Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 10 removed)
Details
- Page properties
-
- Content
-
... ... @@ -19,72 +19,170 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==22 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.DS20Lcan measurerangebetween3cm ~~ 200cm.25 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 27 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**29 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.31 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 33 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 - [[image:image-20231110102635-5.png||height="402"width="807"]]35 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 37 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 39 +[[image:image-20230615152941-1.png||height="459" width="800"]] 40 + 41 + 38 38 == 1.2 Features == 39 39 40 40 41 -* LoRaWAN Class A protocol 42 -* LiDAR distance detector, range 3 ~~ 200cm 43 -* Periodically detect or continuously detect mode 45 +* LoRaWAN 1.0.3 Class A 46 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 47 +* Ultra-low power consumption 48 +* Laser technology for distance detection 49 +* Measure Distance: 0.1m~~12m 50 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 51 +* Monitor Battery Level 52 +* Support Bluetooth v5.1 and LoRaWAN remote configure 53 +* Support wireless OTA update firmware 44 44 * AT Commands to change parameters 45 -* Remotely configure parameters via LoRaWAN Downlink 46 -* Alarm & Counting mode 47 -* Firmware upgradable via program port or LoRa protocol 48 -* Built-in 2400mAh battery or power by external power source 55 +* Downlink to change configure 56 +* 8500mAh Battery for long term use 49 49 58 +== 1.3 Specification == 50 50 51 51 52 - ==1.3Specification ==61 +(% style="color:#037691" %)**Common DC Characteristics:** 53 53 63 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 64 +* Operating Temperature: -40 ~~ 85°C 54 54 55 -(% style="color:#037691" %)** LiDARSensor:**66 +(% style="color:#037691" %)**Probe Specification:** 56 56 57 -* Operation Temperature: -40 ~~ 80 °C 58 -* Operation Humidity: 0~~99.9%RH (no Dew) 59 -* Storage Temperature: -10 ~~ 45°C 60 -* Measure Range: 3cm~~200cm @ 90% reflectivity 61 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 62 -* ToF FoV: ±9°, Total 18° 63 -* Light source: VCSEL 68 +* Storage temperature:-20℃~~75℃ 69 +* Operating temperature : -20℃~~60℃ 70 +* Measure Distance: 71 +** 0.1m ~~ 12m @ 90% Reflectivity 72 +** 0.1m ~~ 4m @ 10% Reflectivity 73 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 74 +* Distance resolution : 1cm 75 +* Ambient light immunity : 70klux 76 +* Enclosure rating : IP65 77 +* Light source : LED 78 +* Central wavelength : 850nm 79 +* FOV : 3.6° 80 +* Material of enclosure : ABS+PC 81 +* Wire length : 25cm 64 64 83 +(% style="color:#037691" %)**LoRa Spec:** 65 65 85 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 86 +* Max +22 dBm constant RF output vs. 87 +* RX sensitivity: down to -139 dBm. 88 +* Excellent blocking immunity 66 66 67 - ==1.4 Power Consumption==90 +(% style="color:#037691" %)**Battery:** 68 68 92 +* Li/SOCI2 un-chargeable battery 93 +* Capacity: 8500mAh 94 +* Self-Discharge: <1% / Year @ 25°C 95 +* Max continuously current: 130mA 96 +* Max boost current: 2A, 1 second 69 69 70 -(% style="color:#037691" %)** BatteryPowerMode:**98 +(% style="color:#037691" %)**Power Consumption** 71 71 72 -* Idle:0.003 mA @ 3.3v73 -* Max:360 mA100 +* Sleep Mode: 5uA @ 3.3v 101 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 74 74 75 - (% style="color:#037691"%)**Continuouslymode**:103 +== 1.4 Applications == 76 76 77 -* Idle: 21 mA @ 3.3v 78 -* Max : 360 mA 79 79 106 +* Horizontal distance measurement 107 +* Parking management system 108 +* Object proximity and presence detection 109 +* Intelligent trash can management system 110 +* Robot obstacle avoidance 111 +* Automatic control 112 +* Sewer 80 80 114 +(% style="display:none" %) 81 81 82 -= 2.ConfigureDS20L toconnectto LoRaWANnetwork =116 +== 1.5 Sleep mode and working mode == 83 83 118 + 119 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 120 + 121 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 122 + 123 + 124 +== 1.6 Button & LEDs == 125 + 126 + 127 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 128 + 129 + 130 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 131 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 132 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 133 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 134 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 135 +))) 136 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 137 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 138 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 139 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 140 +))) 141 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 142 + 143 +== 1.7 BLE connection == 144 + 145 + 146 +LDS12-LB support BLE remote configure. 147 + 148 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 149 + 150 +* Press button to send an uplink 151 +* Press button to active device. 152 +* Device Power on or reset. 153 + 154 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 155 + 156 + 157 +== 1.8 Pin Definitions == 158 + 159 + 160 +[[image:image-20230805144259-1.png||height="413" width="741"]] 161 + 162 +== 1.9 Mechanical == 163 + 164 + 165 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 166 + 167 + 168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 169 + 170 + 171 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 172 + 173 + 174 +(% style="color:blue" %)**Probe Mechanical:** 175 + 176 + 177 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 178 + 179 + 180 += 2. Configure LDS12-LB to connect to LoRaWAN network = 181 + 84 84 == 2.1 How it works == 85 85 86 86 87 -The DS2 0L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.185 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 88 88 89 89 (% style="display:none" %) (%%) 90 90 ... ... @@ -93,14 +93,15 @@ 93 93 94 94 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 95 95 96 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. (% style="display:none" %)194 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 97 97 98 -[[image:image-202311 10102635-5.png||height="402" width="807"]](% style="display:none" %)196 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 99 99 100 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 101 101 102 - EachDS20Lisshipped withastickerwith thedefaultdevice EUI asbelow:199 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 103 103 201 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 202 + 104 104 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 105 105 106 106 ... ... @@ -128,11 +128,10 @@ 128 128 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 129 129 130 130 131 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS2 0L230 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 132 132 133 -[[image:image-20231128133704-1.png||height="189" width="441"]] 134 134 135 -Press the button for 5 seconds to activate the DS2 0L.233 +Press the button for 5 seconds to activate the LDS12-LB. 136 136 137 137 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 138 138 ... ... @@ -144,7 +144,7 @@ 144 144 === 2.3.1 Device Status, FPORT~=5 === 145 145 146 146 147 -Users can use the downlink command(**0x26 01**) to ask DS2 0L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.245 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 148 148 149 149 The Payload format is as below. 150 150 ... ... @@ -156,9 +156,9 @@ 156 156 157 157 Example parse in TTNv3 158 158 159 -[[image: 1701149922873-259.png]]257 +[[image:image-20230805103904-1.png||height="131" width="711"]] 160 160 161 -(% style="color:blue" %)**Sensor Model**(%%): For DS2 0L, this value is 0x21259 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 162 162 163 163 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 164 164 ... ... @@ -212,120 +212,219 @@ 212 212 === 2.3.2 Uplink Payload, FPORT~=2 === 213 213 214 214 215 -==== (% style="color:red" %)**MOD~=1**(%%) ==== 313 +((( 314 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 216 216 217 - Regularlydetect distanceandreport. When the distanceexceedsthelimit, the alarm flagisset to 1, andtheeportcan betriggered by externalinterrupts.316 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 218 218 219 -Uplink Payload totals 10 bytes. 318 +Uplink Payload totals 11 bytes. 319 +))) 220 220 221 221 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 222 -|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4** 223 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count 322 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 323 +**Size(bytes)** 324 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 325 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 326 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 327 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 328 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 329 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 330 +[[Message Type>>||anchor="HMessageType"]] 331 +))) 224 224 225 -[[image:1 701155076393-719.png]]333 +[[image:image-20230805104104-2.png||height="136" width="754"]] 226 226 227 -(% style="color:blue" %)**Battery Info:** 228 228 229 - CheckthevoltageforDS20L336 +==== (% style="color:blue" %)**Battery Info**(%%) ==== 230 230 231 -Ex1: 0x0E10 = 3600mV 232 232 339 +Check the battery voltage for LDS12-LB. 233 233 234 - (% style="color:blue"%)**MOD&Alarm& Interrupt:**341 +Ex1: 0x0B45 = 2885mV 235 235 236 - (%style="color:red"%)**MOD:**343 +Ex2: 0x0B49 = 2889mV 237 237 238 -**Example: ** (0x60>>6) & 0x3f =1 239 239 240 -**0x01:** Regularly detect distance and report. 241 -**0x02: ** Uninterrupted measurement (external power supply). 346 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ==== 242 242 243 -(% style="color:red" %)**Alarm:** 244 244 245 - Whenthedetectiondistance exceeds thelimit,the alarmflagisset to 1.349 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 246 246 247 -(% style="color:red" %)**Interrupt:** 248 248 249 - Whether it is an externalinterrupt.352 +**Example**: 250 250 354 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 251 251 252 - (%style="color:blue"%)**Distanceinfo:**356 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 253 253 358 + 359 +==== (% style="color:blue" %)**Distance**(%%) ==== 360 + 361 + 362 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 363 + 364 + 254 254 **Example**: 255 255 256 -If payloadis:0708H:distance=0708H =1800 mm367 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 257 257 258 258 259 -(% style="color:blue" %)** SensorState:**370 +==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 260 260 261 -Ex1: 0x00: Normal collection distance 262 262 263 - Ex20x0x:Distance collection iswrong373 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 264 264 265 265 266 - (% style="color:blue" %)**Interript Count:**376 +**Example**: 267 267 268 -If payload is:0 00007D0H:count= 07D0H=2000378 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 269 269 380 +Customers can judge whether they need to adjust the environment based on the signal strength. 270 270 271 271 272 - ====(%style="color:red"%)**MOD~=2**(%%)** ** ====383 +**1) When the sensor detects valid data:** 273 273 274 - Uninterruptedmeasurement.Whenthedistance exceeds the limit, the output IO is set highand reportsare reported every five minutes. The time can be set and powered by an external power supply.Uplink Payloadotals 11bytes.385 +[[image:image-20230805155335-1.png||height="145" width="724"]] 275 275 387 + 388 +**2) When the sensor detects invalid data:** 389 + 390 +[[image:image-20230805155428-2.png||height="139" width="726"]] 391 + 392 + 393 +**3) When the sensor is not connected:** 394 + 395 +[[image:image-20230805155515-3.png||height="143" width="725"]] 396 + 397 + 398 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 399 + 400 + 401 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 402 + 403 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI . 404 + 405 +**Example:** 406 + 407 +If byte[0]&0x01=0x00 : Normal uplink packet. 408 + 409 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet. 410 + 411 + 412 +==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 413 + 414 + 415 +Characterize the internal temperature value of the sensor. 416 + 417 +**Example: ** 418 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 419 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 420 + 421 + 422 +==== (% style="color:blue" %)**Message Type**(%%) ==== 423 + 424 + 425 +((( 426 +For a normal uplink payload, the message type is always 0x01. 427 +))) 428 + 429 +((( 430 +Valid Message Type: 431 +))) 432 + 433 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 434 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 435 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 436 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 437 + 438 +[[image:image-20230805150315-4.png||height="233" width="723"]] 439 + 440 + 441 +=== 2.3.3 Historical measuring distance, FPORT~=3 === 442 + 443 + 444 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 445 + 446 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 447 + 276 276 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 277 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2** 278 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit 449 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 450 +**Size(bytes)** 451 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 452 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 453 +Reserve(0xFF) 454 +)))|Distance|Distance signal strength|(% style="width:88px" %)((( 455 +LiDAR temp 456 +)))|(% style="width:85px" %)Unix TimeStamp 279 279 280 - [[image:1701155150328-206.png]]458 +**Interrupt flag & Interrupt level:** 281 281 282 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:** 460 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 461 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 462 +**Size(bit)** 463 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 464 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 465 +Interrupt flag 466 +))) 283 283 284 -(% style="color:red" %)**MOD:** 468 +* ((( 469 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 470 +))) 285 285 286 - **Example:**(0x60>>6)&0x3f=1472 +For example, in the US915 band, the max payload for different DR is: 287 287 288 -**0x01:** Regularly detect distance and report. 289 -**0x02: ** Uninterrupted measurement (external power supply). 474 +**a) DR0:** max is 11 bytes so one entry of data 290 290 291 - (%style="color:red"%)**Alarm:**476 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 292 292 293 - Whenthe detectiondistance exceedsthelimit, thealarm flagisset to1.478 +**c) DR2:** total payload includes 11 entries of data 294 294 295 - (%style="color:red"%)**Do:**480 +**d) DR3:** total payload includes 22 entries of data. 296 296 297 - Whendistanceexceedsthesetthreshold,pull theDopinhigh.482 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 298 298 299 -(% style="color:red" %)**Limit flag:** 300 300 301 - Mode for setting threshold:0~~5**485 +**Downlink:** 302 302 303 - **0:**doesnotuseupperandlowerlimits487 +0x31 64 CC 68 0C 64 CC 69 74 05 304 304 305 - **1:** Useupper and lowerlimits489 +[[image:image-20230805144936-2.png||height="113" width="746"]] 306 306 307 -** 2:**is less than the lower limit value491 +**Uplink:** 308 308 309 - **3:**isgreaterthanthelowerlimitvalue493 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 310 310 311 -**4:** is less than the upper limit 312 312 313 -** 5:** is greaterthan the upper limit496 +**Parsed Value:** 314 314 498 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 315 315 316 -(% style="color:blue" %)**Upper limit:** 317 317 318 - The upper limit of the threshold cannot exceed2000mm.501 +[360,176,30,High,True,2023-08-04 02:53:00], 319 319 503 +[355,168,30,Low,False,2023-08-04 02:53:29], 320 320 321 - (% style="color:blue" %)**Lowerlimit:**505 +[245,211,30,Low,False,2023-08-04 02:54:29], 322 322 323 - The lower limit of the threshold cannot beless than3mm.507 +[57,700,30,Low,False,2023-08-04 02:55:29], 324 324 509 +[361,164,30,Low,True,2023-08-04 02:56:00], 325 325 326 - == 2.4Decode payload in The ThingsNetwork==511 +[337,184,30,Low,False,2023-08-04 02:56:40], 327 327 513 +[20,4458,30,Low,False,2023-08-04 02:57:40], 328 328 515 +[362,173,30,Low,False,2023-08-04 02:58:53], 516 + 517 + 518 +**History read from serial port:** 519 + 520 +[[image:image-20230805145056-3.png]] 521 + 522 + 523 +=== 2.3.4 Decode payload in The Things Network === 524 + 525 + 329 329 While using TTN network, you can add the payload format to decode the payload. 330 330 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] ... ... @@ -336,11 +336,11 @@ 336 336 ))) 337 337 338 338 ((( 339 -DS2 0L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]536 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 340 340 ))) 341 341 342 342 343 -== 2. 5Show Data in DataCake IoT Server ==540 +== 2.4 Show Data in DataCake IoT Server == 344 344 345 345 346 346 ((( ... ... @@ -365,7 +365,7 @@ 365 365 366 366 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 367 367 368 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS2 0L and add DevEUI.**565 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 369 369 370 370 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 371 371 ... ... @@ -372,23 +372,184 @@ 372 372 373 373 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 374 374 375 -[[image:i mage-20231129085201-1.png||height="515" width="961"]]572 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 376 376 377 377 575 +== 2.5 Datalog Feature == 576 + 577 + 578 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 579 + 580 + 581 +=== 2.5.1 Ways to get datalog via LoRaWAN === 582 + 583 + 584 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 585 + 586 +* ((( 587 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 588 +))) 589 +* ((( 590 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 591 +))) 592 + 593 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 594 + 595 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 596 + 597 + 598 +=== 2.5.2 Unix TimeStamp === 599 + 600 + 601 +LDS12-LB uses Unix TimeStamp format based on 602 + 603 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 604 + 605 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 606 + 607 +Below is the converter example 608 + 609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 610 + 611 + 612 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 613 + 614 + 615 +=== 2.5.3 Set Device Time === 616 + 617 + 618 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 619 + 620 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 621 + 622 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 623 + 624 + 625 +=== 2.5.4 Poll sensor value === 626 + 627 + 628 +Users can poll sensor values based on timestamps. Below is the downlink command. 629 + 630 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 631 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 632 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 633 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 634 + 635 +((( 636 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval. 637 +))) 638 + 639 +((( 640 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]] 641 +))) 642 + 643 +((( 644 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data 645 +))) 646 + 647 +((( 648 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 649 +))) 650 + 651 + 378 378 == 2.6 Frequency Plans == 379 379 380 380 381 -The DS2 0L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.655 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 382 382 383 383 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 384 384 385 385 386 -= 3.ConfigureDS20L=660 +== 2.7 LiDAR ToF Measurement == 387 387 662 +=== 2.7.1 Principle of Distance Measurement === 663 + 664 + 665 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 666 + 667 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 668 + 669 + 670 +=== 2.7.2 Distance Measurement Characteristics === 671 + 672 + 673 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 674 + 675 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 676 + 677 + 678 +((( 679 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 680 +))) 681 + 682 +((( 683 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 684 +))) 685 + 686 +((( 687 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 688 +))) 689 + 690 + 691 +((( 692 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 693 +))) 694 + 695 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 696 + 697 +((( 698 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 699 +))) 700 + 701 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 702 + 703 +((( 704 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 705 +))) 706 + 707 + 708 +=== 2.7.3 Notice of usage === 709 + 710 + 711 +Possible invalid /wrong reading for LiDAR ToF tech: 712 + 713 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 714 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 715 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 716 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 717 + 718 +=== 2.7.4 Reflectivity of different objects === 719 + 720 + 721 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 722 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 723 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 724 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 725 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 726 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 727 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 728 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 729 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 730 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 731 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 732 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 733 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 734 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 735 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 736 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 737 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 738 +Unpolished white metal surface 739 +)))|(% style="width:93px" %)130% 740 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 741 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 742 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 743 + 744 += 3. Configure LDS12-LB = 745 + 388 388 == 3.1 Configure Methods == 389 389 390 390 391 -DS2 0L supports below configure method:749 +LDS12-LB supports below configure method: 392 392 393 393 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 394 394 ... ... @@ -396,8 +396,6 @@ 396 396 397 397 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 398 398 399 - 400 - 401 401 == 3.2 General Commands == 402 402 403 403 ... ... @@ -412,10 +412,10 @@ 412 412 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 413 413 414 414 415 -== 3.3 Commands special design for DS2 0L ==771 +== 3.3 Commands special design for LDS12-LB == 416 416 417 417 418 -These commands only valid for DS2 0L, as below:774 +These commands only valid for LDS12-LB, as below: 419 419 420 420 421 421 === 3.3.1 Set Transmit Interval Time === ... ... @@ -457,7 +457,7 @@ 457 457 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 458 458 ))) 459 459 * ((( 460 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 816 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 461 461 462 462 463 463 ... ... @@ -480,7 +480,7 @@ 480 480 the mode is 0 =Disable Interrupt 481 481 ))) 482 482 |(% style="width:154px" %)((( 483 -AT+INTMOD= 3839 +AT+INTMOD=2 484 484 485 485 (default) 486 486 )))|(% style="width:196px" %)((( ... ... @@ -501,107 +501,39 @@ 501 501 502 502 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 503 503 860 +=== 3.3.3 Set Power Output Duration === 504 504 862 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 505 505 506 - === 3.3.3Setworkmode===864 +~1. first enable the power output to external sensor, 507 507 866 +2. keep it on as per duration, read sensor value and construct uplink payload 508 508 509 - Feature:Switchworkingmode868 +3. final, close the power output. 510 510 511 -(% style="color:blue" %)**AT Command: AT+ MOD**870 +(% style="color:blue" %)**AT Command: AT+3V3T** 512 512 513 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 514 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response** 515 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK 516 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)((( 517 -OK 518 -Attention:Take effect after ATZ 519 -))) 520 - 521 -(% style="color:blue" %)**Downlink Command:** 522 - 523 -* **Example: **0x0A00 ~/~/ Same as AT+MOD=0 524 - 525 -* **Example:** 0x0A01 ~/~/ Same as AT+MOD=1 526 - 527 - 528 - 529 -=== 3.3.4 Set threshold and threshold mode === 530 - 531 - 532 -Feature, Set threshold and threshold mode 533 - 534 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms. 535 - 536 -(% style="color:blue" %)**AT Command: AT+DOL** 537 - 538 538 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 539 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response** 540 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)((( 541 -0,0,0,0,400 873 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 874 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 542 542 OK 543 -))) 544 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK 876 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 877 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 878 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 545 545 880 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 881 +Format: Command Code (0x07) followed by 3 bytes. 546 546 883 +The first byte is 01,the second and third bytes are the time to turn on. 547 547 548 - (%border="1"cellspacing="4"style="background-color:#f2f2f2;width:510px"%)549 - |(%rowspan="11" style="color:blue;width:120px"%)(((550 - 885 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 886 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 887 +* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 551 551 552 - 553 - 554 - 555 - 556 - 557 - 558 - 559 - 560 - 561 - 562 - 563 - 564 -**AT+DOL=5,1800,0,0,400** 565 -)))|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits 566 -|(% style="width:251px" %)1: Use upper and lower limits 567 -|(% style="width:251px" %)2: Less than the lower limit 568 -|(% style="width:251px" %)3: Greater than the lower limit 569 -|(% style="width:251px" %)4: Less than the upper limit 570 -|(% style="width:251px" %)5: Greater than the upper limit 571 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM 572 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM 573 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high 574 -|(% style="width:251px" %)1 Person or object counting statistics 575 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)((( 576 -0~~10000ms 577 - 578 - 579 -))) 580 - 581 - 582 - 583 -(% style="color:blue" %)**Downlink Command: 0x07** 584 - 585 -Format: Command Code (0x07) followed by 9bytes. 586 - 587 -* Example 0: Downlink Payload: 070000000000000190 **~-~-->** AT+MOD=0,0,0,0,400 588 - 589 -* Example 1: Downlink Payload: 070107080064000190 **~-~-->** AT+MOD=1,1800,100,0,400 590 - 591 -* Example 2: Downlink Payload: 070200000064000190 **~-~-->** AT+MOD=2,0,100,0,400 592 - 593 -* Example 3: Downlink Payload: 070300000064000190 **~-~-->** AT+MOD=3,1800,100,0,400 594 - 595 -* Example 4: Downlink Payload: 070407080000000190 **~-~-->** AT+MOD=4,0,100,0,400 596 - 597 -* Example 5: Downlink Payload: 070507080000000190 **~-~-->** AT+MOD=5,1800,100,0,400 598 - 599 - 600 - 601 601 = 4. Battery & Power Consumption = 602 602 603 603 604 -DS2 0L usebuilt-in2400mAhnon-chargeablebatteryfor long-term use upto several years*. See below link for detail information about the battery info and how to replace.892 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 605 605 606 606 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 607 607 ... ... @@ -610,7 +610,7 @@ 610 610 611 611 612 612 (% class="wikigeneratedid" %) 613 -User can change firmware DS2 0L to:901 +User can change firmware LDS12-LB to: 614 614 615 615 * Change Frequency band/ region. 616 616 ... ... @@ -618,7 +618,7 @@ 618 618 619 619 * Fix bugs. 620 620 621 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/ zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**909 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 622 622 623 623 Methods to Update Firmware: 624 624 ... ... @@ -626,43 +626,14 @@ 626 626 627 627 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 628 628 629 - 630 - 631 631 = 6. FAQ = 632 632 633 -== 6.1 What is the frequency plan for DS2 0L? ==919 +== 6.1 What is the frequency plan for LDS12-LB? == 634 634 635 635 636 -DS2 0L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]922 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 637 637 638 638 639 -== 6.2 DS20L programming line == 640 - 641 - 642 -缺图 后续补上 643 - 644 -feature: 645 - 646 -for AT commands 647 - 648 -Update the firmware of DS20L 649 - 650 -Support interrupt mode 651 - 652 - 653 -== 6.3 LiDAR probe position == 654 - 655 - 656 -[[image:1701155390576-216.png||height="285" width="307"]] 657 - 658 -The black oval hole in the picture is the LiDAR probe. 659 - 660 - 661 -== 6.4 Interface definition == 662 - 663 -[[image:image-20231128151132-2.png||height="305" width="557"]] 664 - 665 - 666 666 = 7. Trouble Shooting = 667 667 668 668 == 7.1 AT Command input doesn't work == ... ... @@ -695,7 +695,7 @@ 695 695 = 8. Order Info = 696 696 697 697 698 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**957 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 699 699 700 700 (% style="color:red" %)**XXX**(%%): **The default frequency band** 701 701 ... ... @@ -715,14 +715,12 @@ 715 715 716 716 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 717 717 718 - 719 - 720 720 = 9. Packing Info = 721 721 722 722 723 723 (% style="color:#037691" %)**Package Includes**: 724 724 725 -* DS2 0L LoRaWANSmartDistanceDetector x 1982 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 726 726 727 727 (% style="color:#037691" %)**Dimension and weight**: 728 728 ... ... @@ -734,8 +734,6 @@ 734 734 735 735 * Weight / pcs : g 736 736 737 - 738 - 739 739 = 10. Support = 740 740 741 741
- 1701149922873-259.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -24.5 KB - Content
- 1701152902759-553.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -52.2 KB - Content
- 1701152946067-561.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -52.2 KB - Content
- 1701155076393-719.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -54.6 KB - Content
- 1701155150328-206.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -54.6 KB - Content
- 1701155390576-216.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -293.9 KB - Content
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -84.7 KB - Content
- image-20231128133704-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -190.6 KB - Content
- image-20231128151132-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -281.2 KB - Content
- image-20231129085201-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.6 KB - Content