Last modified by Mengting Qiu on 2023/12/14 11:15

From version 120.3
edited by Xiaoling
on 2023/11/28 14:43
Change comment: There is no comment for this version
To version 96.1
edited by Saxer Lin
on 2023/08/05 14:50
Change comment: Uploaded new attachment "image-20230805145056-3.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,66 +19,174 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 +[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +
40 +
38 38  == 1.2 ​Features ==
39 39  
40 40  
41 -* LoRaWAN Class A protocol
42 -* LiDAR distance detector, range 3 ~~ 200cm
43 -* Periodically detect or continuously detect mode
44 +* LoRaWAN 1.0.3 Class A
45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 +* Ultra-low power consumption
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
51 +* Support Bluetooth v5.1 and LoRaWAN remote configure
52 +* Support wireless OTA update firmware
44 44  * AT Commands to change parameters
45 -* Remotely configure parameters via LoRaWAN Downlink
46 -* Alarm & Counting mode
47 -* Firmware upgradable via program port or LoRa protocol
48 -* Built-in 2400mAh battery or power by external power source
54 +* Downlink to change configure
55 +* 8500mAh Battery for long term use
49 49  
57 +
50 50  == 1.3 Specification ==
51 51  
52 52  
53 -(% style="color:#037691" %)**LiDAR Sensor:**
61 +(% style="color:#037691" %)**Common DC Characteristics:**
54 54  
55 -* Operation Temperature: -40 ~~ 80 °C
56 -* Operation Humidity: 0~~99.9%RH (no Dew)
57 -* Storage Temperature: -10 ~~ 45°C
58 -* Measure Range: 3cm~~200cm @ 90% reflectivity
59 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 -* ToF FoV: ±9°, Total 18°
61 -* Light source: VCSEL
63 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 +* Operating Temperature: -40 ~~ 85°C
62 62  
63 -== 1.4 Power Consumption ==
66 +(% style="color:#037691" %)**Probe Specification:**
64 64  
68 +* Storage temperature:-20℃~~75℃
69 +* Operating temperature : -20℃~~60℃
70 +* Measure Distance:
71 +** 0.1m ~~ 12m @ 90% Reflectivity
72 +** 0.1m ~~ 4m @ 10% Reflectivity
73 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
74 +* Distance resolution : 5mm
75 +* Ambient light immunity : 70klux
76 +* Enclosure rating : IP65
77 +* Light source : LED
78 +* Central wavelength : 850nm
79 +* FOV : 3.6°
80 +* Material of enclosure : ABS+PC
81 +* Wire length : 25cm
65 65  
66 -(% style="color:#037691" %)**Battery Power Mode:**
83 +(% style="color:#037691" %)**LoRa Spec:**
67 67  
68 -* Idle: 0.003 mA @ 3.3v
69 -* Max : 360 mA
85 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
86 +* Max +22 dBm constant RF output vs.
87 +* RX sensitivity: down to -139 dBm.
88 +* Excellent blocking immunity
70 70  
71 -(% style="color:#037691" %)**Continuously mode**:
90 +(% style="color:#037691" %)**Battery:**
72 72  
73 -* Idle: 21 mA @ 3.3v
74 -* Max : 360 mA
92 +* Li/SOCI2 un-chargeable battery
93 +* Capacity: 8500mAh
94 +* Self-Discharge: <1% / Year @ 25°C
95 +* Max continuously current: 130mA
96 +* Max boost current: 2A, 1 second
75 75  
76 -= 2. Configure DS20L to connect to LoRaWAN network =
98 +(% style="color:#037691" %)**Power Consumption**
77 77  
100 +* Sleep Mode: 5uA @ 3.3v
101 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102 +
103 +
104 +== 1.4 Applications ==
105 +
106 +
107 +* Horizontal distance measurement
108 +* Parking management system
109 +* Object proximity and presence detection
110 +* Intelligent trash can management system
111 +* Robot obstacle avoidance
112 +* Automatic control
113 +* Sewer
114 +
115 +
116 +(% style="display:none" %)
117 +
118 +== 1.5 Sleep mode and working mode ==
119 +
120 +
121 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
122 +
123 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
124 +
125 +
126 +== 1.6 Button & LEDs ==
127 +
128 +
129 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
130 +
131 +
132 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
133 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
134 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
135 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
136 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
137 +)))
138 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
139 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
140 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
141 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
142 +)))
143 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
144 +
145 +
146 +== 1.7 BLE connection ==
147 +
148 +
149 +LDS12-LB support BLE remote configure.
150 +
151 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152 +
153 +* Press button to send an uplink
154 +* Press button to active device.
155 +* Device Power on or reset.
156 +
157 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158 +
159 +
160 +== 1.8 Pin Definitions ==
161 +
162 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
163 +
164 +
165 +== 1.9 Mechanical ==
166 +
167 +
168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
169 +
170 +
171 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
172 +
173 +
174 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
175 +
176 +
177 +(% style="color:blue" %)**Probe Mechanical:**
178 +
179 +
180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
181 +
182 +
183 += 2. Configure LDS12-LB to connect to LoRaWAN network =
184 +
78 78  == 2.1 How it works ==
79 79  
80 80  
81 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
188 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
82 82  
83 83  (% style="display:none" %) (%%)
84 84  
... ... @@ -87,14 +87,15 @@
87 87  
88 88  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
89 89  
90 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
197 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
91 91  
92 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
199 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
93 93  
94 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
95 95  
96 -Each DS20L is shipped with a sticker with the default device EUI as below:
202 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
97 97  
204 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
205 +
98 98  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
99 99  
100 100  
... ... @@ -122,11 +122,10 @@
122 122  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
123 123  
124 124  
125 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
233 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
126 126  
127 -[[image:image-20231128133704-1.png||height="189" width="441"]]
128 128  
129 -Press the button for 5 seconds to activate the DS20L.
236 +Press the button for 5 seconds to activate the LDS12-LB.
130 130  
131 131  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
132 132  
... ... @@ -138,7 +138,7 @@
138 138  === 2.3.1 Device Status, FPORT~=5 ===
139 139  
140 140  
141 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
248 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
142 142  
143 143  The Payload format is as below.
144 144  
... ... @@ -150,9 +150,9 @@
150 150  
151 151  Example parse in TTNv3
152 152  
153 -[[image:1701149922873-259.png]]
260 +[[image:image-20230805103904-1.png||height="131" width="711"]]
154 154  
155 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
262 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
156 156  
157 157  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
158 158  
... ... @@ -207,9 +207,9 @@
207 207  
208 208  
209 209  (((
210 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
317 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
211 211  
212 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
319 +periodically send this uplink every 20 minutes, this interval [[can be changed>>https://111]].
213 213  
214 214  Uplink Payload totals 11 bytes.
215 215  )))
... ... @@ -226,258 +226,326 @@
226 226  [[Message Type>>||anchor="HMessageType"]]
227 227  )))
228 228  
229 -==== **MOD~=1** ====
336 +[[image:image-20230805104104-2.png||height="136" width="754"]]
230 230  
231 -Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
232 232  
233 -Uplink Payload totals 10 bytes.
339 +==== (% style="color:blue" %)**Battery Info**(%%) ====
234 234  
235 -(% border="1" cellspacing="4" style="width:510px;background-color:#f2f2f2" %)
236 -|(% style="width:60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="width:30px;background-color:#4F81BD;color:white" %)**2**|(% style="width:130px;background-color:#4F81BD;color:white" %)**1**|(% style="width:70px;background-color:#4F81BD;color:white" %)**2**|(% style="width:100px;background-color:#4F81BD;color:white" %)**1**|(% style="width:120px;background-color:#4F81BD;color:white" %)**4**
237 -|(% style="width:91px" %)Value|(% style="width:41px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
238 238  
342 +Check the battery voltage for LDS12-LB.
239 239  
240 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
344 +Ex1: 0x0B45 = 2885mV
241 241  
242 -==== **Battery Info** ====
346 +Ex2: 0x0B49 = 2889mV
243 243  
244 -Check the battery voltage for DS20L
245 245  
246 -Ex1: 0x0E10 = 3600mV
349 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
247 247  
248 -**MOD & Alarm & Interrupt**
249 249  
250 -**MOD:**
352 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
251 251  
252 -**Example: ** (0x60>>6) & 0x3f =1
253 253  
254 -**0x01:**  Regularly detect distance and report.
255 -**0x02: ** Uninterrupted measurement (external power supply).
355 +**Example**:
256 256  
257 -**Alarm:**
357 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
258 258  
259 -When the detection distance exceeds the limit, the alarm flag is set to 1.
359 +If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
260 260  
261 -**Interrupt:**
262 262  
263 -Whether it is an external interrupt.
362 +==== (% style="color:blue" %)**Distance**(%%) ====
264 264  
265 -==== Distance** info** ====
266 266  
365 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
366 +
367 +
267 267  **Example**:
268 268  
269 -If payload is: 0708H: distance = 0708H = 1800 mm
370 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
270 270  
271 -==== **Sensor State** ====
272 272  
273 -Ex1: 0x00: Normal collection distance
373 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
274 274  
275 -Ex2 0x0x: Distance collection is wrong
276 276  
277 -==== **Interript Count** ====
376 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
278 278  
279 -If payload is:000007D0H: count = 07D0H =2000
280 280  
281 -**MOD=2**
379 +**Example**:
282 282  
283 -Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes.
381 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
284 284  
285 -|**Size(bytes)**|**2**|**1**|**4**|**2**|**2**
286 -|Value|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/DS20L_LoRaWAN_Smart_Distance_Detector_User_Manual/#HBatteryInfo]]|MOD+ Alarm+Do+ Limit flag|Distance Limit  Alarm count|Upper limit|Lower limit
383 +Customers can judge whether they need to adjust the environment based on the signal strength.
287 287  
288 288  
289 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
386 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
290 290  
291 -**MOD & Alarm & Do & Limit** **flag**
292 292  
293 -**MOD:**
389 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
294 294  
295 -**Example: ** (0x60>>6) & 0x3f =1
391 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
296 296  
297 -**0x01:**  Regularly detect distance and report.
298 -**0x02: ** Uninterrupted measurement (external power supply).
393 +**Example:**
299 299  
300 -**Alarm:**
395 +0x00: Normal uplink packet.
301 301  
302 -When the detection distance exceeds the limit, the alarm flag is set to 1.
397 +0x01: Interrupt Uplink Packet.
303 303  
304 -**Do:**
305 305  
306 -When the distance exceeds the set threshold, pull the Do pin high.
400 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
307 307  
308 -**Limit** **flag:**
309 309  
310 -Mode for setting threshold: 0~~5
403 +Characterize the internal temperature value of the sensor.
311 311  
312 -0: does not use upper and lower limits
405 +**Example: **
406 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
407 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
313 313  
314 -1: Use upper and lower limits
315 315  
316 -2: is less than the lower limit value
410 +==== (% style="color:blue" %)**Message Type**(%%) ====
317 317  
318 -3: is greater than the lower limit value
319 319  
320 -4: is less than the upper limit
413 +(((
414 +For a normal uplink payload, the message type is always 0x01.
415 +)))
321 321  
322 -5: is greater than the upper limit
417 +(((
418 +Valid Message Type:
419 +)))
323 323  
324 -**Upper limit:**
421 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
422 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
423 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
424 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
325 325  
326 -The upper limit of the threshold cannot exceed 2000mm.
327 327  
328 -**Lower limit:**
427 +=== 2.3.3 Decode payload in The Things Network ===
329 329  
330 -The lower limit of the threshold cannot be less than 3mm.
331 331  
430 +While using TTN network, you can add the payload format to decode the payload.
332 332  
333 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
432 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
334 334  
335 335  
336 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
435 +(((
436 +The payload decoder function for TTN is here:
437 +)))
337 337  
338 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
439 +(((
440 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
441 +)))
339 339  
340 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
341 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
342 -**Size(bytes)**
343 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
344 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
345 -Reserve(0xFF)
346 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
347 -LiDAR temp
348 -)))|(% style="width:85px" %)Unix TimeStamp
349 349  
350 -**Interrupt flag & Interrupt level:**
444 +== 2.4 ​Show Data in DataCake IoT Server ==
351 351  
352 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
353 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
354 -**Size(bit)**
355 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
356 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
357 -Interrupt flag
446 +
447 +(((
448 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
358 358  )))
359 359  
360 -* (((
361 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
451 +
452 +(((
453 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
362 362  )))
363 363  
364 -For example, in the US915 band, the max payload for different DR is:
456 +(((
457 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
458 +)))
365 365  
366 -**a) DR0:** max is 11 bytes so one entry of data
367 367  
368 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
461 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
369 369  
370 -**c) DR2:** total payload includes 11 entries of data
371 371  
372 -**d) DR3:** total payload includes 22 entries of data.
464 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
373 373  
374 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
375 375  
467 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
376 376  
377 -**Downlink:**
469 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
378 378  
379 -0x31 64 CC 68 0C 64 CC 69 74 05
471 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
380 380  
381 -[[image:image-20230805144936-2.png||height="113" width="746"]]
382 382  
383 -**Uplink:**
474 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
384 384  
385 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
386 386  
387 387  
388 -**Parsed Value:**
479 +== 2.5 Datalog Feature ==
389 389  
390 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
391 391  
482 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
392 392  
393 -[360,176,30,High,True,2023-08-04 02:53:00],
394 394  
395 -[355,168,30,Low,False,2023-08-04 02:53:29],
485 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
396 396  
397 -[245,211,30,Low,False,2023-08-04 02:54:29],
398 398  
399 -[57,700,30,Low,False,2023-08-04 02:55:29],
488 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
400 400  
401 -[361,164,30,Low,True,2023-08-04 02:56:00],
490 +* (((
491 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
492 +)))
493 +* (((
494 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
495 +)))
402 402  
403 -[337,184,30,Low,False,2023-08-04 02:56:40],
497 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
404 404  
405 -[20,4458,30,Low,False,2023-08-04 02:57:40],
499 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
406 406  
407 -[362,173,30,Low,False,2023-08-04 02:58:53],
408 408  
502 +=== 2.5.2 Unix TimeStamp ===
409 409  
410 -**History read from serial port:**
411 411  
412 -[[image:image-20230805145056-3.png]]
505 +LDS12-LB uses Unix TimeStamp format based on
413 413  
507 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
414 414  
415 -=== 2.3.4 Decode payload in The Things Network ===
509 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
416 416  
511 +Below is the converter example
417 417  
418 -While using TTN network, you can add the payload format to decode the payload.
513 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
419 419  
420 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
421 421  
516 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
422 422  
518 +
519 +=== 2.5.3 Set Device Time ===
520 +
521 +
522 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
523 +
524 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
525 +
526 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
527 +
528 +
529 +=== 2.5.4 Poll sensor value ===
530 +
531 +
532 +Users can poll sensor values based on timestamps. Below is the downlink command.
533 +
534 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
535 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
536 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
537 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
538 +
423 423  (((
424 -The payload decoder function for TTN is here:
540 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
425 425  )))
426 426  
427 427  (((
428 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
544 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
429 429  )))
430 430  
547 +(((
548 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
549 +)))
431 431  
432 -== 2.4 ​Show Data in DataCake IoT Server ==
551 +(((
552 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
553 +)))
433 433  
434 434  
556 +== 2.6 Frequency Plans ==
557 +
558 +
559 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
560 +
561 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
562 +
563 +
564 +== 2.7 LiDAR ToF Measurement ==
565 +
566 +=== 2.7.1 Principle of Distance Measurement ===
567 +
568 +
569 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
570 +
571 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
572 +
573 +
574 +=== 2.7.2 Distance Measurement Characteristics ===
575 +
576 +
577 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
578 +
579 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
580 +
581 +
435 435  (((
436 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
583 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
437 437  )))
438 438  
439 -
440 440  (((
441 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
587 +(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
442 442  )))
443 443  
444 444  (((
445 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
591 +(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
446 446  )))
447 447  
448 448  
449 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
595 +(((
596 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
597 +)))
450 450  
599 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
451 451  
452 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
601 +(((
602 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
603 +)))
453 453  
605 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
454 454  
455 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
607 +(((
608 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
609 +)))
456 456  
457 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
458 458  
459 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
612 +=== 2.7.3 Notice of usage ===
460 460  
461 461  
462 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
615 +Possible invalid /wrong reading for LiDAR ToF tech:
463 463  
464 -[[image:1701152946067-561.png]]
617 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
618 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
619 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
620 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
465 465  
466 466  
467 -== 2.5 Frequency Plans ==
623 +=== 2.7.4  Reflectivity of different objects ===
468 468  
469 469  
470 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
626 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
627 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
628 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
629 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
630 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
631 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
632 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
633 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
634 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
635 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
636 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
637 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
638 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
639 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
640 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
641 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
642 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
643 +Unpolished white metal surface
644 +)))|(% style="width:93px" %)130%
645 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
646 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
647 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
471 471  
472 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
473 473  
650 += 3. Configure LDS12-LB =
474 474  
475 -= 3. Configure DS20L =
476 -
477 477  == 3.1 Configure Methods ==
478 478  
479 479  
480 -DS20L supports below configure method:
655 +LDS12-LB supports below configure method:
481 481  
482 482  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
483 483  
... ... @@ -485,6 +485,7 @@
485 485  
486 486  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
487 487  
663 +
488 488  == 3.2 General Commands ==
489 489  
490 490  
... ... @@ -499,10 +499,10 @@
499 499  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
500 500  
501 501  
502 -== 3.3 Commands special design for DS20L ==
678 +== 3.3 Commands special design for LDS12-LB ==
503 503  
504 504  
505 -These commands only valid for DS20L, as below:
681 +These commands only valid for LDS12-LB, as below:
506 506  
507 507  
508 508  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -544,15 +544,18 @@
544 544  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
545 545  )))
546 546  * (((
547 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
723 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
724 +
725 +
726 +
548 548  )))
549 549  
550 550  === 3.3.2 Set Interrupt Mode ===
551 551  
552 552  
553 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
732 +Feature, Set Interrupt mode for PA8 of pin.
554 554  
555 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
734 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
556 556  
557 557  (% style="color:blue" %)**AT Command: AT+INTMOD**
558 558  
... ... @@ -563,11 +563,7 @@
563 563  OK
564 564  the mode is 0 =Disable Interrupt
565 565  )))
566 -|(% style="width:154px" %)(((
567 -AT+INTMOD=3
568 -
569 -(default)
570 -)))|(% style="width:196px" %)(((
745 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
571 571  Set Transmit Interval
572 572  0. (Disable Interrupt),
573 573  ~1. (Trigger by rising and falling edge)
... ... @@ -586,77 +586,38 @@
586 586  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
587 587  
588 588  
589 -== 3.3.3 Set work mode ==
764 +=== 3.3.3  Set Power Output Duration ===
590 590  
766 +Control the output duration 3V3 . Before each sampling, device will
591 591  
592 -Feature: Switch working mode
768 +~1. first enable the power output to external sensor,
593 593  
594 -(% style="color:blue" %)**AT Command: AT+MOD**
770 +2. keep it on as per duration, read sensor value and construct uplink payload
595 595  
596 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
597 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
598 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
599 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
600 -OK
601 -Attention:Take effect after ATZ
602 -)))
772 +3. final, close the power output.
603 603  
604 -(% style="color:blue" %)**Downlink Command:**
774 +(% style="color:blue" %)**AT Command: AT+3V3T**
605 605  
606 -* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
607 -
608 -* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
609 -
610 -=== 3.3.4 Set threshold and threshold mode ===
611 -
612 -
613 -Feature, Set threshold and threshold mode
614 -
615 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
616 -
617 -(% style="color:blue" %)**AT Command: AT+DOL**
618 -
619 619  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
620 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
621 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
622 -0,0,0,0,400
777 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
778 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
623 623  OK
624 -)))
625 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
780 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
781 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
626 626  
783 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
784 +Format: Command Code (0x07) followed by 3 bytes.
627 627  
786 +The first byte is 01,the second and third bytes are the time to turn on.
628 628  
629 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
630 -|(% rowspan="11" style="color:blue; width:120px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits
631 -|(% style="width:251px" %)1: Use upper and lower limits
632 -|(% style="width:251px" %)2: Less than the lower limit
633 -|(% style="width:251px" %)3: Greater than the lower limit
634 -|(% style="width:251px" %)4: Less than the upper limit
635 -|(% style="width:251px" %)5: Greater than the upper limit
636 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
637 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
638 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
639 -|(% style="width:251px" %)1 Person or object counting statistics
640 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
641 -0~~10000ms
788 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
789 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
642 642  
643 -
644 -)))
645 645  
646 -(% style="color:blue" %)**Downlink Command: 0x07**
647 -
648 -Format: Command Code (0x07) followed by 9bytes.
649 -
650 -* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
651 -
652 -* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
653 -
654 -
655 -
656 656  = 4. Battery & Power Consumption =
657 657  
658 658  
659 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
795 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
660 660  
661 661  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
662 662  
... ... @@ -665,7 +665,7 @@
665 665  
666 666  
667 667  (% class="wikigeneratedid" %)
668 -User can change firmware DS20L to:
804 +User can change firmware LDS12-LB to:
669 669  
670 670  * Change Frequency band/ region.
671 671  
... ... @@ -673,7 +673,7 @@
673 673  
674 674  * Fix bugs.
675 675  
676 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
812 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
677 677  
678 678  Methods to Update Firmware:
679 679  
... ... @@ -681,12 +681,13 @@
681 681  
682 682  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
683 683  
820 +
684 684  = 6. FAQ =
685 685  
686 -== 6.1 What is the frequency plan for DS20L? ==
823 +== 6.1 What is the frequency plan for LDS12-LB? ==
687 687  
688 688  
689 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
826 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
690 690  
691 691  
692 692  = 7. Trouble Shooting =
... ... @@ -721,7 +721,7 @@
721 721  = 8. Order Info =
722 722  
723 723  
724 -Part Number: (% style="color:blue" %)**DS20L-XXX**
861 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
725 725  
726 726  (% style="color:red" %)**XXX**(%%): **The default frequency band**
727 727  
... ... @@ -741,12 +741,13 @@
741 741  
742 742  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
743 743  
881 +
744 744  = 9. ​Packing Info =
745 745  
746 746  
747 747  (% style="color:#037691" %)**Package Includes**:
748 748  
749 -* DS20L LoRaWAN Smart Distance Detector x 1
887 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
750 750  
751 751  (% style="color:#037691" %)**Dimension and weight**:
752 752  
... ... @@ -758,6 +758,7 @@
758 758  
759 759  * Weight / pcs : g
760 760  
899 +
761 761  = 10. Support =
762 762  
763 763  
1701149922873-259.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.6 KB
Content