Last modified by Mengting Qiu on 2023/12/14 11:15

From version 125.1
edited by Xiaoling
on 2023/11/29 08:52
Change comment: Uploaded new attachment "image-20231129085201-1.png", version {1}
To version 113.2
edited by Xiaoling
on 2023/11/10 09:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -19,72 +19,170 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
22 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
33 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
35 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
37 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
39 +[[image:image-20231110091506-4.png||height="391" width="768"]]
40 +
41 +
38 38  == 1.2 ​Features ==
39 39  
40 40  
41 -* LoRaWAN Class A protocol
42 -* LiDAR distance detector, range 3 ~~ 200cm
43 -* Periodically detect or continuously detect mode
45 +* LoRaWAN 1.0.3 Class A
46 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Ultra-low power consumption
48 +* Laser technology for distance detection
49 +* Measure Distance: 0.1m~~12m
50 +* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
51 +* Monitor Battery Level
52 +* Support Bluetooth v5.1 and LoRaWAN remote configure
53 +* Support wireless OTA update firmware
44 44  * AT Commands to change parameters
45 -* Remotely configure parameters via LoRaWAN Downlink
46 -* Alarm & Counting mode
47 -* Firmware upgradable via program port or LoRa protocol
48 -* Built-in 2400mAh battery or power by external power source
55 +* Downlink to change configure
56 +* 8500mAh Battery for long term use
49 49  
58 +== 1.3 Specification ==
50 50  
51 51  
52 -== 1.3 Specification ==
61 +(% style="color:#037691" %)**Common DC Characteristics:**
53 53  
63 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 +* Operating Temperature: -40 ~~ 85°C
54 54  
55 -(% style="color:#037691" %)**LiDAR Sensor:**
66 +(% style="color:#037691" %)**Probe Specification:**
56 56  
57 -* Operation Temperature: -40 ~~ 80 °C
58 -* Operation Humidity: 0~~99.9%RH (no Dew)
59 -* Storage Temperature: -10 ~~ 45°C
60 -* Measure Range: 3cm~~200cm @ 90% reflectivity
61 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 -* ToF FoV: ±9°, Total 18°
63 -* Light source: VCSEL
68 +* Storage temperature:-20℃~~75℃
69 +* Operating temperature : -20℃~~60℃
70 +* Measure Distance:
71 +** 0.1m ~~ 12m @ 90% Reflectivity
72 +** 0.1m ~~ 4m @ 10% Reflectivity
73 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
74 +* Distance resolution : 1cm
75 +* Ambient light immunity : 70klux
76 +* Enclosure rating : IP65
77 +* Light source : LED
78 +* Central wavelength : 850nm
79 +* FOV : 3.6°
80 +* Material of enclosure : ABS+PC
81 +* Wire length : 25cm
64 64  
83 +(% style="color:#037691" %)**LoRa Spec:**
65 65  
85 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
86 +* Max +22 dBm constant RF output vs.
87 +* RX sensitivity: down to -139 dBm.
88 +* Excellent blocking immunity
66 66  
67 -== 1.4 Power Consumption ==
90 +(% style="color:#037691" %)**Battery:**
68 68  
92 +* Li/SOCI2 un-chargeable battery
93 +* Capacity: 8500mAh
94 +* Self-Discharge: <1% / Year @ 25°C
95 +* Max continuously current: 130mA
96 +* Max boost current: 2A, 1 second
69 69  
70 -(% style="color:#037691" %)**Battery Power Mode:**
98 +(% style="color:#037691" %)**Power Consumption**
71 71  
72 -* Idle: 0.003 mA @ 3.3v
73 -* Max : 360 mA
100 +* Sleep Mode: 5uA @ 3.3v
101 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
74 74  
75 -(% style="color:#037691" %)**Continuously mode**:
103 +== 1.4 Applications ==
76 76  
77 -* Idle: 21 mA @ 3.3v
78 -* Max : 360 mA
79 79  
106 +* Horizontal distance measurement
107 +* Parking management system
108 +* Object proximity and presence detection
109 +* Intelligent trash can management system
110 +* Robot obstacle avoidance
111 +* Automatic control
112 +* Sewer
80 80  
114 +(% style="display:none" %)
81 81  
82 -= 2. Configure DS20L to connect to LoRaWAN network =
116 +== 1.5 Sleep mode and working mode ==
83 83  
118 +
119 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
120 +
121 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
122 +
123 +
124 +== 1.6 Button & LEDs ==
125 +
126 +
127 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
128 +
129 +
130 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
131 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
132 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
133 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
134 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
135 +)))
136 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
137 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
138 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
139 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
140 +)))
141 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
142 +
143 +== 1.7 BLE connection ==
144 +
145 +
146 +LDS12-LB support BLE remote configure.
147 +
148 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
149 +
150 +* Press button to send an uplink
151 +* Press button to active device.
152 +* Device Power on or reset.
153 +
154 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
155 +
156 +
157 +== 1.8 Pin Definitions ==
158 +
159 +
160 +[[image:image-20230805144259-1.png||height="413" width="741"]]
161 +
162 +== 1.9 Mechanical ==
163 +
164 +
165 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
166 +
167 +
168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
169 +
170 +
171 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
172 +
173 +
174 +(% style="color:blue" %)**Probe Mechanical:**
175 +
176 +
177 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
178 +
179 +
180 += 2. Configure LDS12-LB to connect to LoRaWAN network =
181 +
84 84  == 2.1 How it works ==
85 85  
86 86  
87 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
185 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
88 88  
89 89  (% style="display:none" %) (%%)
90 90  
... ... @@ -93,14 +93,15 @@
93 93  
94 94  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
95 95  
96 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
194 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
97 97  
98 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
196 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
99 99  
100 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
101 101  
102 -Each DS20L is shipped with a sticker with the default device EUI as below:
199 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
103 103  
201 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
202 +
104 104  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
105 105  
106 106  
... ... @@ -128,11 +128,10 @@
128 128  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
129 129  
130 130  
131 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
230 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
132 132  
133 -[[image:image-20231128133704-1.png||height="189" width="441"]]
134 134  
135 -Press the button for 5 seconds to activate the DS20L.
233 +Press the button for 5 seconds to activate the LDS12-LB.
136 136  
137 137  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 138  
... ... @@ -144,7 +144,7 @@
144 144  === 2.3.1 Device Status, FPORT~=5 ===
145 145  
146 146  
147 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
245 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
148 148  
149 149  The Payload format is as below.
150 150  
... ... @@ -156,9 +156,9 @@
156 156  
157 157  Example parse in TTNv3
158 158  
159 -[[image:1701149922873-259.png]]
257 +[[image:image-20230805103904-1.png||height="131" width="711"]]
160 160  
161 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
259 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
162 162  
163 163  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
164 164  
... ... @@ -212,121 +212,138 @@
212 212  === 2.3.2 Uplink Payload, FPORT~=2 ===
213 213  
214 214  
215 -==== (% style="color:red" %)**MOD~=1**(%%) ====
313 +(((
314 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
216 216  
217 -Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
316 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
218 218  
219 -Uplink Payload totals 10 bytes.
318 +Uplink Payload totals 11 bytes.
319 +)))
220 220  
221 221  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
222 -|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4**
223 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
322 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
323 +**Size(bytes)**
324 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
325 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
326 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
327 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
328 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
329 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
330 +[[Message Type>>||anchor="HMessageType"]]
331 +)))
224 224  
225 -[[image:1701155076393-719.png]]
333 +[[image:image-20230805104104-2.png||height="136" width="754"]]
226 226  
227 -(% style="color:blue" %)**Battery Info:**
228 228  
229 -Check the battery voltage for DS20L
336 +==== (% style="color:blue" %)**Battery Info**(%%) ====
230 230  
231 -Ex1: 0x0E10 = 3600mV
232 232  
339 +Check the battery voltage for LDS12-LB.
233 233  
234 -(% style="color:blue" %)**MOD & Alarm & Interrupt:**
341 +Ex1: 0x0B45 = 2885mV
235 235  
236 -(% style="color:red" %)**MOD:**
343 +Ex2: 0x0B49 = 2889mV
237 237  
238 -**Example: ** (0x60>>6) & 0x3f =1
239 239  
240 -**0x01:**  Regularly detect distance and report.
241 -**0x02: ** Uninterrupted measurement (external power supply).
346 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
242 242  
243 -(% style="color:red" %)**Alarm:**
244 244  
245 -When the detection distance exceeds the limit, the alarm flag is set to 1.
349 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
246 246  
247 -(% style="color:red" %)**Interrupt:**
248 248  
249 -Whether it is an external interrupt.
352 +**Example**:
250 250  
354 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
251 251  
252 -(% style="color:blue" %)**Distance info:**
356 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
253 253  
358 +
359 +==== (% style="color:blue" %)**Distance**(%%) ====
360 +
361 +
362 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
363 +
364 +
254 254  **Example**:
255 255  
256 -If payload is: 0708H: distance = 0708H = 1800 mm
367 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
257 257  
258 258  
259 -(% style="color:blue" %)**Sensor State:**
370 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
260 260  
261 -Ex1: 0x00: Normal collection distance
262 262  
263 -Ex2 0x0x: Distance collection is wrong
373 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
264 264  
265 265  
266 -(% style="color:blue" %)**Interript Count:**
376 +**Example**:
267 267  
268 -If payload is:000007D0H: count = 07D0H =2000
378 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
269 269  
380 +Customers can judge whether they need to adjust the environment based on the signal strength.
270 270  
271 271  
272 -==== (% style="color:red" %)**MOD~=2**(%%)** ** ====
383 +**1) When the sensor detects valid data:**
273 273  
274 -Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes.
385 +[[image:image-20230805155335-1.png||height="145" width="724"]]
275 275  
276 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
277 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
278 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
279 279  
280 -[[image:1701155150328-206.png]]
388 +**2) When the sensor detects invalid data:**
281 281  
282 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
390 +[[image:image-20230805155428-2.png||height="139" width="726"]]
283 283  
284 -(% style="color:red" %)**MOD:**
285 285  
286 -**Example: ** (0x60>>6) & 0x3f =1
393 +**3) When the sensor is not connected:**
287 287  
288 -**0x01:**  Regularly detect distance and report.
289 -**0x02: ** Uninterrupted measurement (external power supply).
395 +[[image:image-20230805155515-3.png||height="143" width="725"]]
290 290  
291 -(% style="color:red" %)**Alarm:**
292 292  
293 -When the detection distance exceeds the limit, the alarm flag is set to 1.
398 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
294 294  
295 -(% style="color:red" %)**Do:**
296 296  
297 -When the distance exceeds the set threshold, pull the Do pin high.
401 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
298 298  
299 -(% style="color:red" %)**Limit flag:**
403 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
300 300  
301 -Mode for setting threshold: 0~~5
405 +**Example:**
302 302  
303 -0: does not use upper and lower limits
407 +If byte[0]&0x01=0x00 : Normal uplink packet.
304 304  
305 -1: Use upper and lower limits
409 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
306 306  
307 -2: is less than the lower limit value
308 308  
309 -3: is greater than the lower limit value
412 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
310 310  
311 -4: is less than the upper limit
312 312  
313 -5: is greater than the upper limit
415 +Characterize the internal temperature value of the sensor.
314 314  
417 +**Example: **
418 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
419 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
315 315  
316 -(% style="color:blue" %)**Upper limit:**
317 317  
318 -The upper limit of the threshold cannot exceed 2000mm.
422 +==== (% style="color:blue" %)**Message Type**(%%) ====
319 319  
320 320  
321 -(% style="color:blue" %)**Lower limit:**
425 +(((
426 +For a normal uplink payload, the message type is always 0x01.
427 +)))
322 322  
323 -The lower limit of the threshold cannot be less than 3mm.
429 +(((
430 +Valid Message Type:
431 +)))
324 324  
433 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
434 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
435 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
436 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
325 325  
438 +[[image:image-20230805150315-4.png||height="233" width="723"]]
439 +
440 +
326 326  === 2.3.3 Historical measuring distance, FPORT~=3 ===
327 327  
328 328  
329 -DS20L stores sensor values and users can retrieve these history values via the downlink command.
444 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
330 330  
331 331  The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
332 332  
... ... @@ -351,7 +351,7 @@
351 351  )))
352 352  
353 353  * (((
354 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
469 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
355 355  )))
356 356  
357 357  For example, in the US915 band, the max payload for different DR is:
... ... @@ -364,7 +364,7 @@
364 364  
365 365  **d) DR3:** total payload includes 22 entries of data.
366 366  
367 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
482 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
368 368  
369 369  
370 370  **Downlink:**
... ... @@ -418,7 +418,7 @@
418 418  )))
419 419  
420 420  (((
421 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
536 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
422 422  )))
423 423  
424 424  
... ... @@ -447,7 +447,7 @@
447 447  
448 448  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
449 449  
450 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
565 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
451 451  
452 452  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
453 453  
... ... @@ -454,23 +454,184 @@
454 454  
455 455  After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
456 456  
457 -[[image:1701152946067-561.png]]
572 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
458 458  
459 459  
460 -== 2.5 Frequency Plans ==
575 +== 2.5 Datalog Feature ==
461 461  
462 462  
463 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
578 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
464 464  
580 +
581 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
582 +
583 +
584 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
585 +
586 +* (((
587 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
588 +)))
589 +* (((
590 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
591 +)))
592 +
593 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
594 +
595 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
596 +
597 +
598 +=== 2.5.2 Unix TimeStamp ===
599 +
600 +
601 +LDS12-LB uses Unix TimeStamp format based on
602 +
603 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
604 +
605 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
606 +
607 +Below is the converter example
608 +
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
610 +
611 +
612 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
613 +
614 +
615 +=== 2.5.3 Set Device Time ===
616 +
617 +
618 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
619 +
620 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
621 +
622 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
623 +
624 +
625 +=== 2.5.4 Poll sensor value ===
626 +
627 +
628 +Users can poll sensor values based on timestamps. Below is the downlink command.
629 +
630 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
631 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
632 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
633 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
634 +
635 +(((
636 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
637 +)))
638 +
639 +(((
640 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
641 +)))
642 +
643 +(((
644 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
645 +)))
646 +
647 +(((
648 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
649 +)))
650 +
651 +
652 +== 2.6 Frequency Plans ==
653 +
654 +
655 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
656 +
465 465  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
466 466  
467 467  
468 -= 3. Configure DS20L =
660 +== 2.7 LiDAR ToF Measurement ==
469 469  
662 +=== 2.7.1 Principle of Distance Measurement ===
663 +
664 +
665 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
666 +
667 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
668 +
669 +
670 +=== 2.7.2 Distance Measurement Characteristics ===
671 +
672 +
673 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
674 +
675 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
676 +
677 +
678 +(((
679 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
680 +)))
681 +
682 +(((
683 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
684 +)))
685 +
686 +(((
687 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
688 +)))
689 +
690 +
691 +(((
692 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
693 +)))
694 +
695 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
696 +
697 +(((
698 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
699 +)))
700 +
701 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
702 +
703 +(((
704 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
705 +)))
706 +
707 +
708 +=== 2.7.3 Notice of usage ===
709 +
710 +
711 +Possible invalid /wrong reading for LiDAR ToF tech:
712 +
713 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
714 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
715 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
716 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
717 +
718 +=== 2.7.4  Reflectivity of different objects ===
719 +
720 +
721 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
722 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
723 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
724 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
725 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
726 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
727 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
728 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
729 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
730 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
731 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
732 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
733 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
734 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
735 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
736 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
737 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
738 +Unpolished white metal surface
739 +)))|(% style="width:93px" %)130%
740 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
741 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
742 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
743 +
744 += 3. Configure LDS12-LB =
745 +
470 470  == 3.1 Configure Methods ==
471 471  
472 472  
473 -DS20L supports below configure method:
749 +LDS12-LB supports below configure method:
474 474  
475 475  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
476 476  
... ... @@ -492,10 +492,10 @@
492 492  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
493 493  
494 494  
495 -== 3.3 Commands special design for DS20L ==
771 +== 3.3 Commands special design for LDS12-LB ==
496 496  
497 497  
498 -These commands only valid for DS20L, as below:
774 +These commands only valid for LDS12-LB, as below:
499 499  
500 500  
501 501  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -537,7 +537,7 @@
537 537  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
538 538  )))
539 539  * (((
540 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
816 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
541 541  
542 542  
543 543  
... ... @@ -560,7 +560,7 @@
560 560  the mode is 0 =Disable Interrupt
561 561  )))
562 562  |(% style="width:154px" %)(((
563 -AT+INTMOD=3
839 +AT+INTMOD=2
564 564  
565 565  (default)
566 566  )))|(% style="width:196px" %)(((
... ... @@ -581,83 +581,39 @@
581 581  
582 582  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
583 583  
584 -== 3.3.3 Set work mode ==
860 +=== 3.3.3  Set Power Output Duration ===
585 585  
862 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
586 586  
587 -Feature: Switch working mode
864 +~1. first enable the power output to external sensor,
588 588  
589 -(% style="color:blue" %)**AT Command: AT+MOD**
866 +2. keep it on as per duration, read sensor value and construct uplink payload
590 590  
591 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
592 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
593 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
594 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
595 -OK
596 -Attention:Take effect after ATZ
597 -)))
868 +3. final, close the power output.
598 598  
599 -(% style="color:blue" %)**Downlink Command:**
870 +(% style="color:blue" %)**AT Command: AT+3V3T**
600 600  
601 -* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
602 -
603 -* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
604 -
605 -=== 3.3.4 Set threshold and threshold mode ===
606 -
607 -
608 -Feature, Set threshold and threshold mode
609 -
610 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
611 -
612 -(% style="color:blue" %)**AT Command: AT+DOL**
613 -
614 614  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
615 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
616 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
617 -0,0,0,0,400
873 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
874 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
618 618  OK
619 -)))
620 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
876 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
877 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
878 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
621 621  
622 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
623 -|(% rowspan="11" style="color:blue; width:120px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits
624 -|(% style="width:251px" %)1: Use upper and lower limits
625 -|(% style="width:251px" %)2: Less than the lower limit
626 -|(% style="width:251px" %)3: Greater than the lower limit
627 -|(% style="width:251px" %)4: Less than the upper limit
628 -|(% style="width:251px" %)5: Greater than the upper limit
629 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
630 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
631 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
632 -|(% style="width:251px" %)1 Person or object counting statistics
633 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
634 -0~~10000ms
880 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
881 +Format: Command Code (0x07) followed by 3 bytes.
635 635  
636 -
637 -)))
883 +The first byte is 01,the second and third bytes are the time to turn on.
638 638  
639 -(% style="color:blue" %)**Downlink Command: 0x07**
885 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
886 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
887 +* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
640 640  
641 -Format: Command Code (0x07) followed by 9bytes.
642 -
643 -* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
644 -
645 -* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
646 -
647 -* Example 2: Downlink Payload: 070200000064000190  **~-~-->**  AT+MOD=2,0,100,0,400
648 -
649 -* Example 3: Downlink Payload: 0703200000064000190  **~-~-->**  AT+MOD=3,1800,100,0,400
650 -
651 -* Example 4: Downlink Payload: 070407080000000190  **~-~-->**  AT+MOD=4,0,100,0,400
652 -
653 -* Example 5: Downlink Payload: 070507080000000190  **~-~-->**  AT+MOD=5,1800,100,0,400
654 -
655 -
656 -
657 657  = 4. Battery & Power Consumption =
658 658  
659 659  
660 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
892 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
661 661  
662 662  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
663 663  
... ... @@ -666,7 +666,7 @@
666 666  
667 667  
668 668  (% class="wikigeneratedid" %)
669 -User can change firmware DS20L to:
901 +User can change firmware LDS12-LB to:
670 670  
671 671  * Change Frequency band/ region.
672 672  
... ... @@ -674,7 +674,7 @@
674 674  
675 675  * Fix bugs.
676 676  
677 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
909 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
678 678  
679 679  Methods to Update Firmware:
680 680  
... ... @@ -684,39 +684,12 @@
684 684  
685 685  = 6. FAQ =
686 686  
687 -== 6.1 What is the frequency plan for DS20L? ==
919 +== 6.1 What is the frequency plan for LDS12-LB? ==
688 688  
689 689  
690 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
922 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
691 691  
692 692  
693 -== 6.2 DS20L programming line ==
694 -
695 -
696 -缺图 后续补上
697 -
698 -feature:
699 -
700 -for AT commands
701 -
702 -Update the firmware of DS20L
703 -
704 -Support interrupt mode
705 -
706 -
707 -== 6.3 LiDAR probe position ==
708 -
709 -
710 -[[image:1701155390576-216.png||height="285" width="307"]]
711 -
712 -The black oval hole in the picture is the LiDAR probe.
713 -
714 -
715 -== 6.4 Interface definition ==
716 -
717 -[[image:image-20231128151132-2.png||height="305" width="557"]]
718 -
719 -
720 720  = 7. Trouble Shooting =
721 721  
722 722  == 7.1 AT Command input doesn't work ==
... ... @@ -749,7 +749,7 @@
749 749  = 8. Order Info =
750 750  
751 751  
752 -Part Number: (% style="color:blue" %)**DS20L-XXX**
957 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
753 753  
754 754  (% style="color:red" %)**XXX**(%%): **The default frequency band**
755 755  
... ... @@ -774,7 +774,7 @@
774 774  
775 775  (% style="color:#037691" %)**Package Includes**:
776 776  
777 -* DS20L LoRaWAN Smart Distance Detector x 1
982 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
778 778  
779 779  (% style="color:#037691" %)**Dimension and weight**:
780 780  
1701149922873-259.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701155076393-719.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155150328-206.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155390576-216.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -293.9 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.6 KB
Content
image-20231128151132-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -281.2 KB
Content
image-20231129085201-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -70.6 KB
Content