Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 22 removed)
- 1701149922873-259.png
- 1701152902759-553.png
- 1701152946067-561.png
- 1701155076393-719.png
- 1701155150328-206.png
- 1701155390576-216.png
- image-20230805103904-1.png
- image-20230805104104-2.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
- image-20231110102635-5.png
- image-20231128133704-1.png
- image-20231128151132-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -DS2 0L -- LoRaWANSmartDistanceDetector User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-202311 10085342-2.png||height="481" width="481"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,72 +19,170 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.DS20Lcan measurerangebetween3cm ~~ 200cm.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 - [[image:image-20231110102635-5.png||height="402"width="807"]]34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 +[[image:image-20230615152941-1.png||height="459" width="800"]] 39 + 40 + 38 38 == 1.2 Features == 39 39 40 40 41 -* LoRaWAN Class A protocol 42 -* LiDAR distance detector, range 3 ~~ 200cm 43 -* Periodically detect or continuously detect mode 44 +* LoRaWAN 1.0.3 Class A 45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 +* Ultra-low power consumption 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 51 +* Support Bluetooth v5.1 and LoRaWAN remote configure 52 +* Support wireless OTA update firmware 44 44 * AT Commands to change parameters 45 -* Remotely configure parameters via LoRaWAN Downlink 46 -* Alarm & Counting mode 47 -* Firmware upgradable via program port or LoRa protocol 48 -* Built-in 2400mAh battery or power by external power source 54 +* Downlink to change configure 55 +* 8500mAh Battery for long term use 49 49 57 +== 1.3 Specification == 50 50 51 51 52 - ==1.3Specification ==60 +(% style="color:#037691" %)**Common DC Characteristics:** 53 53 62 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 63 +* Operating Temperature: -40 ~~ 85°C 54 54 55 -(% style="color:#037691" %)** LiDARSensor:**65 +(% style="color:#037691" %)**Probe Specification:** 56 56 57 -* Operation Temperature: -40 ~~ 80 °C 58 -* Operation Humidity: 0~~99.9%RH (no Dew) 59 -* Storage Temperature: -10 ~~ 45°C 60 -* Measure Range: 3cm~~200cm @ 90% reflectivity 61 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 62 -* ToF FoV: ±9°, Total 18° 63 -* Light source: VCSEL 67 +* Storage temperature:-20℃~~75℃ 68 +* Operating temperature : -20℃~~60℃ 69 +* Measure Distance: 70 +** 0.1m ~~ 12m @ 90% Reflectivity 71 +** 0.1m ~~ 4m @ 10% Reflectivity 72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 74 +* Ambient light immunity : 70klux 75 +* Enclosure rating : IP65 76 +* Light source : LED 77 +* Central wavelength : 850nm 78 +* FOV : 3.6° 79 +* Material of enclosure : ABS+PC 80 +* Wire length : 25cm 64 64 82 +(% style="color:#037691" %)**LoRa Spec:** 65 65 84 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 85 +* Max +22 dBm constant RF output vs. 86 +* RX sensitivity: down to -139 dBm. 87 +* Excellent blocking immunity 66 66 67 - ==1.4 Power Consumption==89 +(% style="color:#037691" %)**Battery:** 68 68 91 +* Li/SOCI2 un-chargeable battery 92 +* Capacity: 8500mAh 93 +* Self-Discharge: <1% / Year @ 25°C 94 +* Max continuously current: 130mA 95 +* Max boost current: 2A, 1 second 69 69 70 -(% style="color:#037691" %)** BatteryPowerMode:**97 +(% style="color:#037691" %)**Power Consumption** 71 71 72 -* Idle:0.003 mA @ 3.3v73 -* Max:360 mA99 +* Sleep Mode: 5uA @ 3.3v 100 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 74 74 75 - (% style="color:#037691"%)**Continuouslymode**:102 +== 1.4 Applications == 76 76 77 -* Idle: 21 mA @ 3.3v 78 -* Max : 360 mA 79 79 105 +* Horizontal distance measurement 106 +* Parking management system 107 +* Object proximity and presence detection 108 +* Intelligent trash can management system 109 +* Robot obstacle avoidance 110 +* Automatic control 111 +* Sewer 80 80 113 +(% style="display:none" %) 81 81 82 -= 2.ConfigureDS20L toconnectto LoRaWANnetwork =115 +== 1.5 Sleep mode and working mode == 83 83 117 + 118 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 119 + 120 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 121 + 122 + 123 +== 1.6 Button & LEDs == 124 + 125 + 126 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 127 + 128 + 129 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 130 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 131 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 132 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 133 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 134 +))) 135 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 136 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 137 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 138 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 139 +))) 140 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 141 + 142 +== 1.7 BLE connection == 143 + 144 + 145 +LDS12-LB support BLE remote configure. 146 + 147 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 148 + 149 +* Press button to send an uplink 150 +* Press button to active device. 151 +* Device Power on or reset. 152 + 153 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 154 + 155 + 156 +== 1.8 Pin Definitions == 157 + 158 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 159 + 160 + 161 +== 1.9 Mechanical == 162 + 163 + 164 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 165 + 166 + 167 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 168 + 169 + 170 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 171 + 172 + 173 +(% style="color:blue" %)**Probe Mechanical:** 174 + 175 + 176 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 177 + 178 + 179 += 2. Configure LDS12-LB to connect to LoRaWAN network = 180 + 84 84 == 2.1 How it works == 85 85 86 86 87 -The DS2 0L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.184 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 88 88 89 89 (% style="display:none" %) (%%) 90 90 ... ... @@ -93,14 +93,15 @@ 93 93 94 94 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 95 95 96 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. (% style="display:none" %)193 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 97 97 98 -[[image:image-202311 10102635-5.png||height="402" width="807"]](% style="display:none" %)195 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 99 99 100 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 101 101 102 - EachDS20Lisshipped withastickerwith thedefaultdevice EUI asbelow:198 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 103 103 200 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 201 + 104 104 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 105 105 106 106 ... ... @@ -128,11 +128,10 @@ 128 128 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 129 129 130 130 131 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS2 0L229 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 132 132 133 -[[image:image-20231128133704-1.png||height="189" width="441"]] 134 134 135 -Press the button for 5 seconds to activate the DS2 0L.232 +Press the button for 5 seconds to activate the LDS12-LB. 136 136 137 137 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 138 138 ... ... @@ -141,10 +141,11 @@ 141 141 142 142 == 2.3 Uplink Payload == 143 143 241 + 144 144 === 2.3.1 Device Status, FPORT~=5 === 145 145 146 146 147 -Users can use the downlink command(**0x26 01**) to ask DS2 0L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.245 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 148 148 149 149 The Payload format is as below. 150 150 ... ... @@ -156,14 +156,12 @@ 156 156 157 157 Example parse in TTNv3 158 158 159 - [[image:1701149922873-259.png]]257 +**Sensor Model**: For LDS12-LB, this value is 0x24 160 160 161 - (% style="color:blue"%)**Sensor Model**(%%):For DS20L,this valueis0x21259 +**Firmware Version**: 0x0100, Means: v1.0.0 version 162 162 163 - (% style="color:blue" %)**FirmwareVersion**(%%):0x0100, Means:v1.0.0 version261 +**Frequency Band**: 164 164 165 -(% style="color:blue" %)**Frequency Band**: 166 - 167 167 0x01: EU868 168 168 169 169 0x02: US915 ... ... @@ -192,7 +192,7 @@ 192 192 193 193 0x0e: MA869 194 194 195 - (% style="color:blue" %)**Sub-Band**:291 +**Sub-Band**: 196 196 197 197 AU915 and US915:value 0x00 ~~ 0x08 198 198 ... ... @@ -200,7 +200,7 @@ 200 200 201 201 Other Bands: Always 0x00 202 202 203 - (% style="color:blue" %)**Battery Info**:299 +**Battery Info**: 204 204 205 205 Check the battery voltage. 206 206 ... ... @@ -212,265 +212,351 @@ 212 212 === 2.3.2 Uplink Payload, FPORT~=2 === 213 213 214 214 215 -==== (% style="color:red" %)**MOD~=1**(%%) ==== 311 +((( 312 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 313 +))) 216 216 217 -Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts. 315 +((( 316 +Uplink payload includes in total 11 bytes. 317 +))) 218 218 219 -Uplink Payload totals 10 bytes. 220 - 221 221 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 222 -|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4** 223 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count 320 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 321 +**Size(bytes)** 322 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 323 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 324 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 325 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 326 +[[Interrupt flag & Interrupt_level||anchor="HInterruptPin26A0InterruptLevel">>]] 327 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 328 +[[Message Type>>||anchor="HMessageType"]] 329 +))) 224 224 225 -[[image:1 701155076393-719.png]]331 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 226 226 227 -(% style="color:blue" %)**Battery Info:** 228 228 229 - CheckthevoltageforDS20L334 +====(% style="color:blue" %)**Battery Info** ==== 230 230 231 -Ex1: 0x0E10 = 3600mV 232 232 337 +Check the battery voltage for LDS12-LB. 233 233 234 - (% style="color:blue"%)**MOD&Alarm& Interrupt:**339 +Ex1: 0x0B45 = 2885mV 235 235 236 - (%style="color:red"%)**MOD:**341 +Ex2: 0x0B49 = 2889mV 237 237 238 -**Example: ** (0x60>>6) & 0x3f =1 239 239 240 -**0x01:** Regularly detect distance and report. 241 -**0x02: ** Uninterrupted measurement (external power supply). 344 +====(% style="color:blue" %)**DS18B20 Temperature sensor** ==== 242 242 243 -(% style="color:red" %)**Alarm:** 244 244 245 - Whenthedetectiondistance exceeds thelimit,the alarmflagisset to 1.347 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 246 246 247 -(% style="color:red" %)**Interrupt:** 248 248 249 - Whether it is an externalinterrupt.350 +**Example**: 250 250 352 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 251 251 252 - (%style="color:blue"%)**Distanceinfo:**354 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 253 253 356 + 357 +====(% style="color:blue" %)**Distance** ==== 358 + 359 + 360 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 361 + 362 + 254 254 **Example**: 255 255 256 -If payloadis:0708H:distance=0708H =1800 mm365 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 257 257 258 258 259 -(% style="color:blue" %)** SensorState:**368 +====(% style="color:blue" %)**Distance signal strength** ==== 260 260 261 -Ex1: 0x00: Normal collection distance 262 262 263 - Ex20x0x:Distance collection iswrong371 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 264 264 265 265 266 - (% style="color:blue" %)**Interript Count:**374 +**Example**: 267 267 268 -If payload is:0 00007D0H:count= 07D0H=2000376 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 269 269 378 +Customers can judge whether they need to adjust the environment based on the signal strength. 270 270 271 271 272 -==== red" %)**MOD~=2**(%%)**** ====381 +====(% style="color:blue" %)**Interrupt Pin & Interrupt Level** ==== 273 273 274 -Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes. 275 275 276 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 277 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2** 278 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit 384 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 279 279 280 -[[imag e:1701155150328-206.png]]386 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 281 281 282 - (% style="color:blue" %)**MOD & Alarm& Do & Limit flag:**388 +**Example:** 283 283 284 - (%style="color:red"%)**MOD:**390 +0x00: Normal uplink packet. 285 285 286 - **Example: ** (0x60>>6)&0x3f=1392 +0x01: Interrupt Uplink Packet. 287 287 288 -**0x01:** Regularly detect distance and report. 289 -**0x02: ** Uninterrupted measurement (external power supply). 290 290 291 -(% style="color: red" %)**Alarm:**395 +====(% style="color:blue" %)**LiDAR temp** ==== 292 292 293 -When the detection distance exceeds the limit, the alarm flag is set to 1. 294 294 295 - (%style="color:red"%)**Do:**398 +Characterize the internal temperature value of the sensor. 296 296 297 -When the distance exceeds the set threshold, pull the Do pin high. 400 +**Example: ** 401 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 402 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 298 298 299 -(% style="color:red" %)**Limit flag:** 300 300 301 - Modeforsettingthreshold:0~~5405 +====(% style="color:blue" %)**Message Type** ==== 302 302 303 -0: does not use upper and lower limits 304 304 305 -1: Use upper and lower limits 408 +((( 409 +For a normal uplink payload, the message type is always 0x01. 410 +))) 306 306 307 -2: is less than the lower limit value 412 +((( 413 +Valid Message Type: 414 +))) 308 308 309 -3: is greater than the lower limit value 416 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 417 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 418 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 419 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 310 310 311 -4: is less than the upper limit 312 312 313 -5: is greater than the upper limit 314 314 423 +=== 2.3.3 Decode payload in The Things Network === 315 315 316 -(% style="color:blue" %)**Upper limit:** 317 317 318 - The upperlimitofthethresholdcannot exceed2000mm.426 +While using TTN network, you can add the payload format to decode the payload. 319 319 428 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 320 320 321 -(% style="color:blue" %)**Lower limit:** 322 322 323 -The lower limit of the threshold cannot be less than 3mm. 431 +((( 432 +The payload decoder function for TTN is here: 433 +))) 324 324 435 +((( 436 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 437 +))) 325 325 326 -=== 2.3.3 Historical measuring distance, FPORT~=3 === 327 327 440 +== 2.4 Uplink Interval == 328 328 329 -DS20L stores sensor values and users can retrieve these history values via the downlink command. 330 330 331 -The historicalpayloadincludes one or multipliesentriesand everyentryhasthe samepayloadasReal-Timemeasuringdistance.443 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 332 332 333 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 334 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 335 -**Size(bytes)** 336 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 337 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 338 -Reserve(0xFF) 339 -)))|Distance|Distance signal strength|(% style="width:88px" %)((( 340 -LiDAR temp 341 -)))|(% style="width:85px" %)Unix TimeStamp 342 342 343 - **Interruptflag&Interruptlevel:**446 +== 2.5 Show Data in DataCake IoT Server == 344 344 345 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 346 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 347 -**Size(bit)** 348 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 349 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 350 -Interrupt flag 448 + 449 +((( 450 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 351 351 ))) 352 352 353 -* ((( 354 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands. 453 + 454 +((( 455 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 355 355 ))) 356 356 357 -For example, in the US915 band, the max payload for different DR is: 458 +((( 459 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 460 +))) 358 358 359 -**a) DR0:** max is 11 bytes so one entry of data 360 360 361 - **b) DR1:**max is 53 bytes sodeviceswill upload4entriesf data(totalbytes)463 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]] 362 362 363 -**c) DR2:** total payload includes 11 entries of data 364 364 365 - **d) DR3:**totalpayloadcludesentriesf data.466 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]] 366 366 367 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0 368 368 469 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 369 369 370 -**D ownlink:**471 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 371 371 372 - 0x31CC 68C 64 CC 69473 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 373 373 374 -[[image:image-20230805144936-2.png||height="113" width="746"]] 375 375 376 - **Uplink:**476 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 377 377 378 - 43 FF0E 10B0 1E64 CC 680C 40 FF 0DE008 1E 64 CC 6829 40FF 09 920D3 1E 64 CC 68 65 40FF023A02BC 1E64 CC 68 A141 FF0E1A 00 A4 1E64 CC 68 C0 40 FF 0D2A 00 B81E 64 CC 68 E8 40FF 00 C86A 1E 64 CC 6924 40FF 0E2400AD1E64 CC 696D478 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 379 379 380 380 381 - **ParsedValue:**481 +== 2.6 Datalog Feature == 382 382 383 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 384 384 484 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 385 385 386 -[360,176,30,High,True,2023-08-04 02:53:00], 387 387 388 - [355,168,30,Low,False,2023-08-0402:53:29],487 +=== 2.6.1 Ways to get datalog via LoRaWAN === 389 389 390 -[245,211,30,Low,False,2023-08-04 02:54:29], 391 391 392 - [57,700,30,Low,False,2023-08-0402:55:29],490 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 393 393 394 -[361,164,30,Low,True,2023-08-04 02:56:00], 492 +* ((( 493 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 494 +))) 495 +* ((( 496 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 497 +))) 395 395 396 - [337,184,30,Low,False,2023-08-0402:56:40],499 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 397 397 398 -[20 ,4458,30,Low,False,2023-08-04 02:57:40],501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 399 399 400 -[362,173,30,Low,False,2023-08-04 02:58:53], 401 401 504 +=== 2.6.2 Unix TimeStamp === 402 402 403 -**History read from serial port:** 404 404 405 - [[image:image-20230805145056-3.png]]507 +LDS12-LB uses Unix TimeStamp format based on 406 406 509 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 407 407 408 - === 2.3.4 DecodepayloadinTheThings Network===511 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 409 409 513 +Below is the converter example 410 410 411 - While usingTTN network, youcand thepayloadformatdecodepayload.515 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 412 412 413 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 414 414 518 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 415 415 416 -((( 417 -The payload decoder function for TTN is here: 418 -))) 419 419 420 -((( 421 -DS20L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 422 -))) 521 +=== 2.6.3 Set Device Time === 423 423 424 424 425 - ==2.4ShowDatainDataCakeIoTServer==524 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 426 426 526 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 427 427 528 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 529 + 530 + 531 +=== 2.6.4 Poll sensor value === 532 + 533 + 534 +Users can poll sensor values based on timestamps. Below is the downlink command. 535 + 536 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 537 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 538 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 539 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 540 + 428 428 ((( 429 - [[DATACAKE>>url:https://datacake.co/]]provideshumanfriendlyinterfaceto showthesensor data,oncewehavedatainTTN,wecan use [[DATACAKE>>url:https://datacake.co/]]toconnecttoTTN and seethedatainDATACAKE. Below arethesteps:542 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval. 430 430 ))) 431 431 545 +((( 546 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]] 547 +))) 432 432 433 433 ((( 434 - (%style="color:blue"%)**Step1**(%%)**:Be surethat yourdeviceisprogrammednd properly connected to the networkat this time.**550 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data 435 435 ))) 436 436 437 437 ((( 438 - (% style="color:blue" %)**Step2**(%%)**: To configure the Application to forwarddatatoDATACAKEyouwillneedtoadd integration.Toadd theDATACAKE integration,performthefollowing steps:**554 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 439 439 ))) 440 440 441 441 442 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]558 +== 2.7 Frequency Plans == 443 443 444 444 445 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]561 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 446 446 563 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 447 447 448 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 449 449 450 - (% style="color:blue"%)**Step 4**(%%)**: Search theDS20L andadd DevEUI.**566 +== 2.8 LiDAR ToF Measurement == 451 451 452 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]568 +=== 2.8.1 Principle of Distance Measurement === 453 453 454 454 455 - After added,thesensor data arriveTTNV3, itwillalso arrive and showinDatacake.571 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 456 456 457 -[[image:1 701152946067-561.png]]573 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 458 458 459 459 460 -== 2. 5FrequencyPlans ==576 +=== 2.8.2 Distance Measurement Characteristics === 461 461 462 462 463 - TheDS20LusesOTAAmode andbelowfrequency plansbydefault.Ifuserwant touse itwithdifferentfrequencyplan,pleaserefertheATcommandsets.579 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 464 464 465 -[[http: ~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]581 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 466 466 467 467 468 -= 3. Configure DS20L = 584 +((( 585 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 586 +))) 469 469 588 +((( 589 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 590 +))) 591 + 592 +((( 593 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 594 +))) 595 + 596 + 597 +((( 598 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 599 +))) 600 + 601 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 602 + 603 +((( 604 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 605 +))) 606 + 607 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 608 + 609 +((( 610 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 611 +))) 612 + 613 + 614 +=== 2.8.3 Notice of usage === 615 + 616 + 617 +Possible invalid /wrong reading for LiDAR ToF tech: 618 + 619 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 620 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 621 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 622 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 623 + 624 +=== 2.8.4 Reflectivity of different objects === 625 + 626 + 627 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 628 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 629 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 630 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 631 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 632 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 633 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 634 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 635 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 636 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 637 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 638 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 639 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 640 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 641 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 642 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 643 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 644 +Unpolished white metal surface 645 +)))|(% style="width:93px" %)130% 646 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 647 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 648 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 649 + 650 += 3. Configure LDS12-LB = 651 + 470 470 == 3.1 Configure Methods == 471 471 472 472 473 -DS2 0L supports below configure method:655 +LDS12-LB supports below configure method: 474 474 475 475 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 476 476 ... ... @@ -492,10 +492,10 @@ 492 492 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 493 493 494 494 495 -== 3.3 Commands special design for DS2 0L ==677 +== 3.3 Commands special design for LDS12-LB == 496 496 497 497 498 -These commands only valid for DS2 0L, as below:680 +These commands only valid for LDS12-LB, as below: 499 499 500 500 501 501 === 3.3.1 Set Transmit Interval Time === ... ... @@ -537,7 +537,7 @@ 537 537 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 538 538 ))) 539 539 * ((( 540 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 722 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 541 541 542 542 543 543 ... ... @@ -546,9 +546,9 @@ 546 546 === 3.3.2 Set Interrupt Mode === 547 547 548 548 549 -Feature, Set Interrupt mode for pinofGPIO_EXTI.731 +Feature, Set Interrupt mode for PA8 of pin. 550 550 551 -When AT+INTMOD=0 is set, GPIO_EXTIis used as a digital input port.733 +When AT+INTMOD=0 is set, PA8 is used as a digital input port. 552 552 553 553 (% style="color:blue" %)**AT Command: AT+INTMOD** 554 554 ... ... @@ -559,11 +559,7 @@ 559 559 OK 560 560 the mode is 0 =Disable Interrupt 561 561 ))) 562 -|(% style="width:154px" %)((( 563 -AT+INTMOD=3 564 - 565 -(default) 566 -)))|(% style="width:196px" %)((( 744 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 567 567 Set Transmit Interval 568 568 0. (Disable Interrupt), 569 569 ~1. (Trigger by rising and falling edge) ... ... @@ -581,83 +581,37 @@ 581 581 582 582 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 583 583 584 -== 3.3.3 Set workmode==762 +=== 3.3.3 Set Power Output Duration === 585 585 764 +Control the output duration 3V3 . Before each sampling, device will 586 586 587 - Feature:Switch workingmode766 +~1. first enable the power output to external sensor, 588 588 589 - (%style="color:blue"%)**AT Command:AT+MOD**768 +2. keep it on as per duration, read sensor value and construct uplink payload 590 590 591 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 592 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response** 593 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK 594 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)((( 595 -OK 596 -Attention:Take effect after ATZ 597 -))) 770 +3. final, close the power output. 598 598 599 -(% style="color:blue" %)** DownlinkCommand:**772 +(% style="color:blue" %)**AT Command: AT+3V3T** 600 600 601 -* **Example: **0x0A00 ~/~/ Same as AT+MOD=0 602 - 603 -* **Example:** 0x0A01 ~/~/ Same as AT+MOD=1 604 - 605 -=== 3.3.4 Set threshold and threshold mode === 606 - 607 - 608 -Feature, Set threshold and threshold mode 609 - 610 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms. 611 - 612 -(% style="color:blue" %)**AT Command: AT+DOL** 613 - 614 614 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 615 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response** 616 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)((( 617 -0,0,0,0,400 775 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 776 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 618 618 OK 619 -))) 620 -|(% style="width:1 72px" %)AT+DOL=1,1800,100,0,400|(% style="width:279px" %)Set onlytheupper and lowerthresholds|(% style="width:118px" %)OK778 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 779 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 621 621 622 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 623 -|(% rowspan="11" style="color:blue; width:120px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits 624 -|(% style="width:251px" %)1: Use upper and lower limits 625 -|(% style="width:251px" %)2: Less than the lower limit 626 -|(% style="width:251px" %)3: Greater than the lower limit 627 -|(% style="width:251px" %)4: Less than the upper limit 628 -|(% style="width:251px" %)5: Greater than the upper limit 629 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM 630 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM 631 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high 632 -|(% style="width:251px" %)1 Person or object counting statistics 633 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)((( 634 -0~~10000ms 781 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 782 +Format: Command Code (0x07) followed by 3 bytes. 635 635 636 - 637 -))) 784 +The first byte is 01,the second and third bytes are the time to turn on. 638 638 639 -(% style="color:blue" %)**Downlink Command: 0x07** 786 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 787 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 640 640 641 -Format: Command Code (0x07) followed by 9bytes. 642 - 643 -* Example 0: Downlink Payload: 070000000000000190 **~-~-->** AT+MOD=0,0,0,0,400 644 - 645 -* Example 1: Downlink Payload: 070107080064000190 **~-~-->** AT+MOD=1,1800,100,0,400 646 - 647 -* Example 2: Downlink Payload: 070200000064000190 **~-~-->** AT+MOD=2,0,100,0,400 648 - 649 -* Example 3: Downlink Payload: 0703200000064000190 **~-~-->** AT+MOD=3,1800,100,0,400 650 - 651 -* Example 4: Downlink Payload: 070407080000000190 **~-~-->** AT+MOD=4,0,100,0,400 652 - 653 -* Example 5: Downlink Payload: 070507080000000190 **~-~-->** AT+MOD=5,1800,100,0,400 654 - 655 - 656 - 657 657 = 4. Battery & Power Consumption = 658 658 659 659 660 -DS2 0L usebuilt-in2400mAhnon-chargeablebatteryfor long-term use upto several years*. See below link for detail information about the battery info and how to replace.792 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 661 661 662 662 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 663 663 ... ... @@ -666,7 +666,7 @@ 666 666 667 667 668 668 (% class="wikigeneratedid" %) 669 -User can change firmware DS2 0L to:801 +User can change firmware LDS12-LB to: 670 670 671 671 * Change Frequency band/ region. 672 672 ... ... @@ -674,7 +674,7 @@ 674 674 675 675 * Fix bugs. 676 676 677 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/ zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**809 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 678 678 679 679 Methods to Update Firmware: 680 680 ... ... @@ -684,39 +684,12 @@ 684 684 685 685 = 6. FAQ = 686 686 687 -== 6.1 What is the frequency plan for DS2 0L? ==819 +== 6.1 What is the frequency plan for LDS12-LB? == 688 688 689 689 690 -DS2 0L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]822 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 691 691 692 692 693 -== 6.2 DS20L programming line == 694 - 695 - 696 -缺图 后续补上 697 - 698 -feature: 699 - 700 -for AT commands 701 - 702 -Update the firmware of DS20L 703 - 704 -Support interrupt mode 705 - 706 - 707 -== 6.3 LiDAR probe position == 708 - 709 - 710 -[[image:1701155390576-216.png||height="285" width="307"]] 711 - 712 -The black oval hole in the picture is the LiDAR probe. 713 - 714 - 715 -== 6.4 Interface definition == 716 - 717 -[[image:image-20231128151132-2.png||height="305" width="557"]] 718 - 719 - 720 720 = 7. Trouble Shooting = 721 721 722 722 == 7.1 AT Command input doesn't work == ... ... @@ -749,7 +749,7 @@ 749 749 = 8. Order Info = 750 750 751 751 752 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**857 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 753 753 754 754 (% style="color:red" %)**XXX**(%%): **The default frequency band** 755 755 ... ... @@ -774,7 +774,7 @@ 774 774 775 775 (% style="color:#037691" %)**Package Includes**: 776 776 777 -* DS2 0L LoRaWANSmartDistanceDetector x 1882 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 778 778 779 779 (% style="color:#037691" %)**Dimension and weight**: 780 780
- 1701149922873-259.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -24.5 KB - Content
- 1701152902759-553.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -52.2 KB - Content
- 1701152946067-561.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -52.2 KB - Content
- 1701155076393-719.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -54.6 KB - Content
- 1701155150328-206.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -54.6 KB - Content
- 1701155390576-216.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -293.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -84.7 KB - Content
- image-20231128133704-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -190.6 KB - Content
- image-20231128151132-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -281.2 KB - Content