Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 14 removed)
- 1701149922873-259.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
- image-20231110102635-5.png
- image-20231128133704-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -DS2 0L -- LoRaWANSmartDistanceDetector User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-202311 10085342-2.png||height="481" width="481"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,66 +19,178 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.DS20Lcan measurerangebetween3cm ~~ 200cm.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 - [[image:image-20231110102635-5.png||height="402"width="807"]]34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 +[[image:image-20230615152941-1.png||height="459" width="800"]] 39 + 40 + 38 38 == 1.2 Features == 39 39 40 40 41 -* LoRaWAN Class A protocol 42 -* LiDAR distance detector, range 3 ~~ 200cm 43 -* Periodically detect or continuously detect mode 44 +* LoRaWAN 1.0.3 Class A 45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 +* Ultra-low power consumption 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 51 +* Support Bluetooth v5.1 and LoRaWAN remote configure 52 +* Support wireless OTA update firmware 44 44 * AT Commands to change parameters 45 -* Remotely configure parameters via LoRaWAN Downlink 46 -* Alarm & Counting mode 47 -* Firmware upgradable via program port or LoRa protocol 48 -* Built-in 2400mAh battery or power by external power source 54 +* Downlink to change configure 55 +* 8500mAh Battery for long term use 49 49 57 + 58 + 50 50 == 1.3 Specification == 51 51 52 52 53 -(% style="color:#037691" %)** LiDARSensor:**62 +(% style="color:#037691" %)**Common DC Characteristics:** 54 54 55 -* Operation Temperature: -40 ~~ 80 °C 56 -* Operation Humidity: 0~~99.9%RH (no Dew) 57 -* Storage Temperature: -10 ~~ 45°C 58 -* Measure Range: 3cm~~200cm @ 90% reflectivity 59 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 60 -* ToF FoV: ±9°, Total 18° 61 -* Light source: VCSEL 64 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 65 +* Operating Temperature: -40 ~~ 85°C 62 62 63 - ==1.4PowerConsumption==67 +(% style="color:#037691" %)**Probe Specification:** 64 64 69 +* Storage temperature:-20℃~~75℃ 70 +* Operating temperature : -20℃~~60℃ 71 +* Measure Distance: 72 +** 0.1m ~~ 12m @ 90% Reflectivity 73 +** 0.1m ~~ 4m @ 10% Reflectivity 74 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 75 +* Distance resolution : 5mm 76 +* Ambient light immunity : 70klux 77 +* Enclosure rating : IP65 78 +* Light source : LED 79 +* Central wavelength : 850nm 80 +* FOV : 3.6° 81 +* Material of enclosure : ABS+PC 82 +* Wire length : 25cm 65 65 66 -(% style="color:#037691" %)** BatteryPower Mode:**84 +(% style="color:#037691" %)**LoRa Spec:** 67 67 68 -* Idle: 0.003 mA @ 3.3v 69 -* Max : 360 mA 86 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 87 +* Max +22 dBm constant RF output vs. 88 +* RX sensitivity: down to -139 dBm. 89 +* Excellent blocking immunity 70 70 71 -(% style="color:#037691" %)** Continuously mode**:91 +(% style="color:#037691" %)**Battery:** 72 72 73 -* Idle: 21 mA @ 3.3v 74 -* Max : 360 mA 93 +* Li/SOCI2 un-chargeable battery 94 +* Capacity: 8500mAh 95 +* Self-Discharge: <1% / Year @ 25°C 96 +* Max continuously current: 130mA 97 +* Max boost current: 2A, 1 second 75 75 76 - =2. Configure DS20LtoconnecttoLoRaWANnetwork =99 +(% style="color:#037691" %)**Power Consumption** 77 77 101 +* Sleep Mode: 5uA @ 3.3v 102 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 103 + 104 + 105 + 106 +== 1.4 Applications == 107 + 108 + 109 +* Horizontal distance measurement 110 +* Parking management system 111 +* Object proximity and presence detection 112 +* Intelligent trash can management system 113 +* Robot obstacle avoidance 114 +* Automatic control 115 +* Sewer 116 + 117 + 118 + 119 +(% style="display:none" %) 120 + 121 +== 1.5 Sleep mode and working mode == 122 + 123 + 124 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 125 + 126 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 127 + 128 + 129 +== 1.6 Button & LEDs == 130 + 131 + 132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 133 + 134 + 135 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 136 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 137 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 138 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 139 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 140 +))) 141 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 142 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 143 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 144 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 145 +))) 146 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 147 + 148 + 149 + 150 +== 1.7 BLE connection == 151 + 152 + 153 +LDS12-LB support BLE remote configure. 154 + 155 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 156 + 157 +* Press button to send an uplink 158 +* Press button to active device. 159 +* Device Power on or reset. 160 + 161 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 162 + 163 + 164 +== 1.8 Pin Definitions == 165 + 166 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 167 + 168 + 169 +== 1.9 Mechanical == 170 + 171 + 172 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 173 + 174 + 175 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 176 + 177 + 178 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 179 + 180 + 181 +(% style="color:blue" %)**Probe Mechanical:** 182 + 183 + 184 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 185 + 186 + 187 += 2. Configure LDS12-LB to connect to LoRaWAN network = 188 + 78 78 == 2.1 How it works == 79 79 80 80 81 -The DS2 0L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.192 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 82 82 83 83 (% style="display:none" %) (%%) 84 84 ... ... @@ -87,14 +87,15 @@ 87 87 88 88 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 89 89 90 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. (% style="display:none" %)201 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 91 91 92 -[[image:image-202311 10102635-5.png||height="402" width="807"]](% style="display:none" %)203 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 93 93 94 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 95 95 96 - EachDS20Lisshipped withastickerwith thedefaultdevice EUI asbelow:206 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 97 97 208 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 209 + 98 98 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 99 99 100 100 ... ... @@ -122,11 +122,10 @@ 122 122 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 123 123 124 124 125 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS2 0L237 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 126 126 127 -[[image:image-20231128133704-1.png||height="189" width="441"]] 128 128 129 -Press the button for 5 seconds to activate the DS2 0L.240 +Press the button for 5 seconds to activate the LDS12-LB. 130 130 131 131 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 132 132 ... ... @@ -138,7 +138,7 @@ 138 138 === 2.3.1 Device Status, FPORT~=5 === 139 139 140 140 141 -Users can use the downlink command(**0x26 01**) to ask DS2 0L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.252 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 142 142 143 143 The Payload format is as below. 144 144 ... ... @@ -150,10 +150,8 @@ 150 150 151 151 Example parse in TTNv3 152 152 153 - [[image:1701149922873-259.png]]264 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 154 154 155 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21 156 - 157 157 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 158 158 159 159 (% style="color:blue" %)**Frequency Band**: ... ... @@ -207,11 +207,11 @@ 207 207 208 208 209 209 ((( 210 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will: 319 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 320 +))) 211 211 212 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 213 - 214 -Uplink Payload totals 11 bytes. 322 +((( 323 +Uplink payload includes in total 11 bytes. 215 215 ))) 216 216 217 217 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -226,13 +226,13 @@ 226 226 [[Message Type>>||anchor="HMessageType"]] 227 227 ))) 228 228 229 -[[image:i mage-20230805104104-2.png||height="136" width="754"]]338 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 230 230 231 231 232 232 ==== (% style="color:blue" %)**Battery Info**(%%) ==== 233 233 234 234 235 -Check the battery voltage for DS2 0L.344 +Check the battery voltage for LDS12-LB. 236 236 237 237 Ex1: 0x0B45 = 2885mV 238 238 ... ... @@ -276,33 +276,18 @@ 276 276 Customers can judge whether they need to adjust the environment based on the signal strength. 277 277 278 278 279 -**1) When the sensor detects valid data:** 280 - 281 -[[image:image-20230805155335-1.png||height="145" width="724"]] 282 - 283 - 284 -**2) When the sensor detects invalid data:** 285 - 286 -[[image:image-20230805155428-2.png||height="139" width="726"]] 287 - 288 - 289 -**3) When the sensor is not connected:** 290 - 291 -[[image:image-20230805155515-3.png||height="143" width="725"]] 292 - 293 - 294 294 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 295 295 296 296 297 297 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 298 298 299 -Note: The Internet Pin is a separate pin in the screw terminal. See f GPIO_EXTI.393 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 300 300 301 301 **Example:** 302 302 303 - If byte[0]&0x01=0x00: Normal uplink packet.397 +0x00: Normal uplink packet. 304 304 305 - If byte[0]&0x01=0x01: Interrupt Uplink Packet.399 +0x01: Interrupt Uplink Packet. 306 306 307 307 308 308 ==== (% style="color:blue" %)**LiDAR temp**(%%) ==== ... ... @@ -328,160 +328,248 @@ 328 328 329 329 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 330 330 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 331 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 332 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 425 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 426 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 333 333 334 -[[image:image-20230805150315-4.png||height="233" width="723"]] 335 335 336 336 337 -=== 2.3.3 Historicalmeasuringdistance,FPORT~=3===430 +=== 2.3.3 Decode payload in The Things Network === 338 338 339 339 340 - DS20L storessensorvaluesand userscanretrievethesehistory valuesvia the [[downlinkcommand>>||anchor="H2.5.4Pollsensorvalue"]].433 +While using TTN network, you can add the payload format to decode the payload. 341 341 342 - Theistoricalpayloadludesone ormultiplies entries andevery entry hasthesame payloadaseal-Timemeasuring distance.435 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 343 343 344 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 345 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 346 -**Size(bytes)** 347 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 348 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 349 -Reserve(0xFF) 350 -)))|Distance|Distance signal strength|(% style="width:88px" %)((( 351 -LiDAR temp 352 -)))|(% style="width:85px" %)Unix TimeStamp 353 353 354 -**Interrupt flag & Interrupt level:** 438 +((( 439 +The payload decoder function for TTN is here: 440 +))) 355 355 356 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 357 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 358 -**Size(bit)** 359 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 360 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 361 -Interrupt flag 442 +((( 443 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 362 362 ))) 363 363 364 -* ((( 365 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands. 446 + 447 +== 2.4 Uplink Interval == 448 + 449 + 450 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 451 + 452 + 453 +== 2.5 Show Data in DataCake IoT Server == 454 + 455 + 456 +((( 457 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 366 366 ))) 367 367 368 -For example, in the US915 band, the max payload for different DR is: 369 369 370 -**a) DR0:** max is 11 bytes so one entry of data 461 +((( 462 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 463 +))) 371 371 372 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 465 +((( 466 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 467 +))) 373 373 374 -**c) DR2:** total payload includes 11 entries of data 375 375 376 - **d) DR3:**totalpayloadcludesentriesf data.470 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]] 377 377 378 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0 379 379 473 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]] 380 380 381 -**Downlink:** 382 382 383 - 0x3164CC680C64CC697405476 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 384 384 385 - [[image:image-20230805144936-2.png||height="113"width="746"]]478 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 386 386 387 - **Uplink:**480 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 388 388 389 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 390 390 483 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 391 391 392 - **Parsed Value:**485 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 393 393 394 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 395 395 488 +== 2.6 Datalog Feature == 396 396 397 -[360,176,30,High,True,2023-08-04 02:53:00], 398 398 399 - [355,168,30,Low,False,2023-08-0402:53:29],491 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 400 400 401 -[245,211,30,Low,False,2023-08-04 02:54:29], 402 402 403 - [57,700,30,Low,False,2023-08-0402:55:29],494 +=== 2.6.1 Ways to get datalog via LoRaWAN === 404 404 405 -[361,164,30,Low,True,2023-08-04 02:56:00], 406 406 407 - [337,184,30,Low,False,2023-08-0402:56:40],497 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 408 408 409 -[20,4458,30,Low,False,2023-08-04 02:57:40], 499 +* ((( 500 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 501 +))) 502 +* ((( 503 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 504 +))) 410 410 411 - [362,173,30,Low,False,2023-08-0402:58:53],506 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 412 412 508 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 413 413 414 -**History read from serial port:** 415 415 416 - [[image:image-20230805145056-3.png]]511 +=== 2.6.2 Unix TimeStamp === 417 417 418 418 419 - === 2.3.4Decodepayload in The Things Network===514 +LDS12-LB uses Unix TimeStamp format based on 420 420 516 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 421 421 422 - While using TTN network,youcanaddthepayloadformattodecodeayload.518 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 423 423 424 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]520 +Below is the converter example 425 425 522 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 426 426 524 + 525 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 526 + 527 + 528 +=== 2.6.3 Set Device Time === 529 + 530 + 531 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 532 + 533 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 534 + 535 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 536 + 537 + 538 +=== 2.6.4 Poll sensor value === 539 + 540 + 541 +Users can poll sensor values based on timestamps. Below is the downlink command. 542 + 543 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 544 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 545 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 546 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 547 + 427 427 ((( 428 -T heyloaddecoderfunctionforTTNis here:549 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval. 429 429 ))) 430 430 431 431 ((( 432 - DS20LTTN PayloadDecoder:[[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]553 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]] 433 433 ))) 434 434 556 +((( 557 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data 558 +))) 435 435 436 -== 2.4 Show Data in DataCake IoT Server == 560 +((( 561 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 562 +))) 437 437 438 438 565 +== 2.7 Frequency Plans == 566 + 567 + 568 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 569 + 570 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 571 + 572 + 573 +== 2.8 LiDAR ToF Measurement == 574 + 575 +=== 2.8.1 Principle of Distance Measurement === 576 + 577 + 578 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 579 + 580 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 581 + 582 + 583 +=== 2.8.2 Distance Measurement Characteristics === 584 + 585 + 586 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 587 + 588 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 589 + 590 + 439 439 ((( 440 - [[DATACAKE>>url:https://datacake.co/]] providesahuman friendly interface toshowthesensordata,oncewehavedatainTTN,wecanuse [[DATACAKE>>url:https://datacake.co/]]toconnectoTTN andsee the data inDATACAKE. Belowarethe steps:592 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 441 441 ))) 442 442 443 - 444 444 ((( 445 -(% style="color:blue" %)** Step1**(%%)**: Besure thatyourdeviceisprogrammedandproperly connectedtothenetworkatthistime.**596 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 446 446 ))) 447 447 448 448 ((( 449 -(% style="color:blue" %)** Step2**(%%)**: To configure theApplicationto forwarddata toDATACAKEyou willneedto add integration.To add the DATACAKEintegration,performthefollowing steps:**600 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 450 450 ))) 451 451 452 452 453 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]] 604 +((( 605 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 606 +))) 454 454 608 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 455 455 456 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]] 610 +((( 611 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 612 +))) 457 457 614 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 458 458 459 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 616 +((( 617 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 618 +))) 460 460 461 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.** 462 462 463 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]621 +=== 2.8.3 Notice of usage === 464 464 465 465 466 - After added, thesensor data arriveTTN V3,it willalsoarrivendshowinDatacake.624 +Possible invalid /wrong reading for LiDAR ToF tech: 467 467 468 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 626 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 627 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 628 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 629 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 469 469 470 470 471 -== 2.5 Frequency Plans == 472 472 633 +=== 2.8.4 Reflectivity of different objects === 473 473 474 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 475 475 476 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 636 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 637 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 638 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 639 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 640 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 641 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 642 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 643 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 644 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 645 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 646 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 647 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 648 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 649 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 650 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 651 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 652 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 653 +Unpolished white metal surface 654 +)))|(% style="width:93px" %)130% 655 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 656 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 657 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 477 477 478 478 479 -= 3. Configure DS20L = 480 480 661 += 3. Configure LDS12-LB = 662 + 481 481 == 3.1 Configure Methods == 482 482 483 483 484 -DS2 0L supports below configure method:666 +LDS12-LB supports below configure method: 485 485 486 486 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 487 487 ... ... @@ -489,6 +489,8 @@ 489 489 490 490 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 491 491 674 + 675 + 492 492 == 3.2 General Commands == 493 493 494 494 ... ... @@ -503,10 +503,10 @@ 503 503 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 504 504 505 505 506 -== 3.3 Commands special design for DS2 0L ==690 +== 3.3 Commands special design for LDS12-LB == 507 507 508 508 509 -These commands only valid for DS2 0L, as below:693 +These commands only valid for LDS12-LB, as below: 510 510 511 511 512 512 === 3.3.1 Set Transmit Interval Time === ... ... @@ -548,16 +548,18 @@ 548 548 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 549 549 ))) 550 550 * ((( 551 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 552 -))) 735 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 553 553 554 554 738 + 739 +))) 740 + 555 555 === 3.3.2 Set Interrupt Mode === 556 556 557 557 558 -Feature, Set Interrupt mode for pinofGPIO_EXTI.744 +Feature, Set Interrupt mode for PA8 of pin. 559 559 560 -When AT+INTMOD=0 is set, GPIO_EXTIis used as a digital input port.746 +When AT+INTMOD=0 is set, PA8 is used as a digital input port. 561 561 562 562 (% style="color:blue" %)**AT Command: AT+INTMOD** 563 563 ... ... @@ -568,11 +568,7 @@ 568 568 OK 569 569 the mode is 0 =Disable Interrupt 570 570 ))) 571 -|(% style="width:154px" %)((( 572 -AT+INTMOD=3 573 - 574 -(default) 575 -)))|(% style="width:196px" %)((( 757 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 576 576 Set Transmit Interval 577 577 0. (Disable Interrupt), 578 578 ~1. (Trigger by rising and falling edge) ... ... @@ -592,80 +592,39 @@ 592 592 593 593 594 594 595 -== 3.3.3 Set workmode==777 +=== 3.3.3 Set Power Output Duration === 596 596 779 +Control the output duration 3V3 . Before each sampling, device will 597 597 598 - Feature:Switch workingmode781 +~1. first enable the power output to external sensor, 599 599 600 - (%style="color:blue"%)**AT Command:AT+MOD**783 +2. keep it on as per duration, read sensor value and construct uplink payload 601 601 602 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %) 603 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 108px;background-color:#4F81BD;color:white" %)**Response** 604 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK 605 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)((( 606 -OK 785 +3. final, close the power output. 607 607 608 -Attention:Take effect after ATZ 609 -))) 787 +(% style="color:blue" %)**AT Command: AT+3V3T** 610 610 611 -(% style="color:blue" %)**Downlink Command:** 612 - 613 -* **Example: **0x0A00 ~/~/ Same as AT+MOD=0 614 - 615 -* **Example:** 0x0A01 ~/~/ Same as AT+MOD=1 616 - 617 - 618 -=== 3.3.4 Set threshold and threshold mode === 619 - 620 - 621 -Feature, Set threshold and threshold mode 622 - 623 -When **AT+DOL=0,0,0,0,400** is set, No threshold is used, the sampling time is 400ms. 624 - 625 -(% style="color:blue" %)**AT Command: AT+DOL** 626 - 627 -(% border="1" cellspacing="4" style="width:571.818px" %) 628 -|(% style="width:172px;background-color:#4F81BD;color:white" %)**Command Example**|(% style="width:279px;background-color:#4F81BD;color:white" %)**Function**|(% style="width:118px;background-color:#4F81BD;color:white" %)**Response** 629 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)((( 630 -0,0,0,0,400 631 - 789 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 790 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 791 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 632 632 OK 633 -))) 634 -|(% style="width:1 72px" %)AT+DOL=1,1800,100,0,400|(% style="width:279px" %)Set onlytheupper and lowerthresholds|(% style="width:118px" %)OK793 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 794 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 635 635 796 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 797 +Format: Command Code (0x07) followed by 3 bytes. 636 636 637 -(% border="1" cellspacing="4" style="width:668.818px" %) 638 -|(% rowspan="11" style="width:166px;background-color:#4F81BD;color:white" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:226px" %)The first bit sets the limit mode|(% style="width:251px" %)0:Do not use upper and lower limits 639 -|(% style="width:251px" %)1:Use upper and lower limits 640 -|(% style="width:251px" %)2:Less than the lower limit 641 -|(% style="width:251px" %)3:Greater than the lower limit 642 -|(% style="width:251px" %)4:Less than the upper limit 643 -|(% style="width:251px" %)5: Greater than the upper limit 644 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM 645 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM 646 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high 647 -|(% style="width:251px" %)1 Person or object counting statistics 648 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)((( 649 -0~~10000ms 799 +The first byte is 01,the second and third bytes are the time to turn on. 650 650 651 - 652 - )))801 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 802 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 653 653 654 -(% style="color:blue" %)**Downlink Command: 0x07** 655 655 656 -Format: Command Code (0x07) followed by 9bytes. 657 657 658 -* Example 0: Downlink Payload: 070000000000000190 **~-~-->** AT+MOD=0,0,0,0,400 659 - 660 -* Example 1: Downlink Payload: 070107080064000190 **~-~-->** AT+MOD=1,1800,100,0,400 661 - 662 - 663 - 664 - 665 665 = 4. Battery & Power Consumption = 666 666 667 667 668 -DS2 0L usebuilt-in2400mAhnon-chargeablebatteryfor long-term use upto several years*. See below link for detail information about the battery info and how to replace.809 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 669 669 670 670 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 671 671 ... ... @@ -674,7 +674,7 @@ 674 674 675 675 676 676 (% class="wikigeneratedid" %) 677 -User can change firmware DS2 0L to:818 +User can change firmware LDS12-LB to: 678 678 679 679 * Change Frequency band/ region. 680 680 ... ... @@ -682,7 +682,7 @@ 682 682 683 683 * Fix bugs. 684 684 685 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/ zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**826 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 686 686 687 687 Methods to Update Firmware: 688 688 ... ... @@ -690,12 +690,14 @@ 690 690 691 691 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 692 692 834 + 835 + 693 693 = 6. FAQ = 694 694 695 -== 6.1 What is the frequency plan for DS2 0L? ==838 +== 6.1 What is the frequency plan for LDS12-LB? == 696 696 697 697 698 -DS2 0L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]841 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 699 699 700 700 701 701 = 7. Trouble Shooting = ... ... @@ -730,7 +730,7 @@ 730 730 = 8. Order Info = 731 731 732 732 733 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**876 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 734 734 735 735 (% style="color:red" %)**XXX**(%%): **The default frequency band** 736 736 ... ... @@ -750,12 +750,14 @@ 750 750 751 751 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 752 752 896 + 897 + 753 753 = 9. Packing Info = 754 754 755 755 756 756 (% style="color:#037691" %)**Package Includes**: 757 757 758 -* DS2 0L LoRaWANSmartDistanceDetector x 1903 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 759 759 760 760 (% style="color:#037691" %)**Dimension and weight**: 761 761 ... ... @@ -767,6 +767,8 @@ 767 767 768 768 * Weight / pcs : g 769 769 915 + 916 + 770 770 = 10. Support = 771 771 772 772
- 1701149922873-259.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -24.5 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -84.7 KB - Content
- image-20231128133704-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -190.6 KB - Content