Last modified by Mengting Qiu on 2023/12/14 11:15

From version 124.2
edited by Xiaoling
on 2023/11/28 15:12
Change comment: There is no comment for this version
To version 90.16
edited by Xiaoling
on 2023/07/15 15:51
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,66 +19,170 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 +[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +
40 +
38 38  == 1.2 ​Features ==
39 39  
40 40  
41 -* LoRaWAN Class A protocol
42 -* LiDAR distance detector, range 3 ~~ 200cm
43 -* Periodically detect or continuously detect mode
44 +* LoRaWAN 1.0.3 Class A
45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 +* Ultra-low power consumption
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
51 +* Support Bluetooth v5.1 and LoRaWAN remote configure
52 +* Support wireless OTA update firmware
44 44  * AT Commands to change parameters
45 -* Remotely configure parameters via LoRaWAN Downlink
46 -* Alarm & Counting mode
47 -* Firmware upgradable via program port or LoRa protocol
48 -* Built-in 2400mAh battery or power by external power source
54 +* Downlink to change configure
55 +* 8500mAh Battery for long term use
49 49  
50 50  == 1.3 Specification ==
51 51  
52 52  
53 -(% style="color:#037691" %)**LiDAR Sensor:**
60 +(% style="color:#037691" %)**Common DC Characteristics:**
54 54  
55 -* Operation Temperature: -40 ~~ 80 °C
56 -* Operation Humidity: 0~~99.9%RH (no Dew)
57 -* Storage Temperature: -10 ~~ 45°C
58 -* Measure Range: 3cm~~200cm @ 90% reflectivity
59 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 -* ToF FoV: ±9°, Total 18°
61 -* Light source: VCSEL
62 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 +* Operating Temperature: -40 ~~ 85°C
62 62  
63 -== 1.4 Power Consumption ==
65 +(% style="color:#037691" %)**Probe Specification:**
64 64  
67 +* Storage temperature:-20℃~~75℃
68 +* Operating temperature : -20℃~~60℃
69 +* Measure Distance:
70 +** 0.1m ~~ 12m @ 90% Reflectivity
71 +** 0.1m ~~ 4m @ 10% Reflectivity
72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 +* Distance resolution : 5mm
74 +* Ambient light immunity : 70klux
75 +* Enclosure rating : IP65
76 +* Light source : LED
77 +* Central wavelength : 850nm
78 +* FOV : 3.6°
79 +* Material of enclosure : ABS+PC
80 +* Wire length : 25cm
65 65  
66 -(% style="color:#037691" %)**Battery Power Mode:**
82 +(% style="color:#037691" %)**LoRa Spec:**
67 67  
68 -* Idle: 0.003 mA @ 3.3v
69 -* Max : 360 mA
84 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 +* Max +22 dBm constant RF output vs.
86 +* RX sensitivity: down to -139 dBm.
87 +* Excellent blocking immunity
70 70  
71 -(% style="color:#037691" %)**Continuously mode**:
89 +(% style="color:#037691" %)**Battery:**
72 72  
73 -* Idle: 21 mA @ 3.3v
74 -* Max : 360 mA
91 +* Li/SOCI2 un-chargeable battery
92 +* Capacity: 8500mAh
93 +* Self-Discharge: <1% / Year @ 25°C
94 +* Max continuously current: 130mA
95 +* Max boost current: 2A, 1 second
75 75  
76 -= 2. Configure DS20L to connect to LoRaWAN network =
97 +(% style="color:#037691" %)**Power Consumption**
77 77  
99 +* Sleep Mode: 5uA @ 3.3v
100 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 +
102 +== 1.4 Applications ==
103 +
104 +
105 +* Horizontal distance measurement
106 +* Parking management system
107 +* Object proximity and presence detection
108 +* Intelligent trash can management system
109 +* Robot obstacle avoidance
110 +* Automatic control
111 +* Sewer
112 +
113 +(% style="display:none" %)
114 +
115 +== 1.5 Sleep mode and working mode ==
116 +
117 +
118 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119 +
120 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121 +
122 +
123 +== 1.6 Button & LEDs ==
124 +
125 +
126 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127 +
128 +
129 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
131 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 +)))
135 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 +)))
140 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141 +
142 +== 1.7 BLE connection ==
143 +
144 +
145 +LDS12-LB support BLE remote configure.
146 +
147 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148 +
149 +* Press button to send an uplink
150 +* Press button to active device.
151 +* Device Power on or reset.
152 +
153 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154 +
155 +
156 +== 1.8 Pin Definitions ==
157 +
158 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
159 +
160 +
161 +== 1.9 Mechanical ==
162 +
163 +
164 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
165 +
166 +
167 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
168 +
169 +
170 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
171 +
172 +
173 +(% style="color:blue" %)**Probe Mechanical:**
174 +
175 +
176 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177 +
178 +
179 += 2. Configure LDS12-LB to connect to LoRaWAN network =
180 +
78 78  == 2.1 How it works ==
79 79  
80 80  
81 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
184 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
82 82  
83 83  (% style="display:none" %) (%%)
84 84  
... ... @@ -87,14 +87,15 @@
87 87  
88 88  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
89 89  
90 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
193 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
91 91  
92 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
195 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
93 93  
94 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
95 95  
96 -Each DS20L is shipped with a sticker with the default device EUI as below:
198 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
97 97  
200 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
201 +
98 98  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
99 99  
100 100  
... ... @@ -122,11 +122,10 @@
122 122  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
123 123  
124 124  
125 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
229 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
126 126  
127 -[[image:image-20231128133704-1.png||height="189" width="441"]]
128 128  
129 -Press the button for 5 seconds to activate the DS20L.
232 +Press the button for 5 seconds to activate the LDS12-LB.
130 130  
131 131  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
132 132  
... ... @@ -138,7 +138,7 @@
138 138  === 2.3.1 Device Status, FPORT~=5 ===
139 139  
140 140  
141 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
244 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
142 142  
143 143  The Payload format is as below.
144 144  
... ... @@ -150,14 +150,12 @@
150 150  
151 151  Example parse in TTNv3
152 152  
153 -[[image:1701149922873-259.png]]
256 +**Sensor Model**: For LDS12-LB, this value is 0x24
154 154  
155 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
258 +**Firmware Version**: 0x0100, Means: v1.0.0 version
156 156  
157 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
260 +**Frequency Band**:
158 158  
159 -(% style="color:blue" %)**Frequency Band**:
160 -
161 161  0x01: EU868
162 162  
163 163  0x02: US915
... ... @@ -186,7 +186,7 @@
186 186  
187 187  0x0e: MA869
188 188  
189 -(% style="color:blue" %)**Sub-Band**:
290 +**Sub-Band**:
190 190  
191 191  AU915 and US915:value 0x00 ~~ 0x08
192 192  
... ... @@ -194,7 +194,7 @@
194 194  
195 195  Other Bands: Always 0x00
196 196  
197 -(% style="color:blue" %)**Battery Info**:
298 +**Battery Info**:
198 198  
199 199  Check the battery voltage.
200 200  
... ... @@ -206,265 +206,350 @@
206 206  === 2.3.2 Uplink Payload, FPORT~=2 ===
207 207  
208 208  
209 -==== (% style="color:red" %)**MOD~=1**(%%) ====
310 +(((
311 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
312 +)))
210 210  
211 -Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
314 +(((
315 +Uplink payload includes in total 11 bytes.
316 +)))
212 212  
213 -Uplink Payload totals 10 bytes.
214 -
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 -|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4**
217 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
319 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
320 +**Size(bytes)**
321 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
322 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
323 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
324 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
325 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
326 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
327 +[[Message Type>>||anchor="HMessageType"]]
328 +)))
218 218  
219 -[[image:1701155076393-719.png]]
330 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
220 220  
221 -(% style="color:blue" %)**Battery Info:**
222 222  
223 -Check the battery voltage for DS20L
333 +==== (% style="color:blue" %)**Battery Info**(%%) ====
224 224  
225 -Ex1: 0x0E10 = 3600mV
226 226  
336 +Check the battery voltage for LDS12-LB.
227 227  
228 -(% style="color:blue" %)**MOD & Alarm & Interrupt:**
338 +Ex1: 0x0B45 = 2885mV
229 229  
230 -(% style="color:red" %)**MOD:**
340 +Ex2: 0x0B49 = 2889mV
231 231  
232 -**Example: ** (0x60>>6) & 0x3f =1
233 233  
234 -**0x01:**  Regularly detect distance and report.
235 -**0x02: ** Uninterrupted measurement (external power supply).
343 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
236 236  
237 -(% style="color:red" %)**Alarm:**
238 238  
239 -When the detection distance exceeds the limit, the alarm flag is set to 1.
346 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
240 240  
241 -(% style="color:red" %)**Interrupt:**
242 242  
243 -Whether it is an external interrupt.
349 +**Example**:
244 244  
351 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
245 245  
246 -(% style="color:blue" %)**Distance info:**
353 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
247 247  
355 +
356 +==== (% style="color:blue" %)**Distance**(%%) ====
357 +
358 +
359 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
360 +
361 +
248 248  **Example**:
249 249  
250 -If payload is: 0708H: distance = 0708H = 1800 mm
364 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
251 251  
252 252  
253 -(% style="color:blue" %)**Sensor State:**
367 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
254 254  
255 -Ex1: 0x00: Normal collection distance
256 256  
257 -Ex2 0x0x: Distance collection is wrong
370 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
258 258  
259 259  
260 -(% style="color:blue" %)**Interript Count:**
373 +**Example**:
261 261  
262 -If payload is:000007D0H: count = 07D0H =2000
375 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
263 263  
377 +Customers can judge whether they need to adjust the environment based on the signal strength.
264 264  
265 265  
266 -==== (% style="color:red" %)**MOD~=2**(%%)** ** ====
380 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
267 267  
268 -Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes.
269 269  
270 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
271 -|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
272 -|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
383 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
273 273  
274 -[[image:1701155150328-206.png]]
385 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
275 275  
276 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
387 +**Example:**
277 277  
278 -(% style="color:red" %)**MOD:**
389 +0x00: Normal uplink packet.
279 279  
280 -**Example: ** (0x60>>6) & 0x3f =1
391 +0x01: Interrupt Uplink Packet.
281 281  
282 -**0x01:**  Regularly detect distance and report.
283 -**0x02: ** Uninterrupted measurement (external power supply).
284 284  
285 -(% style="color:red" %)**Alarm:**
394 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
286 286  
287 -When the detection distance exceeds the limit, the alarm flag is set to 1.
288 288  
289 -(% style="color:red" %)**Do:**
397 +Characterize the internal temperature value of the sensor.
290 290  
291 -When the distance exceeds the set threshold, pull the Do pin high.
399 +**Example: **
400 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
401 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
292 292  
293 -(% style="color:red" %)**Limit flag:**
294 294  
295 -Mode for setting threshold: 0~~5
404 +==== (% style="color:blue" %)**Message Type**(%%) ====
296 296  
297 -0: does not use upper and lower limits
298 298  
299 -1: Use upper and lower limits
407 +(((
408 +For a normal uplink payload, the message type is always 0x01.
409 +)))
300 300  
301 -2: is less than the lower limit value
411 +(((
412 +Valid Message Type:
413 +)))
302 302  
303 -3: is greater than the lower limit value
415 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
416 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
417 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
418 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
304 304  
305 -4: is less than the upper limit
306 306  
307 -5: is greater than the upper limit
421 +=== 2.3.3 Decode payload in The Things Network ===
308 308  
309 309  
310 -(% style="color:blue" %)**Upper limit:**
424 +While using TTN network, you can add the payload format to decode the payload.
311 311  
312 -The upper limit of the threshold cannot exceed 2000mm.
426 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
313 313  
314 314  
315 -(% style="color:blue" %)**Lower limit:**
429 +(((
430 +The payload decoder function for TTN is here:
431 +)))
316 316  
317 -The lower limit of the threshold cannot be less than 3mm.
433 +(((
434 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
435 +)))
318 318  
319 319  
320 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
438 +== 2.4 Uplink Interval ==
321 321  
322 322  
323 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
441 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
324 324  
325 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
326 326  
327 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
328 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
329 -**Size(bytes)**
330 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
331 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
332 -Reserve(0xFF)
333 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
334 -LiDAR temp
335 -)))|(% style="width:85px" %)Unix TimeStamp
444 +== 2.5 ​Show Data in DataCake IoT Server ==
336 336  
337 -**Interrupt flag & Interrupt level:**
338 338  
339 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
340 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
341 -**Size(bit)**
342 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
343 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
344 -Interrupt flag
447 +(((
448 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
345 345  )))
346 346  
347 -* (((
348 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
451 +
452 +(((
453 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
349 349  )))
350 350  
351 -For example, in the US915 band, the max payload for different DR is:
456 +(((
457 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
458 +)))
352 352  
353 -**a) DR0:** max is 11 bytes so one entry of data
354 354  
355 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
461 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
356 356  
357 -**c) DR2:** total payload includes 11 entries of data
358 358  
359 -**d) DR3:** total payload includes 22 entries of data.
464 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
360 360  
361 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
362 362  
467 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
363 363  
364 -**Downlink:**
469 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
365 365  
366 -0x31 64 CC 68 0C 64 CC 69 74 05
471 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
367 367  
368 -[[image:image-20230805144936-2.png||height="113" width="746"]]
369 369  
370 -**Uplink:**
474 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
371 371  
372 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
373 373  
374 374  
375 -**Parsed Value:**
479 +== 2.6 Datalog Feature ==
376 376  
377 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
378 378  
482 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
379 379  
380 -[360,176,30,High,True,2023-08-04 02:53:00],
381 381  
382 -[355,168,30,Low,False,2023-08-04 02:53:29],
485 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
383 383  
384 -[245,211,30,Low,False,2023-08-04 02:54:29],
385 385  
386 -[57,700,30,Low,False,2023-08-04 02:55:29],
488 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
387 387  
388 -[361,164,30,Low,True,2023-08-04 02:56:00],
490 +* (((
491 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
492 +)))
493 +* (((
494 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
495 +)))
389 389  
390 -[337,184,30,Low,False,2023-08-04 02:56:40],
497 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
391 391  
392 -[20,4458,30,Low,False,2023-08-04 02:57:40],
499 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
393 393  
394 -[362,173,30,Low,False,2023-08-04 02:58:53],
395 395  
502 +=== 2.6.2 Unix TimeStamp ===
396 396  
397 -**History read from serial port:**
398 398  
399 -[[image:image-20230805145056-3.png]]
505 +LDS12-LB uses Unix TimeStamp format based on
400 400  
507 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
401 401  
402 -=== 2.3.4 Decode payload in The Things Network ===
509 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
403 403  
511 +Below is the converter example
404 404  
405 -While using TTN network, you can add the payload format to decode the payload.
513 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
406 406  
407 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
408 408  
516 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
409 409  
410 -(((
411 -The payload decoder function for TTN is here:
412 -)))
413 413  
414 -(((
415 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
416 -)))
519 +=== 2.6.3 Set Device Time ===
417 417  
418 418  
419 -== 2.4 ​Show Data in DataCake IoT Server ==
522 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
420 420  
524 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
421 421  
526 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
527 +
528 +
529 +=== 2.6.4 Poll sensor value ===
530 +
531 +
532 +Users can poll sensor values based on timestamps. Below is the downlink command.
533 +
534 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
535 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
536 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
537 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
538 +
422 422  (((
423 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
540 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
424 424  )))
425 425  
543 +(((
544 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
545 +)))
426 426  
427 427  (((
428 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
548 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
429 429  )))
430 430  
431 431  (((
432 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
552 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
433 433  )))
434 434  
435 435  
436 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
556 +== 2.7 Frequency Plans ==
437 437  
438 438  
439 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
559 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
440 440  
561 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
441 441  
442 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
443 443  
444 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
564 +== 2.8 LiDAR ToF Measurement ==
445 445  
446 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
566 +=== 2.8.1 Principle of Distance Measurement ===
447 447  
448 448  
449 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
569 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
450 450  
451 -[[image:1701152946067-561.png]]
571 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
452 452  
453 453  
454 -== 2.5 Frequency Plans ==
574 +=== 2.8.2 Distance Measurement Characteristics ===
455 455  
456 456  
457 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
577 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
458 458  
459 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
579 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
460 460  
461 461  
462 -= 3. Configure DS20L =
582 +(((
583 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
584 +)))
463 463  
586 +(((
587 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
588 +)))
589 +
590 +(((
591 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
592 +)))
593 +
594 +
595 +(((
596 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
597 +)))
598 +
599 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
600 +
601 +(((
602 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
603 +)))
604 +
605 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
606 +
607 +(((
608 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
609 +)))
610 +
611 +
612 +=== 2.8.3 Notice of usage ===
613 +
614 +
615 +Possible invalid /wrong reading for LiDAR ToF tech:
616 +
617 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
618 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
619 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
620 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
621 +
622 +=== 2.8.4  Reflectivity of different objects ===
623 +
624 +
625 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
626 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
627 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
628 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
629 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
630 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
631 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
632 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
633 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
634 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
635 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
636 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
637 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
638 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
639 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
640 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
641 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
642 +Unpolished white metal surface
643 +)))|(% style="width:93px" %)130%
644 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
645 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
646 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
647 +
648 += 3. Configure LDS12-LB =
649 +
464 464  == 3.1 Configure Methods ==
465 465  
466 466  
467 -DS20L supports below configure method:
653 +LDS12-LB supports below configure method:
468 468  
469 469  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
470 470  
... ... @@ -486,10 +486,10 @@
486 486  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
487 487  
488 488  
489 -== 3.3 Commands special design for DS20L ==
675 +== 3.3 Commands special design for LDS12-LB ==
490 490  
491 491  
492 -These commands only valid for DS20L, as below:
678 +These commands only valid for LDS12-LB, as below:
493 493  
494 494  
495 495  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -531,15 +531,18 @@
531 531  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
532 532  )))
533 533  * (((
534 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
720 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
721 +
722 +
723 +
535 535  )))
536 536  
537 537  === 3.3.2 Set Interrupt Mode ===
538 538  
539 539  
540 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
729 +Feature, Set Interrupt mode for PA8 of pin.
541 541  
542 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
731 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
543 543  
544 544  (% style="color:blue" %)**AT Command: AT+INTMOD**
545 545  
... ... @@ -550,11 +550,7 @@
550 550  OK
551 551  the mode is 0 =Disable Interrupt
552 552  )))
553 -|(% style="width:154px" %)(((
554 -AT+INTMOD=3
555 -
556 -(default)
557 -)))|(% style="width:196px" %)(((
742 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
558 558  Set Transmit Interval
559 559  0. (Disable Interrupt),
560 560  ~1. (Trigger by rising and falling edge)
... ... @@ -572,75 +572,37 @@
572 572  
573 573  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
574 574  
575 -== 3.3.3 Set work mode ==
760 +=== 3.3.3  Set Power Output Duration ===
576 576  
762 +Control the output duration 3V3 . Before each sampling, device will
577 577  
578 -Feature: Switch working mode
764 +~1. first enable the power output to external sensor,
579 579  
580 -(% style="color:blue" %)**AT Command: AT+MOD**
766 +2. keep it on as per duration, read sensor value and construct uplink payload
581 581  
582 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
583 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
584 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
585 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
586 -OK
587 -Attention:Take effect after ATZ
588 -)))
768 +3. final, close the power output.
589 589  
590 -(% style="color:blue" %)**Downlink Command:**
770 +(% style="color:blue" %)**AT Command: AT+3V3T**
591 591  
592 -* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
593 -
594 -* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
595 -
596 -=== 3.3.4 Set threshold and threshold mode ===
597 -
598 -
599 -Feature, Set threshold and threshold mode
600 -
601 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
602 -
603 -(% style="color:blue" %)**AT Command: AT+DOL**
604 -
605 605  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
606 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
607 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
608 -0,0,0,0,400
773 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
774 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
609 609  OK
610 -)))
611 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
776 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
777 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
612 612  
779 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
780 +Format: Command Code (0x07) followed by 3 bytes.
613 613  
614 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
615 -|(% rowspan="11" style="color:blue; width:120px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits
616 -|(% style="width:251px" %)1: Use upper and lower limits
617 -|(% style="width:251px" %)2: Less than the lower limit
618 -|(% style="width:251px" %)3: Greater than the lower limit
619 -|(% style="width:251px" %)4: Less than the upper limit
620 -|(% style="width:251px" %)5: Greater than the upper limit
621 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
622 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
623 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
624 -|(% style="width:251px" %)1 Person or object counting statistics
625 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
626 -0~~10000ms
782 +The first byte is 01,the second and third bytes are the time to turn on.
627 627  
628 -
629 -)))
784 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
785 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
630 630  
631 -(% style="color:blue" %)**Downlink Command: 0x07**
632 -
633 -Format: Command Code (0x07) followed by 9bytes.
634 -
635 -* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
636 -
637 -* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
638 -
639 -
640 640  = 4. Battery & Power Consumption =
641 641  
642 642  
643 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
790 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
644 644  
645 645  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
646 646  
... ... @@ -649,7 +649,7 @@
649 649  
650 650  
651 651  (% class="wikigeneratedid" %)
652 -User can change firmware DS20L to:
799 +User can change firmware LDS12-LB to:
653 653  
654 654  * Change Frequency band/ region.
655 655  
... ... @@ -657,7 +657,7 @@
657 657  
658 658  * Fix bugs.
659 659  
660 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
807 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
661 661  
662 662  Methods to Update Firmware:
663 663  
... ... @@ -667,39 +667,12 @@
667 667  
668 668  = 6. FAQ =
669 669  
670 -== 6.1 What is the frequency plan for DS20L? ==
817 +== 6.1 What is the frequency plan for LDS12-LB? ==
671 671  
672 672  
673 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
820 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
674 674  
675 675  
676 -== 6.2 DS20L programming line ==
677 -
678 -
679 -缺图 后续补上
680 -
681 -feature:
682 -
683 -for AT commands
684 -
685 -Update the firmware of DS20L
686 -
687 -Support interrupt mode
688 -
689 -
690 -== 6.3 LiDAR probe position ==
691 -
692 -
693 -[[image:1701155390576-216.png||height="285" width="307"]]
694 -
695 -The black oval hole in the picture is the LiDAR probe.
696 -
697 -
698 -== 6.4 Interface definition ==
699 -
700 -[[image:image-20231128151132-2.png||height="305" width="557"]]
701 -
702 -
703 703  = 7. Trouble Shooting =
704 704  
705 705  == 7.1 AT Command input doesn't work ==
... ... @@ -732,7 +732,7 @@
732 732  = 8. Order Info =
733 733  
734 734  
735 -Part Number: (% style="color:blue" %)**DS20L-XXX**
855 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
736 736  
737 737  (% style="color:red" %)**XXX**(%%): **The default frequency band**
738 738  
... ... @@ -757,7 +757,7 @@
757 757  
758 758  (% style="color:#037691" %)**Package Includes**:
759 759  
760 -* DS20L LoRaWAN Smart Distance Detector x 1
880 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
761 761  
762 762  (% style="color:#037691" %)**Dimension and weight**:
763 763  
1701149922873-259.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701155076393-719.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155150328-206.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.6 KB
Content
1701155390576-216.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -293.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.6 KB
Content
image-20231128151132-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -281.2 KB
Content