Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 5 removed)
Details
- Page properties
-
- Content
-
... ... @@ -22,7 +22,7 @@ 22 22 == 1.1 What is LoRaWAN Smart Distance Detector == 23 23 24 24 25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. 26 26 27 27 DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 28 consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. ... ... @@ -31,8 +31,9 @@ 31 31 32 32 DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway. 33 33 34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading. 34 34 35 -[[image:image-2023111010 2635-5.png||height="402" width="807"]]36 +[[image:image-20231110091506-4.png||height="391" width="768"]] 36 36 37 37 38 38 == 1.2 Features == ... ... @@ -44,6 +44,7 @@ 44 44 * AT Commands to change parameters 45 45 * Remotely configure parameters via LoRaWAN Downlink 46 46 * Alarm & Counting mode 48 +* Datalog Feature 47 47 * Firmware upgradable via program port or LoRa protocol 48 48 * Built-in 2400mAh battery or power by external power source 49 49 ... ... @@ -50,35 +50,121 @@ 50 50 == 1.3 Specification == 51 51 52 52 53 -(% style="color:#037691" %)** LiDARSensor:**55 +(% style="color:#037691" %)**Common DC Characteristics:** 54 54 55 -* Operation Temperature: -40 ~~ 80 °C 56 -* Operation Humidity: 0~~99.9%RH (no Dew) 57 -* Storage Temperature: -10 ~~ 45°C 57 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 58 +* Operating Temperature: -40 ~~ 85°C 59 + 60 +(% style="color:#037691" %)**Probe Specification:** 61 + 58 58 * Measure Range: 3cm~~200cm @ 90% reflectivity 59 59 * Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 60 60 * ToF FoV: ±9°, Total 18° 61 61 * Light source: VCSEL 62 62 63 - ==1.4 PowerConsumption==67 +(% style="color:#037691" %)**LoRa Spec:** 64 64 69 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 70 +* Max +22 dBm constant RF output vs. 71 +* RX sensitivity: down to -139 dBm. 72 +* Excellent blocking immunity 65 65 66 -(% style="color:#037691" %)**Battery Power Mode:**74 +(% style="color:#037691" %)**Battery:** 67 67 68 -* Idle: 0.003 mA @ 3.3v 69 -* Max : 360 mA 76 +* Li/SOCI2 un-chargeable battery 77 +* Capacity: 8500mAh 78 +* Self-Discharge: <1% / Year @ 25°C 79 +* Max continuously current: 130mA 80 +* Max boost current: 2A, 1 second 70 70 71 -(% style="color:#037691" %)**Conti nuously mode**:82 +(% style="color:#037691" %)**Power Consumption** 72 72 73 -* Idle:21 mA @ 3.3v74 -* Max:360 mA84 +* Sleep Mode: 5uA @ 3.3v 85 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 75 75 76 -= 2.Configure DS20L toconnect to LoRaWAN network=87 +== 1.4 Applications == 77 77 89 + 90 +* Horizontal distance measurement 91 +* Parking management system 92 +* Object proximity and presence detection 93 +* Intelligent trash can management system 94 +* Robot obstacle avoidance 95 +* Automatic control 96 +* Sewer 97 + 98 +(% style="display:none" %) 99 + 100 +== 1.5 Sleep mode and working mode == 101 + 102 + 103 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 104 + 105 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 106 + 107 + 108 +== 1.6 Button & LEDs == 109 + 110 + 111 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 112 + 113 + 114 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 115 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 116 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 117 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 118 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 119 +))) 120 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 121 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 122 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 123 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 124 +))) 125 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 126 + 127 +== 1.7 BLE connection == 128 + 129 + 130 +LDS12-LB support BLE remote configure. 131 + 132 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 133 + 134 +* Press button to send an uplink 135 +* Press button to active device. 136 +* Device Power on or reset. 137 + 138 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 139 + 140 + 141 +== 1.8 Pin Definitions == 142 + 143 + 144 +[[image:image-20230805144259-1.png||height="413" width="741"]] 145 + 146 +== 1.9 Mechanical == 147 + 148 + 149 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 150 + 151 + 152 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 153 + 154 + 155 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 156 + 157 + 158 +(% style="color:blue" %)**Probe Mechanical:** 159 + 160 + 161 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 162 + 163 + 164 += 2. Configure LDS12-LB to connect to LoRaWAN network = 165 + 78 78 == 2.1 How it works == 79 79 80 80 81 -The DS2 0L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.169 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 82 82 83 83 (% style="display:none" %) (%%) 84 84 ... ... @@ -87,14 +87,15 @@ 87 87 88 88 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 89 89 90 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. (% style="display:none" %)178 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 91 91 92 -[[image:image-20231110 102635-5.png||height="402" width="807"]](% style="display:none" %)180 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %) 93 93 94 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 95 95 96 - EachDS20Lisshipped withastickerwith thedefaultdevice EUI asbelow:183 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 97 97 185 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 186 + 98 98 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 99 99 100 100 ... ... @@ -122,11 +122,10 @@ 122 122 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 123 123 124 124 125 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS2 0L214 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 126 126 127 -[[image:image-20231128133704-1.png||height="189" width="441"]] 128 128 129 -Press the button for 5 seconds to activate the DS2 0L.217 +Press the button for 5 seconds to activate the LDS12-LB. 130 130 131 131 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 132 132 ... ... @@ -138,7 +138,7 @@ 138 138 === 2.3.1 Device Status, FPORT~=5 === 139 139 140 140 141 -Users can use the downlink command(**0x26 01**) to ask DS2 0L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.229 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 142 142 143 143 The Payload format is as below. 144 144 ... ... @@ -150,9 +150,9 @@ 150 150 151 151 Example parse in TTNv3 152 152 153 -[[image: 1701149922873-259.png]]241 +[[image:image-20230805103904-1.png||height="131" width="711"]] 154 154 155 -(% style="color:blue" %)**Sensor Model**(%%): For DS2 0L, this value is 0x21243 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 156 156 157 157 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 158 158 ... ... @@ -207,7 +207,7 @@ 207 207 208 208 209 209 ((( 210 -DS2 0L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:298 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 211 211 212 212 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 213 213 ... ... @@ -226,114 +226,118 @@ 226 226 [[Message Type>>||anchor="HMessageType"]] 227 227 ))) 228 228 229 -= === **MOD~=1**====317 +[[image:image-20230805104104-2.png||height="136" width="754"]] 230 230 231 -Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts. 232 232 233 - UplinkPayload totals10 bytes.320 +==== (% style="color:blue" %)**Battery Info**(%%) ==== 234 234 235 -(% border="1" cellspacing="4" style="width:510px;background-color:#f2f2f2" %) 236 -|(% style="width:60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="width:41px;background-color:#4F81BD;color:white" %)**2**|(% style="width:176px;background-color:#4F81BD;color:white" %)**1**|(% style="width:74px;background-color:#4F81BD;color:white" %)**2**|(% style="width:100px;background-color:#4F81BD;color:white" %)**1**|(% style="width:119px;background-color:#4F81BD;color:white" %)**4** 237 -|(% style="width:91px" %)Value|(% style="width:41px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count 238 238 323 +Check the battery voltage for LDS12-LB. 239 239 240 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]325 +Ex1: 0x0B45 = 2885mV 241 241 242 - ====**BatteryInfo**====327 +Ex2: 0x0B49 = 2889mV 243 243 244 -Check the battery voltage for DS20L 245 245 246 - Ex1:0x0E10=3600mV330 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ==== 247 247 248 -**MOD & Alarm & Interrupt** 249 249 250 - **MOD:**333 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 251 251 252 -**Example: ** (0x60>>6) & 0x3f =1 253 253 254 -**0x01:** Regularly detect distance and report. 255 -**0x02: ** Uninterrupted measurement (external power supply). 336 +**Example**: 256 256 257 - **Alarm:**338 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 258 258 259 - Whenthe detectiondistanceexceedsthelimit, thealarmflagissetto1.340 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 260 260 261 -**Interrupt:** 262 262 263 - Whetheritisan external interrupt.343 +==== (% style="color:blue" %)**Distance**(%%) ==== 264 264 265 -==== Distance** info** ==== 266 266 346 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 347 + 348 + 267 267 **Example**: 268 268 269 -If payloadis:0708H:distance=0708H =1800 mm351 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 270 270 271 -==== **Sensor State** ==== 272 272 273 - Ex1:0x00:Normalctiondistance354 +==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 274 274 275 -Ex2 0x0x: Distance collection is wrong 276 276 277 - ====**InterriptCount**====357 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 278 278 279 -If payload is:000007D0H: count = 07D0H =2000 280 280 281 -** MOD=2**360 +**Example**: 282 282 283 - Uninterruptedmeasurement.Whenthedistanceexceeds thelimit, theoutput IO is set highand reportsarereportedeveryfiveminutes. Thetimecanbeset andpoweredby an external power supply.Uplink Payloadtotals 11bytes.362 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 284 284 285 -|**Size(bytes)**|**2**|**1**|**4**|**2**|**2** 286 -|Value|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/DS20L_LoRaWAN_Smart_Distance_Detector_User_Manual/#HBatteryInfo]]|MOD+ Alarm+Do+ Limit flag|Distance Limit Alarm count|Upper limit|Lower limit 364 +Customers can judge whether they need to adjust the environment based on the signal strength. 287 287 288 288 289 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]367 +**1) When the sensor detects valid data:** 290 290 291 - **MOD & Alarm& Do & Limit****flag**369 +[[image:image-20230805155335-1.png||height="145" width="724"]] 292 292 293 -**MOD:** 294 294 295 -** Example:**(0x60>>6)&0x3f=1372 +**2) When the sensor detects invalid data:** 296 296 297 -**0x01:** Regularly detect distance and report. 298 -**0x02: ** Uninterrupted measurement (external power supply). 374 +[[image:image-20230805155428-2.png||height="139" width="726"]] 299 299 300 -**Alarm:** 301 301 302 -When the detectiondistance exceeds the limit, the alarmflagissetto1.377 +**3) When the sensor is not connected:** 303 303 304 - **Do:**379 +[[image:image-20230805155515-3.png||height="143" width="725"]] 305 305 306 -When the distance exceeds the set threshold, pull the Do pin high. 307 307 308 -** Limit****flag:**382 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 309 309 310 -Mode for setting threshold: 0~~5 311 311 312 - 0:does notuse upper andlowerlimits385 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 313 313 314 - 1:Useupper andlower limits387 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI . 315 315 316 - 2: is less than the lower limit value389 +**Example:** 317 317 318 - 3:is greaterthanthe lower limitvalue391 +If byte[0]&0x01=0x00 : Normal uplink packet. 319 319 320 - 4:is lessthantheperlimit393 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet. 321 321 322 -5: is greater than the upper limit 323 323 324 - **Uppermit:**396 +==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 325 325 326 -The upper limit of the threshold cannot exceed 2000mm. 327 327 328 - **Lowerlimit:**399 +Characterize the internal temperature value of the sensor. 329 329 330 -The lower limit of the threshold cannot be less than 3mm. 401 +**Example: ** 402 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 403 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 331 331 332 332 406 +==== (% style="color:blue" %)**Message Type**(%%) ==== 407 + 408 + 409 +((( 410 +For a normal uplink payload, the message type is always 0x01. 411 +))) 412 + 413 +((( 414 +Valid Message Type: 415 +))) 416 + 417 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 418 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 419 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 420 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 421 + 422 +[[image:image-20230805150315-4.png||height="233" width="723"]] 423 + 424 + 333 333 === 2.3.3 Historical measuring distance, FPORT~=3 === 334 334 335 335 336 -DS2 0L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].428 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 337 337 338 338 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 339 339 ... ... @@ -358,7 +358,7 @@ 358 358 ))) 359 359 360 360 * ((( 361 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS2 0L will send max bytes according to the current DR and Frequency bands.453 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 362 362 ))) 363 363 364 364 For example, in the US915 band, the max payload for different DR is: ... ... @@ -371,7 +371,7 @@ 371 371 372 372 **d) DR3:** total payload includes 22 entries of data. 373 373 374 -If DS2 0L doesn't have any data in the polling time. It will uplink 11 bytes of 0466 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 375 375 376 376 377 377 **Downlink:** ... ... @@ -425,7 +425,7 @@ 425 425 ))) 426 426 427 427 ((( 428 -DS2 0L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]520 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 429 429 ))) 430 430 431 431 ... ... @@ -454,7 +454,7 @@ 454 454 455 455 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 456 456 457 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS2 0L and add DevEUI.**549 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 458 458 459 459 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 460 460 ... ... @@ -461,23 +461,184 @@ 461 461 462 462 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 463 463 464 -[[image: 1701152946067-561.png]]556 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 465 465 466 466 467 -== 2.5 F requencyPlans==559 +== 2.5 Datalog Feature == 468 468 469 469 470 - TheDS20LusesOTAAmode andbelowfrequencyplansbydefault.Ifuserwanttouseitthdifferentfrequencyplan,please refer theAT commandsets.562 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 471 471 564 + 565 +=== 2.5.1 Ways to get datalog via LoRaWAN === 566 + 567 + 568 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 569 + 570 +* ((( 571 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 572 +))) 573 +* ((( 574 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 575 +))) 576 + 577 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 578 + 579 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 580 + 581 + 582 +=== 2.5.2 Unix TimeStamp === 583 + 584 + 585 +LDS12-LB uses Unix TimeStamp format based on 586 + 587 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 588 + 589 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 590 + 591 +Below is the converter example 592 + 593 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 594 + 595 + 596 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 597 + 598 + 599 +=== 2.5.3 Set Device Time === 600 + 601 + 602 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 603 + 604 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 605 + 606 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 607 + 608 + 609 +=== 2.5.4 Poll sensor value === 610 + 611 + 612 +Users can poll sensor values based on timestamps. Below is the downlink command. 613 + 614 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 615 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 616 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 617 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 618 + 619 +((( 620 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval. 621 +))) 622 + 623 +((( 624 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]] 625 +))) 626 + 627 +((( 628 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data 629 +))) 630 + 631 +((( 632 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 633 +))) 634 + 635 + 636 +== 2.6 Frequency Plans == 637 + 638 + 639 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 640 + 472 472 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 473 473 474 474 475 -= 3.ConfigureDS20L=644 +== 2.7 LiDAR ToF Measurement == 476 476 646 +=== 2.7.1 Principle of Distance Measurement === 647 + 648 + 649 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 650 + 651 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 652 + 653 + 654 +=== 2.7.2 Distance Measurement Characteristics === 655 + 656 + 657 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 658 + 659 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 660 + 661 + 662 +((( 663 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 664 +))) 665 + 666 +((( 667 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 668 +))) 669 + 670 +((( 671 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 672 +))) 673 + 674 + 675 +((( 676 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 677 +))) 678 + 679 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 680 + 681 +((( 682 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 683 +))) 684 + 685 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 686 + 687 +((( 688 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 689 +))) 690 + 691 + 692 +=== 2.7.3 Notice of usage === 693 + 694 + 695 +Possible invalid /wrong reading for LiDAR ToF tech: 696 + 697 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 698 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 699 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 700 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 701 + 702 +=== 2.7.4 Reflectivity of different objects === 703 + 704 + 705 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 706 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 707 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 708 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 709 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 710 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 711 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 712 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 713 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 714 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 715 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 716 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 717 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 718 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 719 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 720 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 721 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 722 +Unpolished white metal surface 723 +)))|(% style="width:93px" %)130% 724 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 725 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 726 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 727 + 728 += 3. Configure LDS12-LB = 729 + 477 477 == 3.1 Configure Methods == 478 478 479 479 480 -DS2 0L supports below configure method:733 +LDS12-LB supports below configure method: 481 481 482 482 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 483 483 ... ... @@ -499,10 +499,10 @@ 499 499 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 500 500 501 501 502 -== 3.3 Commands special design for DS2 0L ==755 +== 3.3 Commands special design for LDS12-LB == 503 503 504 504 505 -These commands only valid for DS2 0L, as below:758 +These commands only valid for LDS12-LB, as below: 506 506 507 507 508 508 === 3.3.1 Set Transmit Interval Time === ... ... @@ -544,7 +544,10 @@ 544 544 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 545 545 ))) 546 546 * ((( 547 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 800 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 801 + 802 + 803 + 548 548 ))) 549 549 550 550 === 3.3.2 Set Interrupt Mode === ... ... @@ -564,7 +564,7 @@ 564 564 the mode is 0 =Disable Interrupt 565 565 ))) 566 566 |(% style="width:154px" %)((( 567 -AT+INTMOD= 3823 +AT+INTMOD=2 568 568 569 569 (default) 570 570 )))|(% style="width:196px" %)((( ... ... @@ -585,78 +585,39 @@ 585 585 586 586 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 587 587 844 +=== 3.3.3 Set Power Output Duration === 588 588 589 - ==3.3.3Set workmode==846 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 590 590 848 +~1. first enable the power output to external sensor, 591 591 592 - Feature:Switchworkingmode850 +2. keep it on as per duration, read sensor value and construct uplink payload 593 593 594 - (%style="color:blue"%)**ATCommand:AT+MOD**852 +3. final, close the power output. 595 595 596 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 597 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response** 598 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK 599 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)((( 600 -OK 601 -Attention:Take effect after ATZ 602 -))) 854 +(% style="color:blue" %)**AT Command: AT+3V3T** 603 603 604 -(% style="color:blue" %)**Downlink Command:** 605 - 606 -* **Example: **0x0A00 ~/~/ Same as AT+MOD=0 607 - 608 -* **Example:** 0x0A01 ~/~/ Same as AT+MOD=1 609 - 610 -=== 3.3.4 Set threshold and threshold mode === 611 - 612 - 613 -Feature, Set threshold and threshold mode 614 - 615 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms. 616 - 617 -(% style="color:blue" %)**AT Command: AT+DOL** 618 - 619 619 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 620 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response** 621 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)((( 622 -0,0,0,0,400 857 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 858 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 623 623 OK 624 -))) 625 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK 860 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 861 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 862 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 626 626 864 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 865 +Format: Command Code (0x07) followed by 3 bytes. 627 627 867 +The first byte is 01,the second and third bytes are the time to turn on. 628 628 629 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 630 -|(% rowspan="11" style="color:blue; width:120px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits 631 -|(% style="width:251px" %)1: Use upper and lower limits 632 -|(% style="width:251px" %)2: Less than the lower limit 633 -|(% style="width:251px" %)3: Greater than the lower limit 634 -|(% style="width:251px" %)4: Less than the upper limit 635 -|(% style="width:251px" %)5: Greater than the upper limit 636 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM 637 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM 638 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high 639 -|(% style="width:251px" %)1 Person or object counting statistics 640 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)((( 641 -0~~10000ms 869 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 870 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 871 +* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 642 642 643 - 644 -))) 645 - 646 -(% style="color:blue" %)**Downlink Command: 0x07** 647 - 648 -Format: Command Code (0x07) followed by 9bytes. 649 - 650 -* Example 0: Downlink Payload: 070000000000000190 **~-~-->** AT+MOD=0,0,0,0,400 651 - 652 -* Example 1: Downlink Payload: 070107080064000190 **~-~-->** AT+MOD=1,1800,100,0,400 653 - 654 - 655 - 656 656 = 4. Battery & Power Consumption = 657 657 658 658 659 -DS2 0L usebuilt-in2400mAhnon-chargeablebatteryfor long-term use upto several years*. See below link for detail information about the battery info and how to replace.876 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 660 660 661 661 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 662 662 ... ... @@ -665,7 +665,7 @@ 665 665 666 666 667 667 (% class="wikigeneratedid" %) 668 -User can change firmware DS2 0L to:885 +User can change firmware LDS12-LB to: 669 669 670 670 * Change Frequency band/ region. 671 671 ... ... @@ -673,7 +673,7 @@ 673 673 674 674 * Fix bugs. 675 675 676 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/ zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**893 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 677 677 678 678 Methods to Update Firmware: 679 679 ... ... @@ -683,10 +683,10 @@ 683 683 684 684 = 6. FAQ = 685 685 686 -== 6.1 What is the frequency plan for DS2 0L? ==903 +== 6.1 What is the frequency plan for LDS12-LB? == 687 687 688 688 689 -DS2 0L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]906 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 690 690 691 691 692 692 = 7. Trouble Shooting = ... ... @@ -721,7 +721,7 @@ 721 721 = 8. Order Info = 722 722 723 723 724 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**941 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 725 725 726 726 (% style="color:red" %)**XXX**(%%): **The default frequency band** 727 727 ... ... @@ -746,7 +746,7 @@ 746 746 747 747 (% style="color:#037691" %)**Package Includes**: 748 748 749 -* DS2 0L LoRaWANSmartDistanceDetector x 1966 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 750 750 751 751 (% style="color:#037691" %)**Dimension and weight**: 752 752
- 1701149922873-259.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -24.5 KB - Content
- 1701152902759-553.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -52.2 KB - Content
- 1701152946067-561.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -52.2 KB - Content
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -84.7 KB - Content
- image-20231128133704-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -190.6 KB - Content