Last modified by Mengting Qiu on 2023/12/14 11:15

From version 125.2
edited by Xiaoling
on 2023/11/29 08:52
Change comment: There is no comment for this version
To version 113.2
edited by Xiaoling
on 2023/11/10 09:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -19,69 +19,170 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
22 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
33 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
35 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
37 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
39 +[[image:image-20231110091506-4.png||height="391" width="768"]]
40 +
41 +
38 38  == 1.2 ​Features ==
39 39  
40 40  
41 -* LoRaWAN Class A protocol
42 -* LiDAR distance detector, range 3 ~~ 200cm
43 -* Periodically detect or continuously detect mode
45 +* LoRaWAN 1.0.3 Class A
46 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Ultra-low power consumption
48 +* Laser technology for distance detection
49 +* Measure Distance: 0.1m~~12m
50 +* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
51 +* Monitor Battery Level
52 +* Support Bluetooth v5.1 and LoRaWAN remote configure
53 +* Support wireless OTA update firmware
44 44  * AT Commands to change parameters
45 -* Remotely configure parameters via LoRaWAN Downlink
46 -* Alarm & Counting mode
47 -* Firmware upgradable via program port or LoRa protocol
48 -* Built-in 2400mAh battery or power by external power source
55 +* Downlink to change configure
56 +* 8500mAh Battery for long term use
49 49  
50 -
51 51  == 1.3 Specification ==
52 52  
53 53  
54 -(% style="color:#037691" %)**LiDAR Sensor:**
61 +(% style="color:#037691" %)**Common DC Characteristics:**
55 55  
56 -* Operation Temperature: -40 ~~ 80 °C
57 -* Operation Humidity: 0~~99.9%RH (no Dew)
58 -* Storage Temperature: -10 ~~ 45°C
59 -* Measure Range: 3cm~~200cm @ 90% reflectivity
60 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
61 -* ToF FoV: ±9°, Total 18°
62 -* Light source: VCSEL
63 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 +* Operating Temperature: -40 ~~ 85°C
63 63  
66 +(% style="color:#037691" %)**Probe Specification:**
64 64  
65 -== 1.4 Power Consumption ==
68 +* Storage temperature:-20℃~~75℃
69 +* Operating temperature : -20℃~~60℃
70 +* Measure Distance:
71 +** 0.1m ~~ 12m @ 90% Reflectivity
72 +** 0.1m ~~ 4m @ 10% Reflectivity
73 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
74 +* Distance resolution : 1cm
75 +* Ambient light immunity : 70klux
76 +* Enclosure rating : IP65
77 +* Light source : LED
78 +* Central wavelength : 850nm
79 +* FOV : 3.6°
80 +* Material of enclosure : ABS+PC
81 +* Wire length : 25cm
66 66  
83 +(% style="color:#037691" %)**LoRa Spec:**
67 67  
68 -(% style="color:#037691" %)**Battery Power Mode:**
85 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
86 +* Max +22 dBm constant RF output vs.
87 +* RX sensitivity: down to -139 dBm.
88 +* Excellent blocking immunity
69 69  
70 -* Idle: 0.003 mA @ 3.3v
71 -* Max : 360 mA
90 +(% style="color:#037691" %)**Battery:**
72 72  
73 -(% style="color:#037691" %)**Continuously mode**:
92 +* Li/SOCI2 un-chargeable battery
93 +* Capacity: 8500mAh
94 +* Self-Discharge: <1% / Year @ 25°C
95 +* Max continuously current: 130mA
96 +* Max boost current: 2A, 1 second
74 74  
75 -* Idle: 21 mA @ 3.3v
76 -* Max : 360 mA
98 +(% style="color:#037691" %)**Power Consumption**
77 77  
100 +* Sleep Mode: 5uA @ 3.3v
101 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
78 78  
79 -= 2. Configure DS20L to connect to LoRaWAN network =
103 +== 1.4 Applications ==
80 80  
105 +
106 +* Horizontal distance measurement
107 +* Parking management system
108 +* Object proximity and presence detection
109 +* Intelligent trash can management system
110 +* Robot obstacle avoidance
111 +* Automatic control
112 +* Sewer
113 +
114 +(% style="display:none" %)
115 +
116 +== 1.5 Sleep mode and working mode ==
117 +
118 +
119 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
120 +
121 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
122 +
123 +
124 +== 1.6 Button & LEDs ==
125 +
126 +
127 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
128 +
129 +
130 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
131 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
132 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
133 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
134 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
135 +)))
136 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
137 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
138 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
139 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
140 +)))
141 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
142 +
143 +== 1.7 BLE connection ==
144 +
145 +
146 +LDS12-LB support BLE remote configure.
147 +
148 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
149 +
150 +* Press button to send an uplink
151 +* Press button to active device.
152 +* Device Power on or reset.
153 +
154 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
155 +
156 +
157 +== 1.8 Pin Definitions ==
158 +
159 +
160 +[[image:image-20230805144259-1.png||height="413" width="741"]]
161 +
162 +== 1.9 Mechanical ==
163 +
164 +
165 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
166 +
167 +
168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
169 +
170 +
171 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
172 +
173 +
174 +(% style="color:blue" %)**Probe Mechanical:**
175 +
176 +
177 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
178 +
179 +
180 += 2. Configure LDS12-LB to connect to LoRaWAN network =
181 +
81 81  == 2.1 How it works ==
82 82  
83 83  
84 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
185 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
85 85  
86 86  (% style="display:none" %) (%%)
87 87  
... ... @@ -90,14 +90,15 @@
90 90  
91 91  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
92 92  
93 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
194 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
94 94  
95 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
196 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
96 96  
97 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
98 98  
99 -Each DS20L is shipped with a sticker with the default device EUI as below:
199 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
100 100  
201 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
202 +
101 101  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
102 102  
103 103  
... ... @@ -125,11 +125,10 @@
125 125  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
126 126  
127 127  
128 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
230 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
129 129  
130 -[[image:image-20231128133704-1.png||height="189" width="441"]]
131 131  
132 -Press the button for 5 seconds to activate the DS20L.
233 +Press the button for 5 seconds to activate the LDS12-LB.
133 133  
134 134  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
135 135  
... ... @@ -141,7 +141,7 @@
141 141  === 2.3.1 Device Status, FPORT~=5 ===
142 142  
143 143  
144 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
245 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
145 145  
146 146  The Payload format is as below.
147 147  
... ... @@ -153,9 +153,9 @@
153 153  
154 154  Example parse in TTNv3
155 155  
156 -[[image:1701149922873-259.png]]
257 +[[image:image-20230805103904-1.png||height="131" width="711"]]
157 157  
158 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
259 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
159 159  
160 160  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
161 161  
... ... @@ -209,120 +209,219 @@
209 209  === 2.3.2 Uplink Payload, FPORT~=2 ===
210 210  
211 211  
212 -==== (% style="color:red" %)**MOD~=1**(%%) ====
313 +(((
314 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
213 213  
214 -Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
316 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
215 215  
216 -Uplink Payload totals 10 bytes.
318 +Uplink Payload totals 11 bytes.
319 +)))
217 217  
218 218  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
219 -|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4**
220 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
322 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
323 +**Size(bytes)**
324 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
325 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
326 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
327 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
328 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
329 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
330 +[[Message Type>>||anchor="HMessageType"]]
331 +)))
221 221  
222 -[[image:1701155076393-719.png]]
333 +[[image:image-20230805104104-2.png||height="136" width="754"]]
223 223  
224 -(% style="color:blue" %)**Battery Info:**
225 225  
226 -Check the battery voltage for DS20L
336 +==== (% style="color:blue" %)**Battery Info**(%%) ====
227 227  
228 -Ex1: 0x0E10 = 3600mV
229 229  
339 +Check the battery voltage for LDS12-LB.
230 230  
231 -(% style="color:blue" %)**MOD & Alarm & Interrupt:**
341 +Ex1: 0x0B45 = 2885mV
232 232  
233 -(% style="color:red" %)**MOD:**
343 +Ex2: 0x0B49 = 2889mV
234 234  
235 -**Example: ** (0x60>>6) & 0x3f =1
236 236  
237 -**0x01:**  Regularly detect distance and report.
238 -**0x02: ** Uninterrupted measurement (external power supply).
346 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
239 239  
240 -(% style="color:red" %)**Alarm:**
241 241  
242 -When the detection distance exceeds the limit, the alarm flag is set to 1.
349 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
243 243  
244 -(% style="color:red" %)**Interrupt:**
245 245  
246 -Whether it is an external interrupt.
352 +**Example**:
247 247  
354 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
248 248  
249 -(% style="color:blue" %)**Distance info:**
356 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
250 250  
358 +
359 +==== (% style="color:blue" %)**Distance**(%%) ====
360 +
361 +
362 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
363 +
364 +
251 251  **Example**:
252 252  
253 -If payload is: 0708H: distance = 0708H = 1800 mm
367 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
254 254  
255 255  
256 -(% style="color:blue" %)**Sensor State:**
370 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
257 257  
258 -Ex1: 0x00: Normal collection distance
259 259  
260 -Ex2 0x0x: Distance collection is wrong
373 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
261 261  
262 262  
263 -(% style="color:blue" %)**Interript Count:**
376 +**Example**:
264 264  
265 -If payload is:000007D0H: count = 07D0H =2000
378 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
266 266  
380 +Customers can judge whether they need to adjust the environment based on the signal strength.
267 267  
268 268  
269 -==== (% style="color:red" %)**MOD~=2**(%%)** ** ====
383 +**1) When the sensor detects valid data:**
270 270  
271 -Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes.
385 +[[image:image-20230805155335-1.png||height="145" width="724"]]
272 272  
387 +
388 +**2) When the sensor detects invalid data:**
389 +
390 +[[image:image-20230805155428-2.png||height="139" width="726"]]
391 +
392 +
393 +**3) When the sensor is not connected:**
394 +
395 +[[image:image-20230805155515-3.png||height="143" width="725"]]
396 +
397 +
398 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
399 +
400 +
401 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
402 +
403 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
404 +
405 +**Example:**
406 +
407 +If byte[0]&0x01=0x00 : Normal uplink packet.
408 +
409 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
410 +
411 +
412 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
413 +
414 +
415 +Characterize the internal temperature value of the sensor.
416 +
417 +**Example: **
418 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
419 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
420 +
421 +
422 +==== (% style="color:blue" %)**Message Type**(%%) ====
423 +
424 +
425 +(((
426 +For a normal uplink payload, the message type is always 0x01.
427 +)))
428 +
429 +(((
430 +Valid Message Type:
431 +)))
432 +
433 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
434 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
435 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
436 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
437 +
438 +[[image:image-20230805150315-4.png||height="233" width="723"]]
439 +
440 +
441 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
442 +
443 +
444 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
445 +
446 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
447 +
273 273  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
274 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
275 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
449 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
450 +**Size(bytes)**
451 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
452 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
453 +Reserve(0xFF)
454 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
455 +LiDAR temp
456 +)))|(% style="width:85px" %)Unix TimeStamp
276 276  
277 -[[image:1701155150328-206.png]]
458 +**Interrupt flag & Interrupt level:**
278 278  
279 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
460 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
461 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
462 +**Size(bit)**
463 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
464 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
465 +Interrupt flag
466 +)))
280 280  
281 -(% style="color:red" %)**MOD:**
468 +* (((
469 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
470 +)))
282 282  
283 -**Example: ** (0x60>>6) & 0x3f =1
472 +For example, in the US915 band, the max payload for different DR is:
284 284  
285 -**0x01:**  Regularly detect distance and report.
286 -**0x02: ** Uninterrupted measurement (external power supply).
474 +**a) DR0:** max is 11 bytes so one entry of data
287 287  
288 -(% style="color:red" %)**Alarm:**
476 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
289 289  
290 -When the detection distance exceeds the limit, the alarm flag is set to 1.
478 +**c) DR2:** total payload includes 11 entries of data
291 291  
292 -(% style="color:red" %)**Do:**
480 +**d) DR3:** total payload includes 22 entries of data.
293 293  
294 -When the distance exceeds the set threshold, pull the Do pin high.
482 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
295 295  
296 -(% style="color:red" %)**Limit flag:**
297 297  
298 -Mode for setting threshold: 0~~5
485 +**Downlink:**
299 299  
300 -0: does not use upper and lower limits
487 +0x31 64 CC 68 0C 64 CC 69 74 05
301 301  
302 -1: Use upper and lower limits
489 +[[image:image-20230805144936-2.png||height="113" width="746"]]
303 303  
304 -2: is less than the lower limit value
491 +**Uplink:**
305 305  
306 -3: is greater than the lower limit value
493 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
307 307  
308 -4: is less than the upper limit
309 309  
310 -5: is greater than the upper limit
496 +**Parsed Value:**
311 311  
498 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
312 312  
313 -(% style="color:blue" %)**Upper limit:**
314 314  
315 -The upper limit of the threshold cannot exceed 2000mm.
501 +[360,176,30,High,True,2023-08-04 02:53:00],
316 316  
503 +[355,168,30,Low,False,2023-08-04 02:53:29],
317 317  
318 -(% style="color:blue" %)**Lower limit:**
505 +[245,211,30,Low,False,2023-08-04 02:54:29],
319 319  
320 -The lower limit of the threshold cannot be less than 3mm.
507 +[57,700,30,Low,False,2023-08-04 02:55:29],
321 321  
509 +[361,164,30,Low,True,2023-08-04 02:56:00],
322 322  
323 -=== 2.3.3 Decode payload in The Things Network ===
511 +[337,184,30,Low,False,2023-08-04 02:56:40],
324 324  
513 +[20,4458,30,Low,False,2023-08-04 02:57:40],
325 325  
515 +[362,173,30,Low,False,2023-08-04 02:58:53],
516 +
517 +
518 +**History read from serial port:**
519 +
520 +[[image:image-20230805145056-3.png]]
521 +
522 +
523 +=== 2.3.4 Decode payload in The Things Network ===
524 +
525 +
326 326  While using TTN network, you can add the payload format to decode the payload.
327 327  
328 328  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
... ... @@ -333,7 +333,7 @@
333 333  )))
334 334  
335 335  (((
336 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
536 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
337 337  )))
338 338  
339 339  
... ... @@ -362,7 +362,7 @@
362 362  
363 363  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
364 364  
365 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
565 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
366 366  
367 367  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
368 368  
... ... @@ -369,23 +369,184 @@
369 369  
370 370  After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
371 371  
372 -[[image:image-20231129085201-1.png||height="515" width="961"]]
572 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
373 373  
374 374  
375 -== 2.5 Frequency Plans ==
575 +== 2.5 Datalog Feature ==
376 376  
377 377  
378 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
578 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
379 379  
580 +
581 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
582 +
583 +
584 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
585 +
586 +* (((
587 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
588 +)))
589 +* (((
590 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
591 +)))
592 +
593 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
594 +
595 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
596 +
597 +
598 +=== 2.5.2 Unix TimeStamp ===
599 +
600 +
601 +LDS12-LB uses Unix TimeStamp format based on
602 +
603 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
604 +
605 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
606 +
607 +Below is the converter example
608 +
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
610 +
611 +
612 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
613 +
614 +
615 +=== 2.5.3 Set Device Time ===
616 +
617 +
618 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
619 +
620 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
621 +
622 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
623 +
624 +
625 +=== 2.5.4 Poll sensor value ===
626 +
627 +
628 +Users can poll sensor values based on timestamps. Below is the downlink command.
629 +
630 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
631 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
632 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
633 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
634 +
635 +(((
636 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
637 +)))
638 +
639 +(((
640 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
641 +)))
642 +
643 +(((
644 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
645 +)))
646 +
647 +(((
648 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
649 +)))
650 +
651 +
652 +== 2.6 Frequency Plans ==
653 +
654 +
655 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
656 +
380 380  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
381 381  
382 382  
383 -= 3. Configure DS20L =
660 +== 2.7 LiDAR ToF Measurement ==
384 384  
662 +=== 2.7.1 Principle of Distance Measurement ===
663 +
664 +
665 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
666 +
667 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
668 +
669 +
670 +=== 2.7.2 Distance Measurement Characteristics ===
671 +
672 +
673 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
674 +
675 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
676 +
677 +
678 +(((
679 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
680 +)))
681 +
682 +(((
683 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
684 +)))
685 +
686 +(((
687 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
688 +)))
689 +
690 +
691 +(((
692 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
693 +)))
694 +
695 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
696 +
697 +(((
698 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
699 +)))
700 +
701 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
702 +
703 +(((
704 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
705 +)))
706 +
707 +
708 +=== 2.7.3 Notice of usage ===
709 +
710 +
711 +Possible invalid /wrong reading for LiDAR ToF tech:
712 +
713 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
714 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
715 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
716 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
717 +
718 +=== 2.7.4  Reflectivity of different objects ===
719 +
720 +
721 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
722 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
723 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
724 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
725 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
726 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
727 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
728 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
729 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
730 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
731 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
732 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
733 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
734 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
735 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
736 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
737 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
738 +Unpolished white metal surface
739 +)))|(% style="width:93px" %)130%
740 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
741 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
742 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
743 +
744 += 3. Configure LDS12-LB =
745 +
385 385  == 3.1 Configure Methods ==
386 386  
387 387  
388 -DS20L supports below configure method:
749 +LDS12-LB supports below configure method:
389 389  
390 390  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
391 391  
... ... @@ -407,10 +407,10 @@
407 407  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
408 408  
409 409  
410 -== 3.3 Commands special design for DS20L ==
771 +== 3.3 Commands special design for LDS12-LB ==
411 411  
412 412  
413 -These commands only valid for DS20L, as below:
774 +These commands only valid for LDS12-LB, as below:
414 414  
415 415  
416 416  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -452,7 +452,7 @@
452 452  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
453 453  )))
454 454  * (((
455 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
816 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
456 456  
457 457  
458 458  
... ... @@ -475,7 +475,7 @@
475 475  the mode is 0 =Disable Interrupt
476 476  )))
477 477  |(% style="width:154px" %)(((
478 -AT+INTMOD=3
839 +AT+INTMOD=2
479 479  
480 480  (default)
481 481  )))|(% style="width:196px" %)(((
... ... @@ -496,82 +496,39 @@
496 496  
497 497  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
498 498  
499 -== 3.3.3 Set work mode ==
860 +=== 3.3.3  Set Power Output Duration ===
500 500  
862 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
501 501  
502 -Feature: Switch working mode
864 +~1. first enable the power output to external sensor,
503 503  
504 -(% style="color:blue" %)**AT Command: AT+MOD**
866 +2. keep it on as per duration, read sensor value and construct uplink payload
505 505  
506 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
507 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
508 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
509 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
510 -OK
511 -Attention:Take effect after ATZ
512 -)))
868 +3. final, close the power output.
513 513  
514 -(% style="color:blue" %)**Downlink Command:**
870 +(% style="color:blue" %)**AT Command: AT+3V3T**
515 515  
516 -* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
517 -
518 -* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
519 -
520 -=== 3.3.4 Set threshold and threshold mode ===
521 -
522 -
523 -Feature, Set threshold and threshold mode
524 -
525 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
526 -
527 -(% style="color:blue" %)**AT Command: AT+DOL**
528 -
529 529  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
530 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
531 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
532 -0,0,0,0,400
873 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
874 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
533 533  OK
534 -)))
535 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
876 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
877 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
878 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
536 536  
537 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
538 -|(% rowspan="11" style="color:blue; width:120px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits
539 -|(% style="width:251px" %)1: Use upper and lower limits
540 -|(% style="width:251px" %)2: Less than the lower limit
541 -|(% style="width:251px" %)3: Greater than the lower limit
542 -|(% style="width:251px" %)4: Less than the upper limit
543 -|(% style="width:251px" %)5: Greater than the upper limit
544 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
545 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
546 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
547 -|(% style="width:251px" %)1 Person or object counting statistics
548 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
549 -0~~10000ms
880 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
881 +Format: Command Code (0x07) followed by 3 bytes.
550 550  
551 -
552 -)))
883 +The first byte is 01,the second and third bytes are the time to turn on.
553 553  
554 -(% style="color:blue" %)**Downlink Command: 0x07**
885 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
886 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
887 +* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
555 555  
556 -Format: Command Code (0x07) followed by 9bytes.
557 -
558 -* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
559 -
560 -* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
561 -
562 -* Example 2: Downlink Payload: 070200000064000190  **~-~-->**  AT+MOD=2,0,100,0,400
563 -
564 -* Example 3: Downlink Payload: 0703200000064000190  **~-~-->**  AT+MOD=3,1800,100,0,400
565 -
566 -* Example 4: Downlink Payload: 070407080000000190  **~-~-->**  AT+MOD=4,0,100,0,400
567 -
568 -* Example 5: Downlink Payload: 070507080000000190  **~-~-->**  AT+MOD=5,1800,100,0,400
569 -
570 -
571 571  = 4. Battery & Power Consumption =
572 572  
573 573  
574 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
892 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
575 575  
576 576  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
577 577  
... ... @@ -580,7 +580,7 @@
580 580  
581 581  
582 582  (% class="wikigeneratedid" %)
583 -User can change firmware DS20L to:
901 +User can change firmware LDS12-LB to:
584 584  
585 585  * Change Frequency band/ region.
586 586  
... ... @@ -588,7 +588,7 @@
588 588  
589 589  * Fix bugs.
590 590  
591 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
909 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
592 592  
593 593  Methods to Update Firmware:
594 594  
... ... @@ -598,39 +598,12 @@
598 598  
599 599  = 6. FAQ =
600 600  
601 -== 6.1 What is the frequency plan for DS20L? ==
919 +== 6.1 What is the frequency plan for LDS12-LB? ==
602 602  
603 603  
604 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
922 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
605 605  
606 606  
607 -== 6.2 DS20L programming line ==
608 -
609 -
610 -缺图 后续补上
611 -
612 -feature:
613 -
614 -for AT commands
615 -
616 -Update the firmware of DS20L
617 -
618 -Support interrupt mode
619 -
620 -
621 -== 6.3 LiDAR probe position ==
622 -
623 -
624 -[[image:1701155390576-216.png||height="285" width="307"]]
625 -
626 -The black oval hole in the picture is the LiDAR probe.
627 -
628 -
629 -== 6.4 Interface definition ==
630 -
631 -[[image:image-20231128151132-2.png||height="305" width="557"]]
632 -
633 -
634 634  = 7. Trouble Shooting =
635 635  
636 636  == 7.1 AT Command input doesn't work ==
... ... @@ -663,7 +663,7 @@
663 663  = 8. Order Info =
664 664  
665 665  
666 -Part Number: (% style="color:blue" %)**DS20L-XXX**
957 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
667 667  
668 668  (% style="color:red" %)**XXX**(%%): **The default frequency band**
669 669  
... ... @@ -688,7 +688,7 @@
688 688  
689 689  (% style="color:#037691" %)**Package Includes**:
690 690  
691 -* DS20L LoRaWAN Smart Distance Detector x 1
982 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
692 692  
693 693  (% style="color:#037691" %)**Dimension and weight**:
694 694  
1701149922873-259.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701155076393-719.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155150328-206.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155390576-216.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -293.9 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.6 KB
Content
image-20231128151132-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -281.2 KB
Content
image-20231129085201-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -70.6 KB
Content