Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 17 removed)
- 1701149922873-259.png
- 1701152902759-553.png
- 1701152946067-561.png
- 1701155076393-719.png
- 1701155150328-206.png
- 1701155390576-216.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
- image-20231110102635-5.png
- image-20231128133704-1.png
- image-20231128151132-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -DS2 0L -- LoRaWANSmartDistanceDetector User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-202311 10085342-2.png||height="481" width="481"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,66 +19,174 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.DS20Lcan measurerangebetween3cm ~~ 200cm.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 - [[image:image-20231110102635-5.png||height="402"width="807"]]34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 +[[image:image-20230615152941-1.png||height="459" width="800"]] 39 + 40 + 38 38 == 1.2 Features == 39 39 40 40 41 -* LoRaWAN Class A protocol 42 -* LiDAR distance detector, range 3 ~~ 200cm 43 -* Periodically detect or continuously detect mode 44 +* LoRaWAN 1.0.3 Class A 45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 +* Ultra-low power consumption 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 51 +* Support Bluetooth v5.1 and LoRaWAN remote configure 52 +* Support wireless OTA update firmware 44 44 * AT Commands to change parameters 45 -* Remotely configure parameters via LoRaWAN Downlink 46 -* Alarm & Counting mode 47 -* Firmware upgradable via program port or LoRa protocol 48 -* Built-in 2400mAh battery or power by external power source 54 +* Downlink to change configure 55 +* 8500mAh Battery for long term use 49 49 57 + 50 50 == 1.3 Specification == 51 51 52 52 53 -(% style="color:#037691" %)** LiDARSensor:**61 +(% style="color:#037691" %)**Common DC Characteristics:** 54 54 55 -* Operation Temperature: -40 ~~ 80 °C 56 -* Operation Humidity: 0~~99.9%RH (no Dew) 57 -* Storage Temperature: -10 ~~ 45°C 58 -* Measure Range: 3cm~~200cm @ 90% reflectivity 59 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 60 -* ToF FoV: ±9°, Total 18° 61 -* Light source: VCSEL 63 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 64 +* Operating Temperature: -40 ~~ 85°C 62 62 63 - ==1.4PowerConsumption==66 +(% style="color:#037691" %)**Probe Specification:** 64 64 68 +* Storage temperature:-20℃~~75℃ 69 +* Operating temperature : -20℃~~60℃ 70 +* Measure Distance: 71 +** 0.1m ~~ 12m @ 90% Reflectivity 72 +** 0.1m ~~ 4m @ 10% Reflectivity 73 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 74 +* Distance resolution : 5mm 75 +* Ambient light immunity : 70klux 76 +* Enclosure rating : IP65 77 +* Light source : LED 78 +* Central wavelength : 850nm 79 +* FOV : 3.6° 80 +* Material of enclosure : ABS+PC 81 +* Wire length : 25cm 65 65 66 -(% style="color:#037691" %)** BatteryPower Mode:**83 +(% style="color:#037691" %)**LoRa Spec:** 67 67 68 -* Idle: 0.003 mA @ 3.3v 69 -* Max : 360 mA 85 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 86 +* Max +22 dBm constant RF output vs. 87 +* RX sensitivity: down to -139 dBm. 88 +* Excellent blocking immunity 70 70 71 -(% style="color:#037691" %)** Continuously mode**:90 +(% style="color:#037691" %)**Battery:** 72 72 73 -* Idle: 21 mA @ 3.3v 74 -* Max : 360 mA 92 +* Li/SOCI2 un-chargeable battery 93 +* Capacity: 8500mAh 94 +* Self-Discharge: <1% / Year @ 25°C 95 +* Max continuously current: 130mA 96 +* Max boost current: 2A, 1 second 75 75 76 - =2. Configure DS20LtoconnecttoLoRaWANnetwork =98 +(% style="color:#037691" %)**Power Consumption** 77 77 100 +* Sleep Mode: 5uA @ 3.3v 101 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 102 + 103 + 104 +== 1.4 Applications == 105 + 106 + 107 +* Horizontal distance measurement 108 +* Parking management system 109 +* Object proximity and presence detection 110 +* Intelligent trash can management system 111 +* Robot obstacle avoidance 112 +* Automatic control 113 +* Sewer 114 + 115 + 116 +(% style="display:none" %) 117 + 118 +== 1.5 Sleep mode and working mode == 119 + 120 + 121 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 122 + 123 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 124 + 125 + 126 +== 1.6 Button & LEDs == 127 + 128 + 129 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 130 + 131 + 132 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 133 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 134 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 135 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 136 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 137 +))) 138 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 139 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 140 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 141 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 142 +))) 143 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 144 + 145 + 146 +== 1.7 BLE connection == 147 + 148 + 149 +LDS12-LB support BLE remote configure. 150 + 151 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 152 + 153 +* Press button to send an uplink 154 +* Press button to active device. 155 +* Device Power on or reset. 156 + 157 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 158 + 159 + 160 +== 1.8 Pin Definitions == 161 + 162 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 163 + 164 + 165 +== 1.9 Mechanical == 166 + 167 + 168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 169 + 170 + 171 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 172 + 173 + 174 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 175 + 176 + 177 +(% style="color:blue" %)**Probe Mechanical:** 178 + 179 + 180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 181 + 182 + 183 += 2. Configure LDS12-LB to connect to LoRaWAN network = 184 + 78 78 == 2.1 How it works == 79 79 80 80 81 -The DS2 0L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.188 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 82 82 83 83 (% style="display:none" %) (%%) 84 84 ... ... @@ -87,14 +87,15 @@ 87 87 88 88 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 89 89 90 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. (% style="display:none" %)197 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 91 91 92 -[[image:image-202311 10102635-5.png||height="402" width="807"]](% style="display:none" %)199 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 93 93 94 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 95 95 96 - EachDS20Lisshipped withastickerwith thedefaultdevice EUI asbelow:202 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 97 97 204 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 205 + 98 98 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 99 99 100 100 ... ... @@ -122,11 +122,10 @@ 122 122 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 123 123 124 124 125 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS2 0L233 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 126 126 127 -[[image:image-20231128133704-1.png||height="189" width="441"]] 128 128 129 -Press the button for 5 seconds to activate the DS2 0L.236 +Press the button for 5 seconds to activate the LDS12-LB. 130 130 131 131 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 132 132 ... ... @@ -138,7 +138,7 @@ 138 138 === 2.3.1 Device Status, FPORT~=5 === 139 139 140 140 141 -Users can use the downlink command(**0x26 01**) to ask DS2 0L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.248 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 142 142 143 143 The Payload format is as below. 144 144 ... ... @@ -150,9 +150,9 @@ 150 150 151 151 Example parse in TTNv3 152 152 153 -[[image: 1701149922873-259.png]]260 +[[image:image-20230805103904-1.png||height="131" width="711"]] 154 154 155 -(% style="color:blue" %)**Sensor Model**(%%): For DS2 0L, this value is 0x21262 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 156 156 157 157 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 158 158 ... ... @@ -206,265 +206,346 @@ 206 206 === 2.3.2 Uplink Payload, FPORT~=2 === 207 207 208 208 209 -==== (% style="color:red" %)**MOD~=1**(%%) ==== 316 +((( 317 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 210 210 211 - Regularlydetect distanceandreport. When the distanceexceedsthelimit, the alarm flagisset to 1, andtheeportcan betriggeredby external interrupts.319 +periodically send this uplink every 20 minutes, this interval [[can be changed>>https://111]]. 212 212 213 -Uplink Payload totals 10 bytes. 321 +Uplink Payload totals 11 bytes. 322 +))) 214 214 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 -|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4** 217 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count 325 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 326 +**Size(bytes)** 327 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 328 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 329 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 330 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 331 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 332 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 333 +[[Message Type>>||anchor="HMessageType"]] 334 +))) 218 218 219 -[[image:1 701155076393-719.png]]336 +[[image:image-20230805104104-2.png||height="136" width="754"]] 220 220 221 -(% style="color:blue" %)**Battery Info:** 222 222 223 - CheckthevoltageforDS20L339 +==== (% style="color:blue" %)**Battery Info**(%%) ==== 224 224 225 -Ex1: 0x0E10 = 3600mV 226 226 342 +Check the battery voltage for LDS12-LB. 227 227 228 - (% style="color:blue"%)**MOD&Alarm& Interrupt:**344 +Ex1: 0x0B45 = 2885mV 229 229 230 - (%style="color:red"%)**MOD:**346 +Ex2: 0x0B49 = 2889mV 231 231 232 -**Example: ** (0x60>>6) & 0x3f =1 233 233 234 -**0x01:** Regularly detect distance and report. 235 -**0x02: ** Uninterrupted measurement (external power supply). 349 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ==== 236 236 237 -(% style="color:red" %)**Alarm:** 238 238 239 - Whenthedetectiondistance exceeds thelimit,the alarmflagisset to 1.352 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 240 240 241 -(% style="color:red" %)**Interrupt:** 242 242 243 - Whether it is an externalinterrupt.355 +**Example**: 244 244 357 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 245 245 246 - (%style="color:blue"%)**Distanceinfo:**359 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 247 247 248 -**Example**: 249 249 250 - Ifpayload is:0708H: distance =0708H=1800 mm362 +==== (% style="color:blue" %)**Distance**(%%) ==== 251 251 252 252 253 - (%style="color:blue"%)**Sensor State:**365 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 254 254 255 -Ex1: 0x00: Normal collection distance 256 256 257 -Ex 2 0x0x: Distance collection is wrong368 +**Example**: 258 258 370 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 259 259 260 -(% style="color:blue" %)**Interript Count:** 261 261 262 - Ifpayloadis:000007D0H:count =07D0H=2000373 +==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 263 263 264 264 376 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 265 265 266 -==== (% style="color:red" %)**MOD~=2**(%%)** ** ==== 267 267 268 - Uninterrupted measurement. When the distance exceeds the limit, the output IO is set highand reports are reported every fiveminutes. The time can be set andpowered by an externalpower supply.Uplink Payload totals 11bytes.379 +**Example**: 269 269 270 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 271 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2** 272 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit 381 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 273 273 274 - [[image:1701155150328-206.png]]383 +Customers can judge whether they need to adjust the environment based on the signal strength. 275 275 276 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:** 277 277 278 -(% style="color: red" %)**MOD:**386 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 279 279 280 -**Example: ** (0x60>>6) & 0x3f =1 281 281 282 -**0x01:** Regularly detect distance and report. 283 -**0x02: ** Uninterrupted measurement (external power supply). 389 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 284 284 285 - (%style="color:red"%)**Alarm:**391 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 286 286 287 - When the detection distance exceeds the limit, thealarmflag is set to 1.393 +**Example:** 288 288 289 - (%style="color:red"%)**Do:**395 +0x00: Normal uplink packet. 290 290 291 - When the distance exceedstheset threshold, pulltheDopinhigh.397 +0x01: Interrupt Uplink Packet. 292 292 293 -(% style="color:red" %)**Limit flag:** 294 294 295 - Modeforsetting threshold:0~~5400 +==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 296 296 297 -0: does not use upper and lower limits 298 298 299 - 1:Useupperandlower limits403 +Characterize the internal temperature value of the sensor. 300 300 301 -2: is less than the lower limit value 405 +**Example: ** 406 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 407 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 302 302 303 -3: is greater than the lower limit value 304 304 305 - 4:islessthan theupperlimit410 +==== (% style="color:blue" %)**Message Type**(%%) ==== 306 306 307 -5: is greater than the upper limit 308 308 413 +((( 414 +For a normal uplink payload, the message type is always 0x01. 415 +))) 309 309 310 -(% style="color:blue" %)**Upper limit:** 417 +((( 418 +Valid Message Type: 419 +))) 311 311 312 -The upper limit of the threshold cannot exceed 2000mm. 421 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 422 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 423 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 424 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 313 313 314 314 315 - (%style="color:blue"%)**Lowerlimit:**427 +=== 2.3.3 Decode payload in The Things Network === 316 316 317 -The lower limit of the threshold cannot be less than 3mm. 318 318 430 +While using TTN network, you can add the payload format to decode the payload. 319 319 320 - === 2.3.3 Historicalmeasuringdistance, FPORT~=3=432 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 321 321 322 322 323 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 435 +((( 436 +The payload decoder function for TTN is here: 437 +))) 324 324 325 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 439 +((( 440 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 441 +))) 326 326 327 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 328 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 329 -**Size(bytes)** 330 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 331 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 332 -Reserve(0xFF) 333 -)))|Distance|Distance signal strength|(% style="width:88px" %)((( 334 -LiDAR temp 335 -)))|(% style="width:85px" %)Unix TimeStamp 336 336 337 - **Interruptflag&Interruptlevel:**444 +== 2.4 Show Data in DataCake IoT Server == 338 338 339 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 340 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 341 -**Size(bit)** 342 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 343 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 344 -Interrupt flag 446 + 447 +((( 448 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 345 345 ))) 346 346 347 -* ((( 348 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands. 451 + 452 +((( 453 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 349 349 ))) 350 350 351 -For example, in the US915 band, the max payload for different DR is: 456 +((( 457 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 458 +))) 352 352 353 -**a) DR0:** max is 11 bytes so one entry of data 354 354 355 - **b) DR1:**max is 53 bytes sodeviceswill upload4entriesf data(totalbytes)461 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]] 356 356 357 -**c) DR2:** total payload includes 11 entries of data 358 358 359 - **d) DR3:**totalpayloadcludesentriesf data.464 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]] 360 360 361 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0 362 362 467 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 363 363 364 -**D ownlink:**469 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 365 365 366 - 0x31CC 68C 64 CC 69471 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 367 367 368 -[[image:image-20230805144936-2.png||height="113" width="746"]] 369 369 370 - **Uplink:**474 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 371 371 372 - 43 FF0E 10B0 1E64 CC 680C 40 FF 0DE008 1E 64 CC 6829 40FF 09 920D3 1E 64 CC 68 65 40FF023A02BC 1E64 CC 68 A141 FF0E1A 00 A4 1E64 CC 68 C0 40 FF 0D2A 00 B81E 64 CC 68 E8 40FF 00 C86A 1E 64 CC 6924 40FF 0E2400AD1E64 CC 696D476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 373 373 374 374 375 - **ParsedValue:**479 +== 2.5 Datalog Feature == 376 376 377 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 378 378 482 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 379 379 380 -[360,176,30,High,True,2023-08-04 02:53:00], 381 381 382 - [355,168,30,Low,False,2023-08-0402:53:29],485 +=== 2.5.1 Ways to get datalog via LoRaWAN === 383 383 384 -[245,211,30,Low,False,2023-08-04 02:54:29], 385 385 386 - [57,700,30,Low,False,2023-08-0402:55:29],488 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 387 387 388 -[361,164,30,Low,True,2023-08-04 02:56:00], 490 +* ((( 491 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 492 +))) 493 +* ((( 494 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 495 +))) 389 389 390 - [337,184,30,Low,False,2023-08-0402:56:40],497 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 391 391 392 -[20 ,4458,30,Low,False,2023-08-04 02:57:40],499 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 393 393 394 -[362,173,30,Low,False,2023-08-04 02:58:53], 395 395 502 +=== 2.5.2 Unix TimeStamp === 396 396 397 -**History read from serial port:** 398 398 399 - [[image:image-20230805145056-3.png]]505 +LDS12-LB uses Unix TimeStamp format based on 400 400 507 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 401 401 402 - === 2.3.4 DecodepayloadinTheThings Network===509 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 403 403 511 +Below is the converter example 404 404 405 - While usingTTN network, youcand thepayloadformatdecodepayload.513 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 406 406 407 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 408 408 516 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 409 409 518 + 519 +=== 2.5.3 Set Device Time === 520 + 521 + 522 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 523 + 524 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 525 + 526 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 527 + 528 + 529 +=== 2.5.4 Poll sensor value === 530 + 531 + 532 +Users can poll sensor values based on timestamps. Below is the downlink command. 533 + 534 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 535 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 536 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 537 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 538 + 410 410 ((( 411 -T heyloaddecoderfunctionforTTNis here:540 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval. 412 412 ))) 413 413 414 414 ((( 415 - DS20LTTN PayloadDecoder:[[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]544 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]] 416 416 ))) 417 417 547 +((( 548 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data 549 +))) 418 418 419 -== 2.4 Show Data in DataCake IoT Server == 551 +((( 552 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 553 +))) 420 420 421 421 556 +== 2.6 Frequency Plans == 557 + 558 + 559 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 560 + 561 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 562 + 563 + 564 +== 2.7 LiDAR ToF Measurement == 565 + 566 +=== 2.7.1 Principle of Distance Measurement === 567 + 568 + 569 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 570 + 571 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 572 + 573 + 574 +=== 2.7.2 Distance Measurement Characteristics === 575 + 576 + 577 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 578 + 579 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 580 + 581 + 422 422 ((( 423 - [[DATACAKE>>url:https://datacake.co/]] providesahuman friendly interface toshowthesensordata,oncewehavedatainTTN,wecanuse [[DATACAKE>>url:https://datacake.co/]]toconnectoTTN andsee the data inDATACAKE. Belowarethe steps:583 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 424 424 ))) 425 425 426 - 427 427 ((( 428 -(% style="color:blue" %)** Step1**(%%)**: Besure thatyourdeviceisprogrammedandproperly connectedtothenetworkatthistime.**587 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 429 429 ))) 430 430 431 431 ((( 432 -(% style="color:blue" %)** Step2**(%%)**: To configure theApplicationto forwarddata toDATACAKEyou willneedto add integration.To add the DATACAKEintegration,performthefollowing steps:**591 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 433 433 ))) 434 434 435 435 436 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]] 595 +((( 596 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 597 +))) 437 437 599 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 438 438 439 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]] 601 +((( 602 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 603 +))) 440 440 605 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 441 441 442 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 607 +((( 608 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 609 +))) 443 443 444 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.** 445 445 446 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]612 +=== 2.7.3 Notice of usage === 447 447 448 448 449 - After added, thesensor data arriveTTN V3,it willalsoarrivendshowinDatacake.615 +Possible invalid /wrong reading for LiDAR ToF tech: 450 450 451 -[[image:1701152946067-561.png]] 617 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 618 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 619 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 620 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 452 452 453 453 454 -== 2. 5FrequencyPlans ==623 +=== 2.7.4 Reflectivity of different objects === 455 455 456 456 457 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 626 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 627 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 628 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 629 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 630 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 631 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 632 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 633 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 634 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 635 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 636 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 637 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 638 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 639 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 640 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 641 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 642 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 643 +Unpolished white metal surface 644 +)))|(% style="width:93px" %)130% 645 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 646 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 647 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 458 458 459 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 460 460 650 += 3. Configure LDS12-LB = 461 461 462 -= 3. Configure DS20L = 463 - 464 464 == 3.1 Configure Methods == 465 465 466 466 467 -DS2 0L supports below configure method:655 +LDS12-LB supports below configure method: 468 468 469 469 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 470 470 ... ... @@ -472,6 +472,7 @@ 472 472 473 473 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 474 474 663 + 475 475 == 3.2 General Commands == 476 476 477 477 ... ... @@ -486,10 +486,10 @@ 486 486 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 487 487 488 488 489 -== 3.3 Commands special design for DS2 0L ==678 +== 3.3 Commands special design for LDS12-LB == 490 490 491 491 492 -These commands only valid for DS2 0L, as below:681 +These commands only valid for LDS12-LB, as below: 493 493 494 494 495 495 === 3.3.1 Set Transmit Interval Time === ... ... @@ -531,15 +531,18 @@ 531 531 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 532 532 ))) 533 533 * ((( 534 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 723 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 724 + 725 + 726 + 535 535 ))) 536 536 537 537 === 3.3.2 Set Interrupt Mode === 538 538 539 539 540 -Feature, Set Interrupt mode for pinofGPIO_EXTI.732 +Feature, Set Interrupt mode for PA8 of pin. 541 541 542 -When AT+INTMOD=0 is set, GPIO_EXTIis used as a digital input port.734 +When AT+INTMOD=0 is set, PA8 is used as a digital input port. 543 543 544 544 (% style="color:blue" %)**AT Command: AT+INTMOD** 545 545 ... ... @@ -550,11 +550,7 @@ 550 550 OK 551 551 the mode is 0 =Disable Interrupt 552 552 ))) 553 -|(% style="width:154px" %)((( 554 -AT+INTMOD=3 555 - 556 -(default) 557 -)))|(% style="width:196px" %)((( 745 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 558 558 Set Transmit Interval 559 559 0. (Disable Interrupt), 560 560 ~1. (Trigger by rising and falling edge) ... ... @@ -572,75 +572,39 @@ 572 572 573 573 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 574 574 575 -== 3.3.3 Set work mode == 576 576 764 +=== 3.3.3 Set Power Output Duration === 577 577 578 - Feature:Switchworkingmode766 +Control the output duration 3V3 . Before each sampling, device will 579 579 580 - (%style="color:blue"%)**ATCommand:AT+MOD**768 +~1. first enable the power output to external sensor, 581 581 582 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 583 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response** 584 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK 585 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)((( 586 -OK 587 -Attention:Take effect after ATZ 588 -))) 770 +2. keep it on as per duration, read sensor value and construct uplink payload 589 589 590 - (%style="color:blue"%)**DownlinkCommand:**772 +3. final, close the power output. 591 591 592 - ***Example: **0x0A00~/~/ SameasAT+MOD=0774 +(% style="color:blue" %)**AT Command: AT+3V3T** 593 593 594 -* **Example:** 0x0A01 ~/~/ Same as AT+MOD=1 595 - 596 -=== 3.3.4 Set threshold and threshold mode === 597 - 598 - 599 -Feature, Set threshold and threshold mode 600 - 601 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms. 602 - 603 -(% style="color:blue" %)**AT Command: AT+DOL** 604 - 605 605 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 606 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response** 607 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)((( 608 -0,0,0,0,400 777 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 778 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 609 609 OK 610 -))) 611 -|(% style="width:1 72px" %)AT+DOL=1,1800,100,0,400|(% style="width:279px" %)Set onlytheupper and lowerthresholds|(% style="width:118px" %)OK780 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 781 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 612 612 783 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 784 +Format: Command Code (0x07) followed by 3 bytes. 613 613 614 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 615 -|(% rowspan="11" style="color:blue; width:120px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits 616 -|(% style="width:251px" %)1: Use upper and lower limits 617 -|(% style="width:251px" %)2: Less than the lower limit 618 -|(% style="width:251px" %)3: Greater than the lower limit 619 -|(% style="width:251px" %)4: Less than the upper limit 620 -|(% style="width:251px" %)5: Greater than the upper limit 621 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM 622 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM 623 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high 624 -|(% style="width:251px" %)1 Person or object counting statistics 625 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)((( 626 -0~~10000ms 786 +The first byte is 01,the second and third bytes are the time to turn on. 627 627 628 - 629 - )))788 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 789 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 630 630 631 -(% style="color:blue" %)**Downlink Command: 0x07** 632 632 633 -Format: Command Code (0x07) followed by 9bytes. 634 - 635 -* Example 0: Downlink Payload: 070000000000000190 **~-~-->** AT+MOD=0,0,0,0,400 636 - 637 -* Example 1: Downlink Payload: 070107080064000190 **~-~-->** AT+MOD=1,1800,100,0,400 638 - 639 - 640 640 = 4. Battery & Power Consumption = 641 641 642 642 643 -DS2 0L usebuilt-in2400mAhnon-chargeablebatteryfor long-term use upto several years*. See below link for detail information about the battery info and how to replace.795 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 644 644 645 645 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 646 646 ... ... @@ -649,7 +649,7 @@ 649 649 650 650 651 651 (% class="wikigeneratedid" %) 652 -User can change firmware DS2 0L to:804 +User can change firmware LDS12-LB to: 653 653 654 654 * Change Frequency band/ region. 655 655 ... ... @@ -657,7 +657,7 @@ 657 657 658 658 * Fix bugs. 659 659 660 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/ zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**812 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 661 661 662 662 Methods to Update Firmware: 663 663 ... ... @@ -665,41 +665,15 @@ 665 665 666 666 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 667 667 820 + 668 668 = 6. FAQ = 669 669 670 -== 6.1 What is the frequency plan for DS2 0L? ==823 +== 6.1 What is the frequency plan for LDS12-LB? == 671 671 672 672 673 -DS2 0L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]826 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 674 674 675 675 676 -== 6.2 DS20L programming line == 677 - 678 - 679 -缺图 后续补上 680 - 681 -feature: 682 - 683 -for AT commands 684 - 685 -Update the firmware of DS20L 686 - 687 -Support interrupt mode 688 - 689 - 690 -== 6.3 LiDAR probe position == 691 - 692 - 693 -[[image:1701155390576-216.png||height="285" width="307"]] 694 - 695 -The black oval hole in the picture is the LiDAR probe. 696 - 697 - 698 -== 6.4 Interface definition == 699 - 700 -[[image:image-20231128151132-2.png||height="305" width="557"]] 701 - 702 - 703 703 = 7. Trouble Shooting = 704 704 705 705 == 7.1 AT Command input doesn't work == ... ... @@ -732,7 +732,7 @@ 732 732 = 8. Order Info = 733 733 734 734 735 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**861 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 736 736 737 737 (% style="color:red" %)**XXX**(%%): **The default frequency band** 738 738 ... ... @@ -752,12 +752,13 @@ 752 752 753 753 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 754 754 881 + 755 755 = 9. Packing Info = 756 756 757 757 758 758 (% style="color:#037691" %)**Package Includes**: 759 759 760 -* DS2 0L LoRaWANSmartDistanceDetector x 1887 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 761 761 762 762 (% style="color:#037691" %)**Dimension and weight**: 763 763 ... ... @@ -769,6 +769,7 @@ 769 769 770 770 * Weight / pcs : g 771 771 899 + 772 772 = 10. Support = 773 773 774 774
- 1701149922873-259.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -24.5 KB - Content
- 1701152902759-553.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -52.2 KB - Content
- 1701152946067-561.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -52.2 KB - Content
- 1701155076393-719.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -54.6 KB - Content
- 1701155150328-206.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -54.6 KB - Content
- 1701155390576-216.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -293.9 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -84.7 KB - Content
- image-20231128133704-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -190.6 KB - Content
- image-20231128151132-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -281.2 KB - Content