AT+INTMOD= 3839 +AT+INTMOD=2 480 480 481 481 (default) 482 482 )))|(% style="width:196px" %)((( ... ... @@ -497,106 +497,39 @@ 497 497 498 498 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 499 499 860 +=== 3.3.3 Set Power Output Duration === 500 500 501 - ===3.3.3Set workmode===862 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 502 502 864 +~1. first enable the power output to external sensor, 503 503 504 - Feature:Switchworkingmode866 +2. keep it on as per duration, read sensor value and construct uplink payload 505 505 506 - (%style="color:blue"%)**ATCommand:AT+MOD**868 +3. final, close the power output. 507 507 508 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 509 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response** 510 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK 511 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)((( 512 -OK 513 -Attention:Take effect after ATZ 514 -))) 870 +(% style="color:blue" %)**AT Command: AT+3V3T** 515 515 516 -(% style="color:blue" %)**Downlink Command:** 517 - 518 -* **Example: **0x0A01 ~/~/ Same as AT+MOD=1 519 - 520 -* **Example:** 0x0A02 ~/~/ Same as AT+MOD=2 521 - 522 - 523 -=== 3.3.4 Set threshold and threshold mode === 524 - 525 - 526 -Feature, Set threshold and threshold mode 527 - 528 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms. 529 - 530 -(% style="color:blue" %)**AT Command: AT+DOL** 531 - 532 532 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 533 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response** 534 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)((( 535 -0,0,0,0,400 873 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 874 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 536 536 OK 537 -))) 538 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK 876 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 877 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 878 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 539 539 540 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 541 -|(% rowspan="11" style="color:blue; width:120px" %)((( 542 - 880 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 881 +Format: Command Code (0x07) followed by 3 bytes. 543 543 883 +The first byte is 01,the second and third bytes are the time to turn on. 544 544 885 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 886 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 887 +* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 545 545 546 - 547 - 548 - 549 - 550 - 551 - 552 - 553 -**AT+DOL=5,1800,0,0,400** 554 -)))|(% rowspan="6" style="width:240px" %)((( 555 - 556 - 557 - 558 - 559 - 560 - 561 -The first bit sets the limit mode 562 -)))|(% style="width:150px" %)0: Do not use upper and lower limits 563 -|(% style="width:251px" %)1: Use upper and lower limits 564 -|(% style="width:251px" %)2: Less than the lower limit 565 -|(% style="width:251px" %)3: Greater than the lower limit 566 -|(% style="width:251px" %)4: Less than the upper limit 567 -|(% style="width:251px" %)5: Greater than the upper limit 568 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM 569 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM 570 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high 571 -|(% style="width:251px" %)1 Person or object counting statistics 572 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)((( 573 -0~~10000ms 574 - 575 - 576 -))) 577 - 578 - 579 -(% style="color:blue" %)**Downlink Command: 0x07** 580 - 581 -Format: Command Code (0x07) followed by 9bytes. 582 - 583 -* Example 0: Downlink Payload: 070000000000000190 **~-~-->** AT+MOD=0,0,0,0,400 584 - 585 -* Example 1: Downlink Payload: 070107080064000190 **~-~-->** AT+MOD=1,1800,100,0,400 586 - 587 -* Example 2: Downlink Payload: 070200000064000190 **~-~-->** AT+MOD=2,0,100,0,400 588 - 589 -* Example 3: Downlink Payload: 070300000064000190 **~-~-->** AT+MOD=3,1800,100,0,400 590 - 591 -* Example 4: Downlink Payload: 070407080000000190 **~-~-->** AT+MOD=4,0,100,0,400 592 - 593 -* Example 5: Downlink Payload: 070507080000000190 **~-~-->** AT+MOD=5,1800,100,0,400 594 - 595 - 596 596 = 4. Battery & Power Consumption = 597 597 598 598 599 -DS2 0L usebuilt-in2400mAhnon-chargeablebatteryfor long-term use upto several years*. See below link for detail information about the battery info and how to replace.892 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 600 600 601 601 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 602 602 ... ... @@ -605,7 +605,7 @@ 605 605 606 606 607 607 (% class="wikigeneratedid" %) 608 -User can change firmware DS2 0L to:901 +User can change firmware LDS12-LB to: 609 609 610 610 * Change Frequency band/ region. 611 611 ... ... @@ -613,7 +613,7 @@ 613 613 614 614 * Fix bugs. 615 615 616 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/ zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**909 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 617 617 618 618 Methods to Update Firmware: 619 619 ... ... @@ -621,42 +621,14 @@ 621 621 622 622 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 623 623 624 - 625 625 = 6. FAQ = 626 626 627 -== 6.1 What is the frequency plan for DS2 0L? ==919 +== 6.1 What is the frequency plan for LDS12-LB? == 628 628 629 629 630 -DS2 0L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]922 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 631 631 632 632 633 -== 6.2 DS20L programming line == 634 - 635 - 636 -缺图 后续补上 637 - 638 -feature: 639 - 640 -for AT commands 641 - 642 -Update the firmware of DS20L 643 - 644 -Support interrupt mode 645 - 646 - 647 -== 6.3 LiDAR probe position == 648 - 649 - 650 -[[image:1701155390576-216.png||height="285" width="307"]] 651 - 652 -The black oval hole in the picture is the LiDAR probe. 653 - 654 - 655 -== 6.4 Interface definition == 656 - 657 -[[image:image-20231128151132-2.png||height="305" width="557"]] 658 - 659 - 660 660 = 7. Trouble Shooting = 661 661 662 662 == 7.1 AT Command input doesn't work == ... ... @@ -689,7 +689,7 @@ 689 689 = 8. Order Info = 690 690 691 691 692 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**957 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 693 693 694 694 (% style="color:red" %)**XXX**(%%): **The default frequency band** 695 695 ... ... @@ -709,13 +709,12 @@ 709 709 710 710 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 711 711 712 - 713 713 = 9. Packing Info = 714 714 715 715 716 716 (% style="color:#037691" %)**Package Includes**: 717 717 718 -* DS2 0L LoRaWANSmartDistanceDetector x 1982 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 719 719 720 720 (% style="color:#037691" %)**Dimension and weight**: 721 721 ... ... @@ -727,7 +727,6 @@ 727 727 728 728 * Weight / pcs : g 729 729 730 - 731 731 = 10. Support = 732 732 733 733
- 1701149922873-259.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -24.5 KB - Content
- 1701152902759-553.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -52.2 KB - Content
- 1701152946067-561.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -52.2 KB - Content
- 1701155076393-719.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -54.6 KB - Content
- 1701155150328-206.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -54.6 KB - Content
- 1701155390576-216.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -293.9 KB - Content
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -84.7 KB - Content
- image-20231128133704-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -190.6 KB - Content
- image-20231128151132-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -281.2 KB - Content
- image-20231129085201-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.6 KB - Content
- image-20231129100454-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.1 KB - Content
- image-20231206143515-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -89.5 KB - Content
- image-20231206144950-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -41.0 KB - Content
- image-20231206151412-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -58.8 KB - Content
- image-20231206154621-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.2 KB - Content