Last modified by Mengting Qiu on 2023/12/14 11:15

From version 120.2
edited by Xiaoling
on 2023/11/28 14:40
Change comment: There is no comment for this version
To version 113.3
edited by Xiaoling
on 2023/11/10 09:28
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -22,7 +22,7 @@
22 22  == 1.1 What is LoRaWAN Smart Distance Detector ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
26 26  
27 27  DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 28  consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
... ... @@ -31,54 +31,155 @@
31 31  
32 32  DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
33 33  
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
36 36  
37 37  
38 38  == 1.2 ​Features ==
39 39  
40 40  
41 -* LoRaWAN Class A protocol
42 -* LiDAR distance detector, range 3 ~~ 200cm
43 -* Periodically detect or continuously detect mode
42 +* LoRaWAN 1.0.3 Class A
43 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
44 +* Ultra-low power consumption
45 +* Laser technology for distance detection
46 +* Measure Distance: 0.1m~~12m
47 +* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
48 +* Monitor Battery Level
49 +* Support Bluetooth v5.1 and LoRaWAN remote configure
50 +* Support wireless OTA update firmware
44 44  * AT Commands to change parameters
45 -* Remotely configure parameters via LoRaWAN Downlink
46 -* Alarm & Counting mode
47 -* Firmware upgradable via program port or LoRa protocol
48 -* Built-in 2400mAh battery or power by external power source
52 +* Downlink to change configure
53 +* 8500mAh Battery for long term use
49 49  
50 50  == 1.3 Specification ==
51 51  
52 52  
53 -(% style="color:#037691" %)**LiDAR Sensor:**
58 +(% style="color:#037691" %)**Common DC Characteristics:**
54 54  
55 -* Operation Temperature: -40 ~~ 80 °C
56 -* Operation Humidity: 0~~99.9%RH (no Dew)
57 -* Storage Temperature: -10 ~~ 45°C
58 -* Measure Range: 3cm~~200cm @ 90% reflectivity
59 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 -* ToF FoV: ±9°, Total 18°
61 -* Light source: VCSEL
60 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
61 +* Operating Temperature: -40 ~~ 85°C
62 62  
63 -== 1.4 Power Consumption ==
63 +(% style="color:#037691" %)**Probe Specification:**
64 64  
65 +* Storage temperature:-20℃~~75℃
66 +* Operating temperature : -20℃~~60℃
67 +* Measure Distance:
68 +** 0.1m ~~ 12m @ 90% Reflectivity
69 +** 0.1m ~~ 4m @ 10% Reflectivity
70 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
71 +* Distance resolution : 1cm
72 +* Ambient light immunity : 70klux
73 +* Enclosure rating : IP65
74 +* Light source : LED
75 +* Central wavelength : 850nm
76 +* FOV : 3.6°
77 +* Material of enclosure : ABS+PC
78 +* Wire length : 25cm
65 65  
66 -(% style="color:#037691" %)**Battery Power Mode:**
80 +(% style="color:#037691" %)**LoRa Spec:**
67 67  
68 -* Idle: 0.003 mA @ 3.3v
69 -* Max : 360 mA
82 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
83 +* Max +22 dBm constant RF output vs.
84 +* RX sensitivity: down to -139 dBm.
85 +* Excellent blocking immunity
70 70  
71 -(% style="color:#037691" %)**Continuously mode**:
87 +(% style="color:#037691" %)**Battery:**
72 72  
73 -* Idle: 21 mA @ 3.3v
74 -* Max : 360 mA
89 +* Li/SOCI2 un-chargeable battery
90 +* Capacity: 8500mAh
91 +* Self-Discharge: <1% / Year @ 25°C
92 +* Max continuously current: 130mA
93 +* Max boost current: 2A, 1 second
75 75  
76 -= 2. Configure DS20L to connect to LoRaWAN network =
95 +(% style="color:#037691" %)**Power Consumption**
77 77  
97 +* Sleep Mode: 5uA @ 3.3v
98 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
99 +
100 +== 1.4 Applications ==
101 +
102 +
103 +* Horizontal distance measurement
104 +* Parking management system
105 +* Object proximity and presence detection
106 +* Intelligent trash can management system
107 +* Robot obstacle avoidance
108 +* Automatic control
109 +* Sewer
110 +
111 +(% style="display:none" %)
112 +
113 +== 1.5 Sleep mode and working mode ==
114 +
115 +
116 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
117 +
118 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
119 +
120 +
121 +== 1.6 Button & LEDs ==
122 +
123 +
124 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
125 +
126 +
127 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
128 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
129 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
130 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
131 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
132 +)))
133 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
134 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
135 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
136 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
137 +)))
138 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
139 +
140 +== 1.7 BLE connection ==
141 +
142 +
143 +LDS12-LB support BLE remote configure.
144 +
145 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
146 +
147 +* Press button to send an uplink
148 +* Press button to active device.
149 +* Device Power on or reset.
150 +
151 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
152 +
153 +
154 +== 1.8 Pin Definitions ==
155 +
156 +
157 +[[image:image-20230805144259-1.png||height="413" width="741"]]
158 +
159 +== 1.9 Mechanical ==
160 +
161 +
162 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
163 +
164 +
165 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
166 +
167 +
168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
169 +
170 +
171 +(% style="color:blue" %)**Probe Mechanical:**
172 +
173 +
174 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
175 +
176 +
177 += 2. Configure LDS12-LB to connect to LoRaWAN network =
178 +
78 78  == 2.1 How it works ==
79 79  
80 80  
81 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
182 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
82 82  
83 83  (% style="display:none" %) (%%)
84 84  
... ... @@ -87,14 +87,15 @@
87 87  
88 88  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
89 89  
90 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
191 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
91 91  
92 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
193 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
93 93  
94 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
95 95  
96 -Each DS20L is shipped with a sticker with the default device EUI as below:
196 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
97 97  
198 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
199 +
98 98  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
99 99  
100 100  
... ... @@ -122,11 +122,10 @@
122 122  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
123 123  
124 124  
125 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
227 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
126 126  
127 -[[image:image-20231128133704-1.png||height="189" width="441"]]
128 128  
129 -Press the button for 5 seconds to activate the DS20L.
230 +Press the button for 5 seconds to activate the LDS12-LB.
130 130  
131 131  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
132 132  
... ... @@ -138,7 +138,7 @@
138 138  === 2.3.1 Device Status, FPORT~=5 ===
139 139  
140 140  
141 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
242 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
142 142  
143 143  The Payload format is as below.
144 144  
... ... @@ -150,9 +150,9 @@
150 150  
151 151  Example parse in TTNv3
152 152  
153 -[[image:1701149922873-259.png]]
254 +[[image:image-20230805103904-1.png||height="131" width="711"]]
154 154  
155 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
256 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
156 156  
157 157  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
158 158  
... ... @@ -207,7 +207,7 @@
207 207  
208 208  
209 209  (((
210 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
311 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
211 211  
212 212  periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
213 213  
... ... @@ -226,114 +226,118 @@
226 226  [[Message Type>>||anchor="HMessageType"]]
227 227  )))
228 228  
229 -==== **MOD~=1** ====
330 +[[image:image-20230805104104-2.png||height="136" width="754"]]
230 230  
231 -Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
232 232  
233 -Uplink Payload totals 10 bytes.
333 +==== (% style="color:blue" %)**Battery Info**(%%) ====
234 234  
235 -(% border="1" cellspacing="4" style="width:510px;background-color:#f2f2f2" %)
236 -|(% style="width:60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="width:41px;background-color:#4F81BD;color:white" %)**2**|(% style="width:176px;background-color:#4F81BD;color:white" %)**1**|(% style="width:74px;background-color:#4F81BD;color:white" %)**2**|(% style="width:100px;background-color:#4F81BD;color:white" %)**1**|(% style="width:119px;background-color:#4F81BD;color:white" %)**4**
237 -|(% style="width:91px" %)Value|(% style="width:41px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
238 238  
336 +Check the battery voltage for LDS12-LB.
239 239  
240 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
338 +Ex1: 0x0B45 = 2885mV
241 241  
242 -==== **Battery Info** ====
340 +Ex2: 0x0B49 = 2889mV
243 243  
244 -Check the battery voltage for DS20L
245 245  
246 -Ex1: 0x0E10 = 3600mV
343 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
247 247  
248 -**MOD & Alarm & Interrupt**
249 249  
250 -**MOD:**
346 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
251 251  
252 -**Example: ** (0x60>>6) & 0x3f =1
253 253  
254 -**0x01:**  Regularly detect distance and report.
255 -**0x02: ** Uninterrupted measurement (external power supply).
349 +**Example**:
256 256  
257 -**Alarm:**
351 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
258 258  
259 -When the detection distance exceeds the limit, the alarm flag is set to 1.
353 +If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
260 260  
261 -**Interrupt:**
262 262  
263 -Whether it is an external interrupt.
356 +==== (% style="color:blue" %)**Distance**(%%) ====
264 264  
265 -==== Distance** info** ====
266 266  
359 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
360 +
361 +
267 267  **Example**:
268 268  
269 -If payload is: 0708H: distance = 0708H = 1800 mm
364 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
270 270  
271 -==== **Sensor State** ====
272 272  
273 -Ex1: 0x00: Normal collection distance
367 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
274 274  
275 -Ex2 0x0x: Distance collection is wrong
276 276  
277 -==== **Interript Count** ====
370 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
278 278  
279 -If payload is:000007D0H: count = 07D0H =2000
280 280  
281 -**MOD=2**
373 +**Example**:
282 282  
283 -Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes.
375 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
284 284  
285 -|**Size(bytes)**|**2**|**1**|**4**|**2**|**2**
286 -|Value|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/DS20L_LoRaWAN_Smart_Distance_Detector_User_Manual/#HBatteryInfo]]|MOD+ Alarm+Do+ Limit flag|Distance Limit  Alarm count|Upper limit|Lower limit
377 +Customers can judge whether they need to adjust the environment based on the signal strength.
287 287  
288 288  
289 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
380 +**1) When the sensor detects valid data:**
290 290  
291 -**MOD & Alarm & Do & Limit** **flag**
382 +[[image:image-20230805155335-1.png||height="145" width="724"]]
292 292  
293 -**MOD:**
294 294  
295 -**Example: ** (0x60>>6) & 0x3f =1
385 +**2) When the sensor detects invalid data:**
296 296  
297 -**0x01:**  Regularly detect distance and report.
298 -**0x02: ** Uninterrupted measurement (external power supply).
387 +[[image:image-20230805155428-2.png||height="139" width="726"]]
299 299  
300 -**Alarm:**
301 301  
302 -When the detection distance exceeds the limit, the alarm flag is set to 1.
390 +**3) When the sensor is not connected:**
303 303  
304 -**Do:**
392 +[[image:image-20230805155515-3.png||height="143" width="725"]]
305 305  
306 -When the distance exceeds the set threshold, pull the Do pin high.
307 307  
308 -**Limit** **flag:**
395 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
309 309  
310 -Mode for setting threshold: 0~~5
311 311  
312 -0: does not use upper and lower limits
398 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
313 313  
314 -1: Use upper and lower limits
400 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
315 315  
316 -2: is less than the lower limit value
402 +**Example:**
317 317  
318 -3: is greater than the lower limit value
404 +If byte[0]&0x01=0x00 : Normal uplink packet.
319 319  
320 -4: is less than the upper limit
406 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
321 321  
322 -5: is greater than the upper limit
323 323  
324 -**Upper limit:**
409 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
325 325  
326 -The upper limit of the threshold cannot exceed 2000mm.
327 327  
328 -**Lower limit:**
412 +Characterize the internal temperature value of the sensor.
329 329  
330 -The lower limit of the threshold cannot be less than 3mm.
414 +**Example: **
415 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
416 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
331 331  
332 332  
419 +==== (% style="color:blue" %)**Message Type**(%%) ====
420 +
421 +
422 +(((
423 +For a normal uplink payload, the message type is always 0x01.
424 +)))
425 +
426 +(((
427 +Valid Message Type:
428 +)))
429 +
430 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
431 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
432 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
433 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
434 +
435 +[[image:image-20230805150315-4.png||height="233" width="723"]]
436 +
437 +
333 333  === 2.3.3 Historical measuring distance, FPORT~=3 ===
334 334  
335 335  
336 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
441 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
337 337  
338 338  The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
339 339  
... ... @@ -358,7 +358,7 @@
358 358  )))
359 359  
360 360  * (((
361 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
466 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
362 362  )))
363 363  
364 364  For example, in the US915 band, the max payload for different DR is:
... ... @@ -371,7 +371,7 @@
371 371  
372 372  **d) DR3:** total payload includes 22 entries of data.
373 373  
374 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
479 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
375 375  
376 376  
377 377  **Downlink:**
... ... @@ -425,7 +425,7 @@
425 425  )))
426 426  
427 427  (((
428 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
533 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
429 429  )))
430 430  
431 431  
... ... @@ -454,7 +454,7 @@
454 454  
455 455  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
456 456  
457 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
562 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
458 458  
459 459  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
460 460  
... ... @@ -461,23 +461,184 @@
461 461  
462 462  After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
463 463  
464 -[[image:1701152946067-561.png]]
569 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
465 465  
466 466  
467 -== 2.5 Frequency Plans ==
572 +== 2.5 Datalog Feature ==
468 468  
469 469  
470 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
575 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
471 471  
577 +
578 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
579 +
580 +
581 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
582 +
583 +* (((
584 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
585 +)))
586 +* (((
587 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
588 +)))
589 +
590 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
591 +
592 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
593 +
594 +
595 +=== 2.5.2 Unix TimeStamp ===
596 +
597 +
598 +LDS12-LB uses Unix TimeStamp format based on
599 +
600 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
601 +
602 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
603 +
604 +Below is the converter example
605 +
606 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
607 +
608 +
609 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
610 +
611 +
612 +=== 2.5.3 Set Device Time ===
613 +
614 +
615 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
616 +
617 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
618 +
619 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
620 +
621 +
622 +=== 2.5.4 Poll sensor value ===
623 +
624 +
625 +Users can poll sensor values based on timestamps. Below is the downlink command.
626 +
627 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
628 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
629 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
630 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
631 +
632 +(((
633 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
634 +)))
635 +
636 +(((
637 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
638 +)))
639 +
640 +(((
641 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
642 +)))
643 +
644 +(((
645 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
646 +)))
647 +
648 +
649 +== 2.6 Frequency Plans ==
650 +
651 +
652 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
653 +
472 472  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
473 473  
474 474  
475 -= 3. Configure DS20L =
657 +== 2.7 LiDAR ToF Measurement ==
476 476  
659 +=== 2.7.1 Principle of Distance Measurement ===
660 +
661 +
662 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
663 +
664 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
665 +
666 +
667 +=== 2.7.2 Distance Measurement Characteristics ===
668 +
669 +
670 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
671 +
672 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
673 +
674 +
675 +(((
676 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
677 +)))
678 +
679 +(((
680 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
681 +)))
682 +
683 +(((
684 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
685 +)))
686 +
687 +
688 +(((
689 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
690 +)))
691 +
692 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
693 +
694 +(((
695 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
696 +)))
697 +
698 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
699 +
700 +(((
701 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
702 +)))
703 +
704 +
705 +=== 2.7.3 Notice of usage ===
706 +
707 +
708 +Possible invalid /wrong reading for LiDAR ToF tech:
709 +
710 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
711 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
712 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
713 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
714 +
715 +=== 2.7.4  Reflectivity of different objects ===
716 +
717 +
718 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
719 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
720 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
721 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
722 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
723 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
724 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
725 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
726 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
727 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
728 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
729 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
730 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
731 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
732 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
733 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
734 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
735 +Unpolished white metal surface
736 +)))|(% style="width:93px" %)130%
737 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
738 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
739 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
740 +
741 += 3. Configure LDS12-LB =
742 +
477 477  == 3.1 Configure Methods ==
478 478  
479 479  
480 -DS20L supports below configure method:
746 +LDS12-LB supports below configure method:
481 481  
482 482  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
483 483  
... ... @@ -499,10 +499,10 @@
499 499  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
500 500  
501 501  
502 -== 3.3 Commands special design for DS20L ==
768 +== 3.3 Commands special design for LDS12-LB ==
503 503  
504 504  
505 -These commands only valid for DS20L, as below:
771 +These commands only valid for LDS12-LB, as below:
506 506  
507 507  
508 508  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -544,7 +544,10 @@
544 544  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
545 545  )))
546 546  * (((
547 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
813 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
814 +
815 +
816 +
548 548  )))
549 549  
550 550  === 3.3.2 Set Interrupt Mode ===
... ... @@ -564,7 +564,7 @@
564 564  the mode is 0 =Disable Interrupt
565 565  )))
566 566  |(% style="width:154px" %)(((
567 -AT+INTMOD=3
836 +AT+INTMOD=2
568 568  
569 569  (default)
570 570  )))|(% style="width:196px" %)(((
... ... @@ -585,78 +585,39 @@
585 585  
586 586  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
587 587  
857 +=== 3.3.3  Set Power Output Duration ===
588 588  
589 -== 3.3.3 Set work mode ==
859 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
590 590  
861 +~1. first enable the power output to external sensor,
591 591  
592 -Feature: Switch working mode
863 +2. keep it on as per duration, read sensor value and construct uplink payload
593 593  
594 -(% style="color:blue" %)**AT Command: AT+MOD**
865 +3. final, close the power output.
595 595  
596 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
597 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
598 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
599 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
600 -OK
601 -Attention:Take effect after ATZ
602 -)))
867 +(% style="color:blue" %)**AT Command: AT+3V3T**
603 603  
604 -(% style="color:blue" %)**Downlink Command:**
605 -
606 -* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
607 -
608 -* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
609 -
610 -=== 3.3.4 Set threshold and threshold mode ===
611 -
612 -
613 -Feature, Set threshold and threshold mode
614 -
615 -When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
616 -
617 -(% style="color:blue" %)**AT Command: AT+DOL**
618 -
619 619  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
620 -|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
621 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
622 -0,0,0,0,400
870 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
871 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
623 623  OK
624 -)))
625 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
873 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
874 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
875 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
626 626  
877 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
878 +Format: Command Code (0x07) followed by 3 bytes.
627 627  
880 +The first byte is 01,the second and third bytes are the time to turn on.
628 628  
629 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
630 -|(% rowspan="11" style="color:blue; width:120px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits
631 -|(% style="width:251px" %)1: Use upper and lower limits
632 -|(% style="width:251px" %)2: Less than the lower limit
633 -|(% style="width:251px" %)3: Greater than the lower limit
634 -|(% style="width:251px" %)4: Less than the upper limit
635 -|(% style="width:251px" %)5: Greater than the upper limit
636 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
637 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
638 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
639 -|(% style="width:251px" %)1 Person or object counting statistics
640 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
641 -0~~10000ms
882 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
883 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
884 +* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
642 642  
643 -
644 -)))
645 -
646 -(% style="color:blue" %)**Downlink Command: 0x07**
647 -
648 -Format: Command Code (0x07) followed by 9bytes.
649 -
650 -* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
651 -
652 -* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
653 -
654 -
655 -
656 656  = 4. Battery & Power Consumption =
657 657  
658 658  
659 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
889 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
660 660  
661 661  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
662 662  
... ... @@ -665,7 +665,7 @@
665 665  
666 666  
667 667  (% class="wikigeneratedid" %)
668 -User can change firmware DS20L to:
898 +User can change firmware LDS12-LB to:
669 669  
670 670  * Change Frequency band/ region.
671 671  
... ... @@ -673,7 +673,7 @@
673 673  
674 674  * Fix bugs.
675 675  
676 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
906 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
677 677  
678 678  Methods to Update Firmware:
679 679  
... ... @@ -683,10 +683,10 @@
683 683  
684 684  = 6. FAQ =
685 685  
686 -== 6.1 What is the frequency plan for DS20L? ==
916 +== 6.1 What is the frequency plan for LDS12-LB? ==
687 687  
688 688  
689 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
919 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
690 690  
691 691  
692 692  = 7. Trouble Shooting =
... ... @@ -721,7 +721,7 @@
721 721  = 8. Order Info =
722 722  
723 723  
724 -Part Number: (% style="color:blue" %)**DS20L-XXX**
954 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
725 725  
726 726  (% style="color:red" %)**XXX**(%%): **The default frequency band**
727 727  
... ... @@ -746,7 +746,7 @@
746 746  
747 747  (% style="color:#037691" %)**Package Includes**:
748 748  
749 -* DS20L LoRaWAN Smart Distance Detector x 1
979 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
750 750  
751 751  (% style="color:#037691" %)**Dimension and weight**:
752 752  
1701149922873-259.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.2 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.6 KB
Content