Last modified by Mengting Qiu on 2023/12/14 11:15

From version 125.6
edited by Xiaoling
on 2023/11/29 09:07
Change comment: There is no comment for this version
To version 84.3
edited by Xiaoling
on 2023/06/15 16:41
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,33 +19,41 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 +[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +
40 +
38 38  == 1.2 ​Features ==
39 39  
40 40  
41 -* LoRaWAN Class A protocol
42 -* LiDAR distance detector, range 3 ~~ 200cm
43 -* Periodically detect or continuously detect mode
44 +* LoRaWAN 1.0.3 Class A
45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 +* Ultra-low power consumption
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
51 +* Support Bluetooth v5.1 and LoRaWAN remote configure
52 +* Support wireless OTA update firmware
44 44  * AT Commands to change parameters
45 -* Remotely configure parameters via LoRaWAN Downlink
46 -* Alarm & Counting mode
47 -* Firmware upgradable via program port or LoRa protocol
48 -* Built-in 2400mAh battery or power by external power source
54 +* Downlink to change configure
55 +* 8500mAh Battery for long term use
49 49  
50 50  
51 51  
... ... @@ -52,39 +52,137 @@
52 52  == 1.3 Specification ==
53 53  
54 54  
55 -(% style="color:#037691" %)**LiDAR Sensor:**
62 +(% style="color:#037691" %)**Common DC Characteristics:**
56 56  
57 -* Operation Temperature: -40 ~~ 80 °C
58 -* Operation Humidity: 0~~99.9%RH (no Dew)
59 -* Storage Temperature: -10 ~~ 45°C
60 -* Measure Range: 3cm~~200cm @ 90% reflectivity
61 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 -* ToF FoV: ±9°, Total 18°
63 -* Light source: VCSEL
64 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
65 +* Operating Temperature: -40 ~~ 85°C
64 64  
67 +(% style="color:#037691" %)**Probe Specification:**
65 65  
69 +* Storage temperature:-20℃~~75℃
70 +* Operating temperature : -20℃~~60℃
71 +* Measure Distance:
72 +** 0.1m ~~ 12m @ 90% Reflectivity
73 +** 0.1m ~~ 4m @ 10% Reflectivity
74 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 +* Distance resolution : 5mm
76 +* Ambient light immunity : 70klux
77 +* Enclosure rating : IP65
78 +* Light source : LED
79 +* Central wavelength : 850nm
80 +* FOV : 3.6°
81 +* Material of enclosure : ABS+PC
82 +* Wire length : 25cm
66 66  
67 -== 1.4 Power Consumption ==
84 +(% style="color:#037691" %)**LoRa Spec:**
68 68  
86 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
87 +* Max +22 dBm constant RF output vs.
88 +* RX sensitivity: down to -139 dBm.
89 +* Excellent blocking immunity
69 69  
70 -(% style="color:#037691" %)**Battery Power Mode:**
91 +(% style="color:#037691" %)**Battery:**
71 71  
72 -* Idle: 0.003 mA @ 3.3v
73 -* Max : 360 mA
93 +* Li/SOCI2 un-chargeable battery
94 +* Capacity: 8500mAh
95 +* Self-Discharge: <1% / Year @ 25°C
96 +* Max continuously current: 130mA
97 +* Max boost current: 2A, 1 second
74 74  
75 -(% style="color:#037691" %)**Continuously mode**:
99 +(% style="color:#037691" %)**Power Consumption**
76 76  
77 -* Idle: 21 mA @ 3.3v
78 -* Max : 360 mA
101 +* Sleep Mode: 5uA @ 3.3v
102 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
80 80  
81 81  
82 -= 2. Configure DS20L to connect to LoRaWAN network =
106 +== 1.4 Applications ==
83 83  
108 +
109 +* Horizontal distance measurement
110 +* Parking management system
111 +* Object proximity and presence detection
112 +* Intelligent trash can management system
113 +* Robot obstacle avoidance
114 +* Automatic control
115 +* Sewer
116 +
117 +
118 +
119 +(% style="display:none" %)
120 +
121 +== 1.5 Sleep mode and working mode ==
122 +
123 +
124 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
125 +
126 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
127 +
128 +
129 +== 1.6 Button & LEDs ==
130 +
131 +
132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
133 +
134 +
135 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
137 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
140 +)))
141 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
142 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
143 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
144 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
145 +)))
146 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
147 +
148 +
149 +
150 +== 1.7 BLE connection ==
151 +
152 +
153 +LDS12-LB support BLE remote configure.
154 +
155 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
156 +
157 +* Press button to send an uplink
158 +* Press button to active device.
159 +* Device Power on or reset.
160 +
161 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
162 +
163 +
164 +== 1.8 Pin Definitions ==
165 +
166 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
167 +
168 +
169 +== 1.9 Mechanical ==
170 +
171 +
172 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
173 +
174 +
175 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
176 +
177 +
178 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
179 +
180 +
181 +(% style="color:blue" %)**Probe Mechanical:**
182 +
183 +
184 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
185 +
186 +
187 += 2. Configure LDS12-LB to connect to LoRaWAN network =
188 +
84 84  == 2.1 How it works ==
85 85  
86 86  
87 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
192 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
88 88  
89 89  (% style="display:none" %) (%%)
90 90  
... ... @@ -93,14 +93,15 @@
93 93  
94 94  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
95 95  
96 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
201 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
97 97  
98 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
203 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
99 99  
100 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
101 101  
102 -Each DS20L is shipped with a sticker with the default device EUI as below:
206 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
103 103  
208 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
209 +
104 104  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
105 105  
106 106  
... ... @@ -128,11 +128,10 @@
128 128  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
129 129  
130 130  
131 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
237 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
132 132  
133 -[[image:image-20231128133704-1.png||height="189" width="441"]]
134 134  
135 -Press the button for 5 seconds to activate the DS20L.
240 +Press the button for 5 seconds to activate the LDS12-LB.
136 136  
137 137  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 138  
... ... @@ -141,254 +141,356 @@
141 141  
142 142  == 2.3 ​Uplink Payload ==
143 143  
144 -=== 2.3.1 Device Status, FPORT~=5 ===
145 145  
250 +(((
251 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
252 +)))
146 146  
147 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
254 +(((
255 +Uplink payload includes in total 11 bytes.
256 +)))
148 148  
149 -The Payload format is as below.
150 -
151 151  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
152 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
259 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
153 153  **Size(bytes)**
154 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
155 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
261 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
262 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
263 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
264 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
265 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
266 +)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
267 +[[Message Type>>||anchor="H2.3.7MessageType"]]
268 +)))
156 156  
157 -Example parse in TTNv3
270 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
158 158  
159 -[[image:1701149922873-259.png]]
160 160  
161 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
273 +=== 2.3.1 Battery Info ===
162 162  
163 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
164 164  
165 -(% style="color:blue" %)**Frequency Band**:
276 +Check the battery voltage for LDS12-LB.
166 166  
167 -0x01: EU868
278 +Ex1: 0x0B45 = 2885mV
168 168  
169 -0x02: US915
280 +Ex2: 0x0B49 = 2889mV
170 170  
171 -0x03: IN865
172 172  
173 -0x04: AU915
283 +=== 2.3.2 DS18B20 Temperature sensor ===
174 174  
175 -0x05: KZ865
176 176  
177 -0x06: RU864
286 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
178 178  
179 -0x07: AS923
180 180  
181 -0x08: AS923-1
289 +**Example**:
182 182  
183 -0x09: AS923-2
291 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
184 184  
185 -0x0a: AS923-3
293 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
186 186  
187 -0x0b: CN470
188 188  
189 -0x0c: EU433
296 +=== 2.3.3 Distance ===
190 190  
191 -0x0d: KR920
192 192  
193 -0x0e: MA869
299 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
194 194  
195 -(% style="color:blue" %)**Sub-Band**:
196 196  
197 -AU915 and US915:value 0x00 ~~ 0x08
302 +**Example**:
198 198  
199 -CN470: value 0x0B ~~ 0x0C
304 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
200 200  
201 -Other Bands: Always 0x00
202 202  
203 -(% style="color:blue" %)**Battery Info**:
307 +=== 2.3.4 Distance signal strength ===
204 204  
205 -Check the battery voltage.
206 206  
207 -Ex1: 0x0B45 = 2885mV
310 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
208 208  
209 -Ex2: 0x0B49 = 2889mV
210 210  
313 +**Example**:
211 211  
212 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
315 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
213 213  
317 +Customers can judge whether they need to adjust the environment based on the signal strength.
214 214  
215 -==== (% style="color:red" %)**MOD~=1**(%%) ====
216 216  
217 -Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
320 +=== 2.3.5 Interrupt Pin ===
218 218  
219 -Uplink Payload totals 10 bytes.
220 220  
221 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
222 -|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4**
223 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
323 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
224 224  
225 -[[image:1701155076393-719.png]]
325 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
226 226  
227 -(% style="color:blue" %)**Battery Info:**
327 +**Example:**
228 228  
229 -Check the battery voltage for DS20L
329 +0x00: Normal uplink packet.
230 230  
231 -Ex1: 0x0E10 = 3600mV
331 +0x01: Interrupt Uplink Packet.
232 232  
233 233  
234 -(% style="color:blue" %)**MOD & Alarm & Interrupt:**
334 +=== 2.3.6 LiDAR temp ===
235 235  
236 -(% style="color:red" %)**MOD:**
237 237  
238 -**Example: ** (0x60>>6) & 0x3f =1
337 +Characterize the internal temperature value of the sensor.
239 239  
240 -**0x01:**  Regularly detect distance and report.
241 -**0x02: ** Uninterrupted measurement (external power supply).
339 +**Example: **
340 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
341 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
242 242  
243 -(% style="color:red" %)**Alarm:**
244 244  
245 -When the detection distance exceeds the limit, the alarm flag is set to 1.
344 +=== 2.3.7 Message Type ===
246 246  
247 -(% style="color:red" %)**Interrupt:**
248 248  
249 -Whether it is an external interrupt.
347 +(((
348 +For a normal uplink payload, the message type is always 0x01.
349 +)))
250 250  
351 +(((
352 +Valid Message Type:
353 +)))
251 251  
252 -(% style="color:blue" %)**Distance info:**
355 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
356 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
357 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
358 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
253 253  
254 -**Example**:
255 255  
256 -If payload is: 0708H: distance = 0708H = 1800 mm
257 257  
362 +=== 2.3.8 Decode payload in The Things Network ===
258 258  
259 -(% style="color:blue" %)**Sensor State:**
260 260  
261 -Ex1: 0x00: Normal collection distance
365 +While using TTN network, you can add the payload format to decode the payload.
262 262  
263 -Ex2 0x0x: Distance collection is wrong
367 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
264 264  
265 265  
266 -(% style="color:blue" %)**Interript Count:**
370 +(((
371 +The payload decoder function for TTN is here:
372 +)))
267 267  
268 -If payload is:000007D0H: count = 07D0H =2000
374 +(((
375 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
376 +)))
269 269  
270 270  
379 +== 2.4 Uplink Interval ==
271 271  
272 -==== (% style="color:red" %)**MOD~=2**(%%)** ** ====
273 273  
274 -Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes.
382 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
275 275  
276 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
277 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
278 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
279 279  
280 -[[image:1701155150328-206.png]]
385 +== 2.5 ​Show Data in DataCake IoT Server ==
281 281  
282 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
283 283  
284 -(% style="color:red" %)**MOD:**
388 +(((
389 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
390 +)))
285 285  
286 -**Example: ** (0x60>>6) & 0x3f =1
287 287  
288 -**0x01:**  Regularly detect distance and report.
289 -**0x02: ** Uninterrupted measurement (external power supply).
393 +(((
394 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
395 +)))
290 290  
291 -(% style="color:red" %)**Alarm:**
397 +(((
398 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
399 +)))
292 292  
293 -When the detection distance exceeds the limit, the alarm flag is set to 1.
294 294  
295 -(% style="color:red" %)**Do:**
402 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
296 296  
297 -When the distance exceeds the set threshold, pull the Do pin high.
298 298  
299 -(% style="color:red" %)**Limit flag:**
405 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
300 300  
301 -Mode for setting threshold: **0~~5**
302 302  
303 -**0:** does not use upper and lower limits
408 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
304 304  
305 -**1:** Use upper and lower limits
410 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
306 306  
307 -**2:** is less than the lower limit value
412 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
308 308  
309 -**3:** is greater than the lower limit value
310 310  
311 -**4:** is less than the upper limit
415 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
312 312  
313 -**5:** is greater than the upper limit
417 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
314 314  
315 315  
316 -(% style="color:blue" %)**Upper limit:**
420 +== 2.6 Datalog Feature ==
317 317  
318 -The upper limit of the threshold cannot exceed 2000mm.
319 319  
423 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
320 320  
321 -(% style="color:blue" %)**Lower limit:**
322 322  
323 -The lower limit of the threshold cannot be less than 3mm.
426 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
324 324  
325 325  
326 -=== 2.3.3 Decode payload in The Things Network ===
429 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
327 327  
431 +* (((
432 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
433 +)))
434 +* (((
435 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
436 +)))
328 328  
329 -While using TTN network, you can add the payload format to decode the payload.
438 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
330 330  
331 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
332 332  
333 333  
443 +=== 2.6.2 Unix TimeStamp ===
444 +
445 +
446 +LDS12-LB uses Unix TimeStamp format based on
447 +
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
449 +
450 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
451 +
452 +Below is the converter example
453 +
454 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
455 +
456 +
457 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
458 +
459 +
460 +=== 2.6.3 Set Device Time ===
461 +
462 +
463 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
464 +
465 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
466 +
467 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
468 +
469 +
470 +=== 2.6.4 Poll sensor value ===
471 +
472 +
473 +Users can poll sensor values based on timestamps. Below is the downlink command.
474 +
475 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
476 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
477 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
478 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
479 +
334 334  (((
335 -The payload decoder function for TTN is here:
481 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
336 336  )))
337 337  
338 338  (((
339 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
485 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
340 340  )))
341 341  
488 +(((
489 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
490 +)))
342 342  
343 -== 2.4 ​Show Data in DataCake IoT Server ==
492 +(((
493 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
494 +)))
344 344  
345 345  
497 +== 2.7 Frequency Plans ==
498 +
499 +
500 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
501 +
502 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
503 +
504 +
505 +== 2.8 LiDAR ToF Measurement ==
506 +
507 +=== 2.8.1 Principle of Distance Measurement ===
508 +
509 +
510 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
511 +
512 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
513 +
514 +
515 +=== 2.8.2 Distance Measurement Characteristics ===
516 +
517 +
518 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
519 +
520 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
521 +
522 +
346 346  (((
347 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
524 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
348 348  )))
349 349  
350 -
351 351  (((
352 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
528 +(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
353 353  )))
354 354  
355 355  (((
356 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
532 +(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
357 357  )))
358 358  
359 359  
360 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
536 +(((
537 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
538 +)))
361 361  
540 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
362 362  
363 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
542 +(((
543 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
544 +)))
364 364  
546 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
365 365  
366 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
548 +(((
549 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
550 +)))
367 367  
368 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
369 369  
370 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
553 +=== 2.8.3 Notice of usage ===
371 371  
372 372  
373 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
556 +Possible invalid /wrong reading for LiDAR ToF tech:
374 374  
375 -[[image:image-20231129085201-1.png||height="515" width="961"]]
558 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
559 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
560 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
561 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
376 376  
377 377  
378 -== 2.5 Frequency Plans ==
379 379  
565 +=== 2.8.4  Reflectivity of different objects ===
380 380  
381 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
382 382  
383 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
568 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
569 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
570 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
571 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
572 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
573 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
574 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
575 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
576 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
577 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
578 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
579 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
580 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
581 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
582 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
583 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
584 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
585 +Unpolished white metal surface
586 +)))|(% style="width:93px" %)130%
587 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
588 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
589 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
384 384  
385 385  
386 -= 3. Configure DS20L =
387 387  
593 += 3. Configure LDS12-LB =
594 +
388 388  == 3.1 Configure Methods ==
389 389  
390 390  
391 -DS20L supports below configure method:
598 +LDS12-LB supports below configure method:
392 392  
393 393  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
394 394  
... ... @@ -412,10 +412,10 @@
412 412  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
413 413  
414 414  
415 -== 3.3 Commands special design for DS20L ==
622 +== 3.3 Commands special design for LDS12-LB ==
416 416  
417 417  
418 -These commands only valid for DS20L, as below:
625 +These commands only valid for LDS12-LB, as below:
419 419  
420 420  
421 421  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -457,7 +457,7 @@
457 457  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
458 458  )))
459 459  * (((
460 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
667 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
461 461  
462 462  
463 463  
... ... @@ -466,9 +466,9 @@
466 466  === 3.3.2 Set Interrupt Mode ===
467 467  
468 468  
469 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
676 +Feature, Set Interrupt mode for PA8 of pin.
470 470  
471 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
678 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
472 472  
473 473  (% style="color:blue" %)**AT Command: AT+INTMOD**
474 474  
... ... @@ -479,11 +479,7 @@
479 479  OK
480 480  the mode is 0 =Disable Interrupt
481 481  )))
482 -|(% style="width:154px" %)(((
483 -AT+INTMOD=3
484 -
485 -(default)
486 -)))|(% style="width:196px" %)(((
689 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
487 487  Set Transmit Interval
488 488  0. (Disable Interrupt),
489 489  ~1. (Trigger by rising and falling edge)
... ... @@ -503,102 +503,87 @@
503 503  
504 504  
505 505  
506 -=== 3.3.3 Set work mode ===
709 +=== 3.3.3 Get Firmware Version Info ===
507 507  
508 508  
509 -Feature: Switch working mode
712 +Feature: use downlink to get firmware version.
510 510  
511 -(% style="color:blue" %)**AT Command: AT+MOD**
714 +(% style="color:blue" %)**Downlink Command: 0x26**
512 512  
513 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
514 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
515 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
516 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
517 -OK
518 -Attention:Take effect after ATZ
519 -)))
716 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
717 +|(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)**
718 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
520 520  
521 -(% style="color:blue" %)**Downlink Command:**
720 +* Reply to the confirmation package: 26 01
721 +* Reply to non-confirmed packet: 26 00
522 522  
523 -* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
723 +Device will send an uplink after got this downlink command. With below payload:
524 524  
525 -* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
725 +Configures info payload:
526 526  
527 -
528 -
529 -=== 3.3.4 Set threshold and threshold mode ===
530 -
531 -
532 -Feature, Set threshold and threshold mode
533 -
534 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
535 -
536 -(% style="color:blue" %)**AT Command: AT+DOL**
537 -
538 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
539 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
540 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
541 -0,0,0,0,400
542 -OK
727 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
728 +|=(% style="background-color:#4F81BD;color:white" %)(((
729 +**Size(bytes)**
730 +)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
731 +|**Value**|Software Type|(((
732 +Frequency Band
733 +)))|Sub-band|(((
734 +Firmware Version
735 +)))|Sensor Type|Reserve|(((
736 +[[Message Type>>||anchor="H2.3.7MessageType"]]
737 +Always 0x02
543 543  )))
544 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
545 545  
740 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
546 546  
742 +(% style="color:#037691" %)**Frequency Band**:
547 547  
548 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
549 -|(% rowspan="11" style="color:blue; width:120px" %)(((
550 -
744 +0x01: EU868
551 551  
746 +0x02: US915
552 552  
748 +0x03: IN865
553 553  
750 +0x04: AU915
554 554  
752 +0x05: KZ865
555 555  
754 +0x06: RU864
556 556  
756 +0x07: AS923
557 557  
758 +0x08: AS923-1
558 558  
760 +0x09: AS923-2
559 559  
762 +0xa0: AS923-3
560 560  
561 -**AT+DOL=5,1800,0,0,400**
562 -)))|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits
563 -|(% style="width:251px" %)1: Use upper and lower limits
564 -|(% style="width:251px" %)2: Less than the lower limit
565 -|(% style="width:251px" %)3: Greater than the lower limit
566 -|(% style="width:251px" %)4: Less than the upper limit
567 -|(% style="width:251px" %)5: Greater than the upper limit
568 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
569 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
570 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
571 -|(% style="width:251px" %)1 Person or object counting statistics
572 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
573 -0~~10000ms
574 574  
575 -
576 -)))
765 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
577 577  
578 -
767 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
579 579  
580 -(% style="color:blue" %)**Downlink Command: 0x07**
769 +(% style="color:#037691" %)**Sensor Type**:
581 581  
582 -Format: Command Code (0x07) followed by 9bytes.
771 +0x01: LSE01
583 583  
584 -* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
773 +0x02: LDDS75
585 585  
586 -* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
775 +0x03: LDDS20
587 587  
588 -* Example 2: Downlink Payload: 070200000064000190  **~-~-->**  AT+MOD=2,0,100,0,400
777 +0x04: LLMS01
589 589  
590 -* Example 3: Downlink Payload: 070300000064000190  **~-~-->**  AT+MOD=3,1800,100,0,400
779 +0x05: LSPH01
591 591  
592 -* Example 4: Downlink Payload: 070407080000000190  **~-~-->**  AT+MOD=4,0,100,0,400
781 +0x06: LSNPK01
593 593  
594 -* Example 5: Downlink Payload: 070507080000000190  **~-~-->**  AT+MOD=5,1800,100,0,400
783 +0x07: LLDS12
595 595  
596 596  
597 -
598 598  = 4. Battery & Power Consumption =
599 599  
600 600  
601 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
789 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
602 602  
603 603  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
604 604  
... ... @@ -607,7 +607,7 @@
607 607  
608 608  
609 609  (% class="wikigeneratedid" %)
610 -User can change firmware DS20L to:
798 +User can change firmware LDS12-LB to:
611 611  
612 612  * Change Frequency band/ region.
613 613  
... ... @@ -615,7 +615,7 @@
615 615  
616 616  * Fix bugs.
617 617  
618 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
806 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
619 619  
620 620  Methods to Update Firmware:
621 621  
... ... @@ -627,39 +627,12 @@
627 627  
628 628  = 6. FAQ =
629 629  
630 -== 6.1 What is the frequency plan for DS20L? ==
818 +== 6.1 What is the frequency plan for LDS12-LB? ==
631 631  
632 632  
633 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
821 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
634 634  
635 635  
636 -== 6.2 DS20L programming line ==
637 -
638 -
639 -缺图 后续补上
640 -
641 -feature:
642 -
643 -for AT commands
644 -
645 -Update the firmware of DS20L
646 -
647 -Support interrupt mode
648 -
649 -
650 -== 6.3 LiDAR probe position ==
651 -
652 -
653 -[[image:1701155390576-216.png||height="285" width="307"]]
654 -
655 -The black oval hole in the picture is the LiDAR probe.
656 -
657 -
658 -== 6.4 Interface definition ==
659 -
660 -[[image:image-20231128151132-2.png||height="305" width="557"]]
661 -
662 -
663 663  = 7. Trouble Shooting =
664 664  
665 665  == 7.1 AT Command input doesn't work ==
... ... @@ -692,7 +692,7 @@
692 692  = 8. Order Info =
693 693  
694 694  
695 -Part Number: (% style="color:blue" %)**DS20L-XXX**
856 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
696 696  
697 697  (% style="color:red" %)**XXX**(%%): **The default frequency band**
698 698  
... ... @@ -719,7 +719,7 @@
719 719  
720 720  (% style="color:#037691" %)**Package Includes**:
721 721  
722 -* DS20L LoRaWAN Smart Distance Detector x 1
883 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
723 723  
724 724  (% style="color:#037691" %)**Dimension and weight**:
725 725  
1701149922873-259.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701155076393-719.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155150328-206.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155390576-216.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -293.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.6 KB
Content
image-20231128151132-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -281.2 KB
Content
image-20231129085201-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -70.6 KB
Content