Last modified by Mengting Qiu on 2023/12/14 11:15

From version 120.8
edited by Xiaoling
on 2023/11/28 15:03
Change comment: There is no comment for this version
To version 113.4
edited by Xiaoling
on 2023/11/10 09:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -22,7 +22,7 @@
22 22  == 1.1 What is LoRaWAN Smart Distance Detector ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
26 26  
27 27  DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 28  consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
... ... @@ -31,8 +31,9 @@
31 31  
32 32  DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
33 33  
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
36 36  
37 37  
38 38  == 1.2 ​Features ==
... ... @@ -44,6 +44,7 @@
44 44  * AT Commands to change parameters
45 45  * Remotely configure parameters via LoRaWAN Downlink
46 46  * Alarm & Counting mode
48 +* Datalog Feature
47 47  * Firmware upgradable via program port or LoRa protocol
48 48  * Built-in 2400mAh battery or power by external power source
49 49  
... ... @@ -50,35 +50,121 @@
50 50  == 1.3 Specification ==
51 51  
52 52  
53 -(% style="color:#037691" %)**LiDAR Sensor:**
55 +(% style="color:#037691" %)**Common DC Characteristics:**
54 54  
55 -* Operation Temperature: -40 ~~ 80 °C
56 -* Operation Humidity: 0~~99.9%RH (no Dew)
57 -* Storage Temperature: -10 ~~ 45°C
57 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
58 +* Operating Temperature: -40 ~~ 85°C
59 +
60 +(% style="color:#037691" %)**Probe Specification:**
61 +
58 58  * Measure Range: 3cm~~200cm @ 90% reflectivity
59 59  * Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 60  * ToF FoV: ±9°, Total 18°
61 61  * Light source: VCSEL
62 62  
63 -== 1.4 Power Consumption ==
67 +(% style="color:#037691" %)**LoRa Spec:**
64 64  
69 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
70 +* Max +22 dBm constant RF output vs.
71 +* RX sensitivity: down to -139 dBm.
72 +* Excellent blocking immunity
65 65  
66 -(% style="color:#037691" %)**Battery Power Mode:**
74 +(% style="color:#037691" %)**Battery:**
67 67  
68 -* Idle: 0.003 mA @ 3.3v
69 -* Max : 360 mA
76 +* Li/SOCI2 un-chargeable battery
77 +* Capacity: 8500mAh
78 +* Self-Discharge: <1% / Year @ 25°C
79 +* Max continuously current: 130mA
80 +* Max boost current: 2A, 1 second
70 70  
71 -(% style="color:#037691" %)**Continuously mode**:
82 +(% style="color:#037691" %)**Power Consumption**
72 72  
73 -* Idle: 21 mA @ 3.3v
74 -* Max : 360 mA
84 +* Sleep Mode: 5uA @ 3.3v
85 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
75 75  
76 -= 2. Configure DS20L to connect to LoRaWAN network =
87 +== 1.4 Applications ==
77 77  
89 +
90 +* Horizontal distance measurement
91 +* Parking management system
92 +* Object proximity and presence detection
93 +* Intelligent trash can management system
94 +* Robot obstacle avoidance
95 +* Automatic control
96 +* Sewer
97 +
98 +(% style="display:none" %)
99 +
100 +== 1.5 Sleep mode and working mode ==
101 +
102 +
103 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
104 +
105 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
106 +
107 +
108 +== 1.6 Button & LEDs ==
109 +
110 +
111 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
112 +
113 +
114 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
115 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
116 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
117 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
118 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
119 +)))
120 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
121 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
122 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
123 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
124 +)))
125 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
126 +
127 +== 1.7 BLE connection ==
128 +
129 +
130 +LDS12-LB support BLE remote configure.
131 +
132 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
133 +
134 +* Press button to send an uplink
135 +* Press button to active device.
136 +* Device Power on or reset.
137 +
138 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
139 +
140 +
141 +== 1.8 Pin Definitions ==
142 +
143 +
144 +[[image:image-20230805144259-1.png||height="413" width="741"]]
145 +
146 +== 1.9 Mechanical ==
147 +
148 +
149 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
150 +
151 +
152 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
153 +
154 +
155 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
156 +
157 +
158 +(% style="color:blue" %)**Probe Mechanical:**
159 +
160 +
161 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
162 +
163 +
164 += 2. Configure LDS12-LB to connect to LoRaWAN network =
165 +
78 78  == 2.1 How it works ==
79 79  
80 80  
81 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
169 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
82 82  
83 83  (% style="display:none" %) (%%)
84 84  
... ... @@ -87,14 +87,15 @@
87 87  
88 88  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
89 89  
90 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
178 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
91 91  
92 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
180 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
93 93  
94 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
95 95  
96 -Each DS20L is shipped with a sticker with the default device EUI as below:
183 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
97 97  
185 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
186 +
98 98  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
99 99  
100 100  
... ... @@ -122,11 +122,10 @@
122 122  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
123 123  
124 124  
125 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
214 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
126 126  
127 -[[image:image-20231128133704-1.png||height="189" width="441"]]
128 128  
129 -Press the button for 5 seconds to activate the DS20L.
217 +Press the button for 5 seconds to activate the LDS12-LB.
130 130  
131 131  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
132 132  
... ... @@ -138,7 +138,7 @@
138 138  === 2.3.1 Device Status, FPORT~=5 ===
139 139  
140 140  
141 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
229 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
142 142  
143 143  The Payload format is as below.
144 144  
... ... @@ -150,9 +150,9 @@
150 150  
151 151  Example parse in TTNv3
152 152  
153 -[[image:1701149922873-259.png]]
241 +[[image:image-20230805103904-1.png||height="131" width="711"]]
154 154  
155 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
243 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
156 156  
157 157  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
158 158  
... ... @@ -207,7 +207,7 @@
207 207  
208 208  
209 209  (((
210 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
298 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
211 211  
212 212  periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
213 213  
... ... @@ -226,119 +226,118 @@
226 226  [[Message Type>>||anchor="HMessageType"]]
227 227  )))
228 228  
229 -==== (% style="color:red" %)**MOD~=1** ====
317 +[[image:image-20230805104104-2.png||height="136" width="754"]]
230 230  
231 -Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
232 232  
233 -Uplink Payload totals 10 bytes.
320 +==== (% style="color:blue" %)**Battery Info**(%%) ====
234 234  
235 -(% border="1" cellspacing="4" style="width:510px;background-color:#f2f2f2" %)
236 -|(% style="width:60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="width:30px;background-color:#4F81BD;color:white" %)**2**|(% style="width:130px;background-color:#4F81BD;color:white" %)**1**|(% style="width:70px;background-color:#4F81BD;color:white" %)**2**|(% style="width:100px;background-color:#4F81BD;color:white" %)**1**|(% style="width:120px;background-color:#4F81BD;color:white" %)**4**
237 -|(% style="width:91px" %)Value|(% style="width:41px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
238 238  
323 +Check the battery voltage for LDS12-LB.
239 239  
240 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
325 +Ex1: 0x0B45 = 2885mV
241 241  
242 -(% style="color:blue" %)**Battery Info**
327 +Ex2: 0x0B49 = 2889mV
243 243  
244 -Check the battery voltage for DS20L
245 245  
246 -Ex1: 0x0E10 = 3600mV
330 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
247 247  
248 -(% style="color:blue" %)**MOD & Alarm & Interrupt:**
249 249  
250 -(% style="color:red" %)**MOD:**
333 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
251 251  
252 -**Example: ** (0x60>>6) & 0x3f =1
253 253  
254 -**0x01:**  Regularly detect distance and report.
255 -**0x02: ** Uninterrupted measurement (external power supply).
336 +**Example**:
256 256  
257 -(% style="color:red" %)**Alarm:**
338 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
258 258  
259 -When the detection distance exceeds the limit, the alarm flag is set to 1.
340 +If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
260 260  
261 -(% style="color:red" %)**Interrupt:**
262 262  
263 -Whether it is an external interrupt.
343 +==== (% style="color:blue" %)**Distance**(%%) ====
264 264  
265 -(% style="color:blue" %)**Distance info**
266 266  
346 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
347 +
348 +
267 267  **Example**:
268 268  
269 -If payload is: 0708H: distance = 0708H = 1800 mm
351 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
270 270  
271 -(% style="color:blue" %)**Sensor State**
272 272  
273 -Ex1: 0x00: Normal collection distance
354 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
274 274  
275 -Ex2 0x0x: Distance collection is wrong
276 276  
277 -(% style="color:blue" %)**Interript Count**
357 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
278 278  
279 -If payload is:000007D0H: count = 07D0H =2000
280 280  
360 +**Example**:
281 281  
362 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
282 282  
364 +Customers can judge whether they need to adjust the environment based on the signal strength.
283 283  
284 -==== (% style="color:red" %)**MOD=2** ====
285 285  
286 -Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes.
367 +**1) When the sensor detects valid data:**
287 287  
288 -(% border="1" cellspacing="4" style="width:510px;background-color:#f2f2f2" %)
289 -|(% style="width:70px;background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="width:40px;background-color:#4F81BD;color:white" %)**2**|(% style="width:130px;background-color:#4F81BD;color:white" %)**1**|(% style="width:130px;background-color:#4F81BD;color:white" %)**4**|(% style="width:70px;background-color:#4F81BD;color:white" %)**2**|(% style="width:70px;background-color:#4F81BD;color:white" %)**2**
290 -|(% style="width:91px" %)Value|(% style="width:41px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
369 +[[image:image-20230805155335-1.png||height="145" width="724"]]
291 291  
292 292  
293 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
372 +**2) When the sensor detects invalid data:**
294 294  
295 -(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
374 +[[image:image-20230805155428-2.png||height="139" width="726"]]
296 296  
297 -(% style="color:red" %)**MOD:**
298 298  
299 -**Example: ** (0x60>>6) & 0x3f =1
377 +**3) When the sensor is not connected:**
300 300  
301 -**0x01:**  Regularly detect distance and report.
302 -**0x02: ** Uninterrupted measurement (external power supply).
379 +[[image:image-20230805155515-3.png||height="143" width="725"]]
303 303  
304 -(% style="color:red" %)**Alarm:**
305 305  
306 -When the detection distance exceeds the limit, the alarm flag is set to 1.
382 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
307 307  
308 -(% style="color:red" %)**Do:**
309 309  
310 -When the distance exceeds the set threshold, pull the Do pin high.
385 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
311 311  
312 -(% style="color:red" %)**Limit flag:**
387 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
313 313  
314 -Mode for setting threshold: 0~~5
389 +**Example:**
315 315  
316 -0: does not use upper and lower limits
391 +If byte[0]&0x01=0x00 : Normal uplink packet.
317 317  
318 -1: Use upper and lower limits
393 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
319 319  
320 -2: is less than the lower limit value
321 321  
322 -3: is greater than the lower limit value
396 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
323 323  
324 -4: is less than the upper limit
325 325  
326 -5: is greater than the upper limit
399 +Characterize the internal temperature value of the sensor.
327 327  
401 +**Example: **
402 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
403 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
328 328  
329 -(% style="color:blue" %)**Upper limit:**
330 330  
331 -The upper limit of the threshold cannot exceed 2000mm.
406 +==== (% style="color:blue" %)**Message Type**(%%) ====
332 332  
333 -(% style="color:blue" %)**Lower limit:**
334 334  
335 -The lower limit of the threshold cannot be less than 3mm.
409 +(((
410 +For a normal uplink payload, the message type is always 0x01.
411 +)))
336 336  
413 +(((
414 +Valid Message Type:
415 +)))
337 337  
417 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
418 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
419 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
420 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
421 +
422 +[[image:image-20230805150315-4.png||height="233" width="723"]]
423 +
424 +
338 338  === 2.3.3 Historical measuring distance, FPORT~=3 ===
339 339  
340 340  
341 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
428 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
342 342  
343 343  The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
344 344  
... ... @@ -363,7 +363,7 @@
363 363  )))
364 364  
365 365  * (((
366 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
453 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
367 367  )))
368 368  
369 369  For example, in the US915 band, the max payload for different DR is:
... ... @@ -376,7 +376,7 @@
376 376  
377 377  **d) DR3:** total payload includes 22 entries of data.
378 378  
379 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
466 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
380 380  
381 381  
382 382  **Downlink:**
... ... @@ -430,7 +430,7 @@
430 430  )))
431 431  
432 432  (((
433 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
520 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
434 434  )))
435 435  
436 436  
... ... @@ -459,7 +459,7 @@
459 459  
460 460  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
461 461  
462 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
549 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
463 463  
464 464  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
465 465  
... ... @@ -466,23 +466,184 @@
466 466  
467 467  After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
468 468  
469 -[[image:1701152946067-561.png]]
556 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
470 470  
471 471  
472 -== 2.5 Frequency Plans ==
559 +== 2.5 Datalog Feature ==
473 473  
474 474  
475 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
562 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
476 476  
564 +
565 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
566 +
567 +
568 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
569 +
570 +* (((
571 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
572 +)))
573 +* (((
574 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
575 +)))
576 +
577 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
578 +
579 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
580 +
581 +
582 +=== 2.5.2 Unix TimeStamp ===
583 +
584 +
585 +LDS12-LB uses Unix TimeStamp format based on
586 +
587 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
588 +
589 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
590 +
591 +Below is the converter example
592 +
593 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
594 +
595 +
596 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
597 +
598 +
599 +=== 2.5.3 Set Device Time ===
600 +
601 +
602 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
603 +
604 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
605 +
606 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
607 +
608 +
609 +=== 2.5.4 Poll sensor value ===
610 +
611 +
612 +Users can poll sensor values based on timestamps. Below is the downlink command.
613 +
614 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
615 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
616 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
617 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
618 +
619 +(((
620 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
621 +)))
622 +
623 +(((
624 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
625 +)))
626 +
627 +(((
628 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
629 +)))
630 +
631 +(((
632 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
633 +)))
634 +
635 +
636 +== 2.6 Frequency Plans ==
637 +
638 +
639 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
640 +
477 477  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
478 478  
479 479  
480 -= 3. Configure DS20L =
644 +== 2.7 LiDAR ToF Measurement ==
481 481  
646 +=== 2.7.1 Principle of Distance Measurement ===
647 +
648 +
649 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
650 +
651 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
652 +
653 +
654 +=== 2.7.2 Distance Measurement Characteristics ===
655 +
656 +
657 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
658 +
659 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
660 +
661 +
662 +(((
663 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
664 +)))
665 +
666 +(((
667 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
668 +)))
669 +
670 +(((
671 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
672 +)))
673 +
674 +
675 +(((
676 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
677 +)))
678 +
679 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
680 +
681 +(((
682 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
683 +)))
684 +
685 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
686 +
687 +(((
688 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
689 +)))
690 +
691 +
692 +=== 2.7.3 Notice of usage ===
693 +
694 +
695 +Possible invalid /wrong reading for LiDAR ToF tech:
696 +
697 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
698 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
699 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
700 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
701 +
702 +=== 2.7.4  Reflectivity of different objects ===
703 +
704 +
705 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
706 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
707 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
708 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
709 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
710 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
711 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
712 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
713 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
714 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
715 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
716 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
717 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
718 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
719 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
720 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
721 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
722 +Unpolished white metal surface
723 +)))|(% style="width:93px" %)130%
724 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
725 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
726 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
727 +
728 += 3. Configure LDS12-LB =
729 +
482 482  == 3.1 Configure Methods ==
483 483  
484 484  
485 -DS20L supports below configure method:
733 +LDS12-LB supports below configure method:
486 486  
487 487  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
488 488  
... ... @@ -504,10 +504,10 @@
504 504  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
505 505  
506 506  
507 -== 3.3 Commands special design for DS20L ==
755 +== 3.3 Commands special design for LDS12-LB ==
508 508  
509 509  
510 -These commands only valid for DS20L, as below:
758 +These commands only valid for LDS12-LB, as below:
511 511  
512 512  
513 513  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -549,7 +549,10 @@
549 549  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
550 550  )))
551 551  * (((
552 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
800 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
801 +
802 +
803 +
553 553  )))
554 554  
555 555  === 3.3.2 Set Interrupt Mode ===
... ... @@ -569,7 +569,7 @@
569 569  the mode is 0 =Disable Interrupt
570 570  )))
571 571  |(% style="width:154px" %)(((
572 -AT+INTMOD=3
823 +AT+INTMOD=2
573 573  
574 574  (default)
575 575  )))|(% style="width:196px" %)(((
... ... @@ -590,78 +590,39 @@
590 590  
591 591  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
592 592  
844 +=== 3.3.3  Set Power Output Duration ===
593 593  
594 -== 3.3.3 Set work mode ==
846 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
595 595  
848 +~1. first enable the power output to external sensor,
596 596  
597 -Feature: Switch working mode
850 +2. keep it on as per duration, read sensor value and construct uplink payload
598 598  
599 -(% style="color:blue" %)**AT Command: AT+MOD**
852 +3. final, close the power output.
600 600  
601 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
602 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
603 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
604 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
605 -OK
606 -Attention:Take effect after ATZ
607 -)))
854 +(% style="color:blue" %)**AT Command: AT+3V3T**
608 608  
609 -(% style="color:blue" %)**Downlink Command:**
610 -
611 -* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
612 -
613 -* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
614 -
615 -=== 3.3.4 Set threshold and threshold mode ===
616 -
617 -
618 -Feature, Set threshold and threshold mode
619 -
620 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
621 -
622 -(% style="color:blue" %)**AT Command: AT+DOL**
623 -
624 624  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
625 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
626 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
627 -0,0,0,0,400
857 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
858 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
628 628  OK
629 -)))
630 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
860 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
861 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
862 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
631 631  
864 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
865 +Format: Command Code (0x07) followed by 3 bytes.
632 632  
867 +The first byte is 01,the second and third bytes are the time to turn on.
633 633  
634 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
635 -|(% rowspan="11" style="color:blue; width:120px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits
636 -|(% style="width:251px" %)1: Use upper and lower limits
637 -|(% style="width:251px" %)2: Less than the lower limit
638 -|(% style="width:251px" %)3: Greater than the lower limit
639 -|(% style="width:251px" %)4: Less than the upper limit
640 -|(% style="width:251px" %)5: Greater than the upper limit
641 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
642 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
643 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
644 -|(% style="width:251px" %)1 Person or object counting statistics
645 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
646 -0~~10000ms
869 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
870 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
871 +* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
647 647  
648 -
649 -)))
650 -
651 -(% style="color:blue" %)**Downlink Command: 0x07**
652 -
653 -Format: Command Code (0x07) followed by 9bytes.
654 -
655 -* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
656 -
657 -* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
658 -
659 -
660 -
661 661  = 4. Battery & Power Consumption =
662 662  
663 663  
664 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
876 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
665 665  
666 666  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
667 667  
... ... @@ -670,7 +670,7 @@
670 670  
671 671  
672 672  (% class="wikigeneratedid" %)
673 -User can change firmware DS20L to:
885 +User can change firmware LDS12-LB to:
674 674  
675 675  * Change Frequency band/ region.
676 676  
... ... @@ -678,7 +678,7 @@
678 678  
679 679  * Fix bugs.
680 680  
681 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
893 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
682 682  
683 683  Methods to Update Firmware:
684 684  
... ... @@ -688,10 +688,10 @@
688 688  
689 689  = 6. FAQ =
690 690  
691 -== 6.1 What is the frequency plan for DS20L? ==
903 +== 6.1 What is the frequency plan for LDS12-LB? ==
692 692  
693 693  
694 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
906 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
695 695  
696 696  
697 697  = 7. Trouble Shooting =
... ... @@ -726,7 +726,7 @@
726 726  = 8. Order Info =
727 727  
728 728  
729 -Part Number: (% style="color:blue" %)**DS20L-XXX**
941 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
730 730  
731 731  (% style="color:red" %)**XXX**(%%): **The default frequency band**
732 732  
... ... @@ -751,7 +751,7 @@
751 751  
752 752  (% style="color:#037691" %)**Package Includes**:
753 753  
754 -* DS20L LoRaWAN Smart Distance Detector x 1
966 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
755 755  
756 756  (% style="color:#037691" %)**Dimension and weight**:
757 757  
1701149922873-259.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.6 KB
Content