Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 18 removed)
- 1701149922873-259.png
- image-20230615152941-1.png
- image-20230615153004-2.png
- image-20230805103904-1.png
- image-20230805104104-2.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
- image-20231110102635-5.png
- image-20231128133704-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -DS2 0L -- LoRaWANSmartDistanceDetector User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-202311 10085342-2.png||height="481" width="481"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,220 +19,259 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.DS20Lcan measurerangebetween3cm ~~ 200cm.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 - [[image:image-20231110102635-5.png||height="402"width="807"]]34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 +[[image:image-20230614162334-2.png||height="468" width="800"]] 39 + 40 + 38 38 == 1.2 Features == 39 39 40 40 41 -* LoRaWAN Class A protocol 42 -* LiDAR distance detector, range 3 ~~ 200cm 43 -* Periodically detect or continuously detect mode 44 +* LoRaWAN 1.0.3 Class A 45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 +* Ultra-low power consumption 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 51 +* Support Bluetooth v5.1 and LoRaWAN remote configure 52 +* Support wireless OTA update firmware 44 44 * AT Commands to change parameters 45 -* Remotely configure parameters via LoRaWAN Downlink 46 -* Alarm & Counting mode 47 -* Firmware upgradable via program port or LoRa protocol 48 -* Built-in 2400mAh battery or power by external power source 54 +* Downlink to change configure 55 +* 8500mAh Battery for long term use 49 49 50 50 == 1.3 Specification == 51 51 52 52 53 -(% style="color:#037691" %)** LiDARSensor:**60 +(% style="color:#037691" %)**Common DC Characteristics:** 54 54 55 -* Operation Temperature: -40 ~~ 80 °C 56 -* Operation Humidity: 0~~99.9%RH (no Dew) 57 -* Storage Temperature: -10 ~~ 45°C 58 -* Measure Range: 3cm~~200cm @ 90% reflectivity 59 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 60 -* ToF FoV: ±9°, Total 18° 61 -* Light source: VCSEL 62 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 63 +* Operating Temperature: -40 ~~ 85°C 62 62 63 - ==1.4PowerConsumption==65 +(% style="color:#037691" %)**Probe Specification:** 64 64 67 +* Storage temperature:-20℃~~75℃ 68 +* Operating temperature : -20℃~~60℃ 69 +* Measure Distance: 70 +** 0.1m ~~ 12m @ 90% Reflectivity 71 +** 0.1m ~~ 4m @ 10% Reflectivity 72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 74 +* Ambient light immunity : 70klux 75 +* Enclosure rating : IP65 76 +* Light source : LED 77 +* Central wavelength : 850nm 78 +* FOV : 3.6° 79 +* Material of enclosure : ABS+PC 80 +* Wire length : 25cm 65 65 66 -(% style="color:#037691" %)** BatteryPower Mode:**82 +(% style="color:#037691" %)**LoRa Spec:** 67 67 68 -* Idle: 0.003 mA @ 3.3v 69 -* Max : 360 mA 84 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 85 +* Max +22 dBm constant RF output vs. 86 +* RX sensitivity: down to -139 dBm. 87 +* Excellent blocking immunity 70 70 71 -(% style="color:#037691" %)** Continuously mode**:89 +(% style="color:#037691" %)**Battery:** 72 72 73 -* Idle: 21 mA @ 3.3v 74 -* Max : 360 mA 91 +* Li/SOCI2 un-chargeable battery 92 +* Capacity: 8500mAh 93 +* Self-Discharge: <1% / Year @ 25°C 94 +* Max continuously current: 130mA 95 +* Max boost current: 2A, 1 second 75 75 76 - =2. Configure DS20LtoconnecttoLoRaWANnetwork =97 +(% style="color:#037691" %)**Power Consumption** 77 77 78 -== 2.1 How it works == 99 +* Sleep Mode: 5uA @ 3.3v 100 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 80 80 81 - The DS20L is configured as (% style="color:#037691"%)**LoRaWAN OTAA Class A**(%%) mode by default.It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server andpress the button to activate the DS20L. It will automatically jointhe network via OTAA and start tosend thesensorvalue. The default uplink interval is 20 minutes.103 +== 1.4 Applications == 82 82 83 -(% style="display:none" %) (%%) 84 84 85 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 106 +* Horizontal distance measurement 107 +* Parking management system 108 +* Object proximity and presence detection 109 +* Intelligent trash can management system 110 +* Robot obstacle avoidance 111 +* Automatic control 112 +* Sewer 86 86 87 87 88 - Followingisan example for howto join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway inthisexample.115 +(% style="display:none" %) 89 89 90 - TheLPS8v2is already settoconnectedto [[TTN network>>url:https://console.cloud.thethings.network/]],sowhat we needto now is configurethe TTN server.(% style="display:none" %)117 +== 1.5 Sleep mode and working mode == 91 91 92 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %) 93 93 94 -(% style="color:blue" %)**S tep1:**(%%)CreateadeviceinTTNwith theOTAAkeys fromDS20L.120 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 95 95 96 - EachDS20Lisshipped witha stickerwiththedefaultdevice EUI asbelow:122 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 97 97 98 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 99 99 125 +== 1.6 Button & LEDs == 100 100 101 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 102 102 128 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 103 103 104 -(% style="color:blue" %)**Register the device** 105 105 106 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 131 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 132 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 133 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 134 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 135 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 136 +))) 137 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 138 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 139 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 140 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 141 +))) 142 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 107 107 144 +== 1.7 BLE connection == 108 108 109 -(% style="color:blue" %)**Add APP EUI and DEV EUI** 110 110 111 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]147 +LDS12-LB support BLE remote configure. 112 112 149 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 113 113 114 -(% style="color:blue" %)**Add APP EUI in the application** 151 +* Press button to send an uplink 152 +* Press button to active device. 153 +* Device Power on or reset. 115 115 155 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 116 116 117 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 118 118 158 +== 1.8 Pin Definitions == 119 119 120 - (% style="color:blue"%)**AddP KEY**160 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 121 121 122 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 123 123 124 124 125 - (% style="color:blue"%)**Step2:**(%%) Activateon DS20L164 +== 1.9 Mechanical == 126 126 127 -[[image:image-20231128133704-1.png||height="189" width="441"]] 128 128 129 - Press thebutton for5 secondstoctivatethe DS20L.167 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 130 130 131 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 132 132 133 - After joinuccess, it will starttouploadmessages toTTNandyou canseehemessages in the panel.170 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 134 134 135 135 136 - == 2.3 UplinkPayload==173 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 138 -=== 2.3.1 Device Status, FPORT~=5 === 139 139 176 +(% style="color:blue" %)**Probe Mechanical:** 140 140 141 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server. 142 142 143 -The Payload format is as below. 144 144 145 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 146 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 147 -**Size(bytes)** 148 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 149 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 150 150 151 -Example parse in TTNv3 152 152 153 - [[image:1701149922873-259.png]]183 += 2. Configure LDS12-LB to connect to LoRaWAN network = 154 154 155 - (% style="color:blue"%)**SensorModel**(%%):ForDS20L, thisvalue is 0x21185 +== 2.1 How it works == 156 156 157 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 158 158 159 -(% style="color: blue" %)**Frequency Band**:188 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 160 160 161 - 0x01:EU868190 +(% style="display:none" %) (%%) 162 162 163 - 0x02:US915192 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 164 164 165 -0x03: IN865 166 166 167 - 0x04: AU915195 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 168 168 169 - 0x05:KZ865197 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 170 170 171 -0 x06: RU864199 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %) 172 172 173 -0x07: AS923 174 174 175 - 0x08: AS923-1202 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 176 176 177 - 0x09:AS923-2204 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 178 178 179 -0 x0a: AS923-3206 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 180 180 181 -0x0b: CN470 182 182 183 - 0x0c:EU433209 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 184 184 185 -0x0d: KR920 186 186 187 - 0x0e:MA869212 +(% style="color:blue" %)**Register the device** 188 188 189 - (% style="color:blue"%)**Sub-Band**:214 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 190 190 191 -AU915 and US915:value 0x00 ~~ 0x08 192 192 193 - CN470:value0x0B~~0x0C217 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 194 194 195 - OtherBands:Alwaysx00219 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 196 196 197 -(% style="color:blue" %)**Battery Info**: 198 198 199 - Checkthebattery voltage.222 +(% style="color:blue" %)**Add APP EUI in the application** 200 200 201 -Ex1: 0x0B45 = 2885mV 202 202 203 - Ex2:0x0B49=89mV225 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 204 204 205 205 206 - ===2.3.2 Uplink Payload,FPORT~=2===228 +(% style="color:blue" %)**Add APP KEY** 207 207 230 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 208 208 209 -((( 210 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will: 211 211 212 - periodicallysendthis uplinkevery 20 minutes,this interval [[canbechanged>>||anchor="H3.3.1SetTransmitIntervalTime"]].233 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 213 213 214 -Uplink Payload totals 11 bytes. 235 + 236 +Press the button for 5 seconds to activate the LDS12-LB. 237 + 238 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 239 + 240 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 241 + 242 + 243 +== 2.3 Uplink Payload == 244 + 245 + 246 +((( 247 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 215 215 ))) 216 216 250 +((( 251 +Uplink payload includes in total 11 bytes. 252 +))) 253 + 254 + 217 217 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 218 -|=(% style="width: 6 0px;background-color:#4F81BD;color:white" %)(((256 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 219 219 **Size(bytes)** 220 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color:; width: 70px;" %)**1**|=(% style="background-color:; width: 70px;" %)**1**221 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 222 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 223 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|( % style="width:122px" %)(((224 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]225 -)))| (% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((226 -[[Message Type>>||anchor="HMessageType"]] 258 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1** 259 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)((( 260 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 261 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|((( 262 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]] 263 +)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|((( 264 +[[Message Type>>||anchor="H2.3.7MessageType"]] 227 227 ))) 228 228 229 -[[image:i mage-20230805104104-2.png||height="136" width="754"]]267 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 230 230 231 231 232 -=== =(%style="color:blue" %)**Battery Info**(%%)====270 +=== 2.3.1 Battery Info === 233 233 234 234 235 -Check the battery voltage for DS2 0L.273 +Check the battery voltage for LDS12-LB. 236 236 237 237 Ex1: 0x0B45 = 2885mV 238 238 ... ... @@ -239,7 +239,7 @@ 239 239 Ex2: 0x0B49 = 2889mV 240 240 241 241 242 -=== =(%style="color:blue" %)**DS18B20 Temperature sensor**(%%)====280 +=== 2.3.2 DS18B20 Temperature sensor === 243 243 244 244 245 245 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. ... ... @@ -252,7 +252,7 @@ 252 252 If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 253 253 254 254 255 -=== =(%style="color:blue" %)**Distance**(%%)====293 +=== 2.3.3 Distance === 256 256 257 257 258 258 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. ... ... @@ -263,7 +263,7 @@ 263 263 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 264 264 265 265 266 -=== =(%style="color:blue" %)**Distance signal strength**(%%)====304 +=== 2.3.4 Distance signal strength === 267 267 268 268 269 269 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. ... ... @@ -276,36 +276,21 @@ 276 276 Customers can judge whether they need to adjust the environment based on the signal strength. 277 277 278 278 279 - **1)Whenthesensordetectsvaliddata:**317 +=== 2.3.5 Interrupt Pin === 280 280 281 -[[image:image-20230805155335-1.png||height="145" width="724"]] 282 282 320 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 283 283 284 - **2)Whenthesensordetects invaliddata:**322 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 285 285 286 -[[image:image-20230805155428-2.png||height="139" width="726"]] 287 - 288 - 289 -**3) When the sensor is not connected:** 290 - 291 -[[image:image-20230805155515-3.png||height="143" width="725"]] 292 - 293 - 294 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 295 - 296 - 297 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 298 - 299 -Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI . 300 - 301 301 **Example:** 302 302 303 - If byte[0]&0x01=0x00: Normal uplink packet.326 +0x00: Normal uplink packet. 304 304 305 - If byte[0]&0x01=0x01: Interrupt Uplink Packet.328 +0x01: Interrupt Uplink Packet. 306 306 307 307 308 -=== =(%style="color:blue" %)**LiDAR temp**(%%)====331 +=== 2.3.6 LiDAR temp === 309 309 310 310 311 311 Characterize the internal temperature value of the sensor. ... ... @@ -315,7 +315,7 @@ 315 315 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 316 316 317 317 318 -=== =(%style="color:blue" %)**Message Type**(%%)====341 +=== 2.3.7 Message Type === 319 319 320 320 321 321 ((( ... ... @@ -328,160 +328,250 @@ 328 328 329 329 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 330 330 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 331 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 332 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 354 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 355 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 333 333 334 -[[image:image-20230805150315-4.png||height="233" width="723"]] 335 335 336 336 337 -=== 2.3.3 Historical measuring distance, FPORT~=3 === 338 338 360 +=== 2.3.8 Decode payload in The Things Network === 339 339 340 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 341 341 342 - Thehistoricalpayloadincludesone orultipliesentriesandveryentryhas thesamepayloadas Real-Time measuring distance.363 +While using TTN network, you can add the payload format to decode the payload. 343 343 344 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 345 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 346 -**Size(bytes)** 347 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 348 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 349 -Reserve(0xFF) 350 -)))|Distance|Distance signal strength|(% style="width:88px" %)((( 351 -LiDAR temp 352 -)))|(% style="width:85px" %)Unix TimeStamp 353 353 354 - **Interrupt flag& Interrupt level:**366 +[[image:1654592762713-715.png]] 355 355 356 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 357 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 358 -**Size(bit)** 359 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 360 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 361 -Interrupt flag 368 + 369 +((( 370 +The payload decoder function for TTN is here: 362 362 ))) 363 363 364 - *(((365 - Each data entry is11bytesandhas thesame structureas[[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], tosaveairtimeandbattery, DS20L will send max bytesaccordingtothecurrent DR andFrequency bands.373 +((( 374 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 366 366 ))) 367 367 368 -For example, in the US915 band, the max payload for different DR is: 369 369 370 - **a)DR0:** maxis 11 bytes so oneentry of data378 +== 2.4 Uplink Interval == 371 371 372 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 373 373 374 - **c)DR2:** total payload includes11entriesofdata381 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 375 375 376 -**d) DR3:** total payload includes 22 entries of data. 377 377 378 - IfDS20Ldoesn'thave any data in thepollingtime. It will uplink 11 bytesof 0384 +== 2.5 Show Data in DataCake IoT Server == 379 379 380 380 381 -**Downlink:** 387 +((( 388 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 389 +))) 382 382 383 -0x31 64 CC 68 0C 64 CC 69 74 05 384 384 385 -[[image:image-20230805144936-2.png||height="113" width="746"]] 392 +((( 393 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 394 +))) 386 386 387 -**Uplink:** 396 +((( 397 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 398 +))) 388 388 389 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 390 390 401 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]] 391 391 392 -**Parsed Value:** 393 393 394 -[ DISTANCE, DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]404 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]] 395 395 396 396 397 - [360,176,30,High,True,2023-08-0402:53:00],407 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 398 398 399 - [355,168,30,Low,False,2023-08-0402:53:29],409 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 400 400 401 -[2 45,211,30,Low,False,2023-08-04:54:29],411 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 402 402 403 -[57,700,30,Low,False,2023-08-04 02:55:29], 404 404 405 - [361,164,30,Low,True,2023-08-0402:56:00],414 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 406 406 407 -[ 337,184,30,Low,False,2023-08-0402:56:40],416 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 408 408 409 -[20,4458,30,Low,False,2023-08-04 02:57:40], 410 410 411 - [362,173,30,Low,False,2023-08-0402:58:53],419 +== 2.6 Datalog Feature == 412 412 413 413 414 - **Historyread from serialport:**422 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 415 415 416 -[[image:image-20230805145056-3.png]] 417 417 425 +=== 2.6.1 Ways to get datalog via LoRaWAN === 418 418 419 -=== 2.3.4 Decode payload in The Things Network === 420 420 428 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 421 421 422 -While using TTN network, you can add the payload format to decode the payload. 430 +* ((( 431 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 432 +))) 433 +* ((( 434 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 435 +))) 423 423 424 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]437 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 425 425 439 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 426 426 441 + 442 +=== 2.6.2 Unix TimeStamp === 443 + 444 + 445 +LDS12-LB uses Unix TimeStamp format based on 446 + 447 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 448 + 449 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 450 + 451 +Below is the converter example 452 + 453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 454 + 455 + 456 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 457 + 458 + 459 +=== 2.6.3 Set Device Time === 460 + 461 + 462 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 463 + 464 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 465 + 466 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 467 + 468 + 469 +=== 2.6.4 Poll sensor value === 470 + 471 + 472 +Users can poll sensor values based on timestamps. Below is the downlink command. 473 + 474 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 475 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 476 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 477 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 478 + 427 427 ((( 428 -T heyloaddecoderfunctionforTTNis here:480 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval. 429 429 ))) 430 430 431 431 ((( 432 - DS20LTTN PayloadDecoder:[[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]484 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]] 433 433 ))) 434 434 487 +((( 488 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data 489 +))) 435 435 436 -== 2.4 Show Data in DataCake IoT Server == 491 +((( 492 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 493 +))) 437 437 438 438 496 +== 2.7 Frequency Plans == 497 + 498 + 499 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 500 + 501 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 502 + 503 + 504 +== 2.8 LiDAR ToF Measurement == 505 + 506 +=== 2.8.1 Principle of Distance Measurement === 507 + 508 + 509 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 510 + 511 + 512 +[[image:1654831757579-263.png]] 513 + 514 + 515 +=== 2.8.2 Distance Measurement Characteristics === 516 + 517 + 518 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 519 + 520 +[[image:1654831774373-275.png]] 521 + 522 + 439 439 ((( 440 - [[DATACAKE>>url:https://datacake.co/]] providesahuman friendly interface toshowthesensordata,oncewehavedatainTTN,wecanuse [[DATACAKE>>url:https://datacake.co/]]toconnectoTTN andsee the data inDATACAKE. Belowarethe steps:524 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 441 441 ))) 442 442 443 - 444 444 ((( 445 -(% style="color:blue" %)** Step1**(%%)**: Besure thatyourdeviceisprogrammedandproperly connectedtothenetworkatthistime.**528 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 446 446 ))) 447 447 448 448 ((( 449 -(% style="color:blue" %)** Step2**(%%)**: To configure theApplicationto forwarddata toDATACAKEyou willneedto add integration.To add the DATACAKEintegration,performthefollowing steps:**532 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 450 450 ))) 451 451 452 452 453 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]] 536 +((( 537 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 538 +))) 454 454 455 455 456 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]541 +[[image:1654831797521-720.png]] 457 457 458 458 459 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 544 +((( 545 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 546 +))) 460 460 461 - (% style="color:blue" %)**Step4**(%%)**: Search the DS20L and add DevEUI.**548 +[[image:1654831810009-716.png]] 462 462 463 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 464 464 551 +((( 552 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 553 +))) 465 465 466 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 467 467 468 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]556 +=== 2.8.3 Notice of usage: === 469 469 470 470 471 - ==2.5FrequencyPlans==559 +Possible invalid /wrong reading for LiDAR ToF tech: 472 472 561 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 562 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 563 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 564 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 473 473 474 - TheDS20Luses OTAA mode and belowfrequency plans by default. If user want to useit withdifferentfrequency plan, please referthe AT commandsets.566 +=== 2.8.4 Reflectivity of different objects === 475 475 476 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 477 477 569 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 570 +|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity 571 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 572 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 573 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 574 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 575 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 576 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 577 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 578 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 579 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 580 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 581 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 582 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 583 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 584 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 585 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 586 +Unpolished white metal surface 587 +)))|(% style="width:93px" %)130% 588 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 589 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 590 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 478 478 479 -= 3. Configure DS2 0L =592 += 3. Configure LDS12-LB = 480 480 481 481 == 3.1 Configure Methods == 482 482 483 483 484 -DS2 0L supports below configure method:597 +LDS12-LB supports below configure method: 485 485 486 486 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 487 487 ... ... @@ -503,10 +503,10 @@ 503 503 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 504 504 505 505 506 -== 3.3 Commands special design for DS2 0L ==619 +== 3.3 Commands special design for LDS12-LB == 507 507 508 508 509 -These commands only valid for DS2 0L, as below:622 +These commands only valid for LDS12-LB, as below: 510 510 511 511 512 512 === 3.3.1 Set Transmit Interval Time === ... ... @@ -521,7 +521,7 @@ 521 521 ))) 522 522 523 523 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 524 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**637 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 525 525 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 526 526 30000 527 527 OK ... ... @@ -548,31 +548,26 @@ 548 548 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 549 549 ))) 550 550 * ((( 551 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 664 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 552 552 ))) 553 553 554 - 555 555 === 3.3.2 Set Interrupt Mode === 556 556 557 557 558 -Feature, Set Interrupt mode for pinofGPIO_EXTI.670 +Feature, Set Interrupt mode for PA8 of pin. 559 559 560 -When AT+INTMOD=0 is set, GPIO_EXTIis used as a digital input port.672 +When AT+INTMOD=0 is set, PA8 is used as a digital input port. 561 561 562 562 (% style="color:blue" %)**AT Command: AT+INTMOD** 563 563 564 564 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 565 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**677 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 566 566 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 567 567 0 568 568 OK 569 569 the mode is 0 =Disable Interrupt 570 570 ))) 571 -|(% style="width:154px" %)((( 572 -AT+INTMOD=3 573 - 574 -(default) 575 -)))|(% style="width:196px" %)((( 683 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 576 576 Set Transmit Interval 577 577 0. (Disable Interrupt), 578 578 ~1. (Trigger by rising and falling edge) ... ... @@ -592,80 +592,89 @@ 592 592 593 593 594 594 595 -== 3.3.3 Set workmode ==703 +=== 3.3.3 Get Firmware Version Info === 596 596 597 597 598 -Feature: Switchworking mode706 +Feature: use downlink to get firmware version. 599 599 600 -(% style="color: blue" %)**ATCommand:AT+MOD**708 +(% style="color:#037691" %)**Downlink Command: 0x26** 601 601 602 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %) 603 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 108px;background-color:#4F81BD;color:white" %)**Response** 604 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK 605 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)((( 606 -OK 710 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %) 711 +|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)** 712 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2 607 607 608 -Attention:Take effect after ATZ 714 +* Reply to the confirmation package: 26 01 715 +* Reply to non-confirmed packet: 26 00 716 + 717 +Device will send an uplink after got this downlink command. With below payload: 718 + 719 +Configures info payload: 720 + 721 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 722 +|=(% style="background-color:#D9E2F3;color:#0070C0" %)((( 723 +**Size(bytes)** 724 +)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 725 +|**Value**|Software Type|((( 726 +Frequency 727 +Band 728 +)))|Sub-band|((( 729 +Firmware 730 +Version 731 +)))|Sensor Type|Reserve|((( 732 +[[Message Type>>||anchor="H2.3.7A0MessageType"]] 733 +Always 0x02 609 609 ))) 610 610 611 -(% style="color: blue" %)**Downlink Command:**736 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12 612 612 613 - ***Example: **0x0A00 ~/~/ Same as AT+MOD=0738 +(% style="color:#037691" %)**Frequency Band**: 614 614 615 -* **Example:**0x0A01~/~/ Same as AT+MOD=1740 +*0x01: EU868 616 616 742 +*0x02: US915 617 617 618 - ===3.3.4Set threshold and threshold mode ===744 +*0x03: IN865 619 619 746 +*0x04: AU915 620 620 621 - Feature,Set threshold and threshold mode748 +*0x05: KZ865 622 622 623 - When**AT+DOL=0,0,0,0,400**is set, No threshold is used, the sampling time is400ms.750 +*0x06: RU864 624 624 625 - (% style="color:blue" %)**AT Command: AT+DOL**752 +*0x07: AS923 626 626 627 -(% border="1" cellspacing="4" style="width:571.818px" %) 628 -|(% style="width:172px;background-color:#4F81BD;color:white" %)**Command Example**|(% style="width:279px;background-color:#4F81BD;color:white" %)**Function**|(% style="width:118px;background-color:#4F81BD;color:white" %)**Response** 629 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)((( 630 -0,0,0,0,400 754 +*0x08: AS923-1 631 631 632 -OK 633 -))) 634 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK 756 +*0x09: AS923-2 635 635 758 +*0xa0: AS923-3 636 636 637 -(% border="1" cellspacing="4" style="width:668.818px" %) 638 -|(% rowspan="11" style="width:166px;background-color:#4F81BD;color:white" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:226px" %)The first bit sets the limit mode|(% style="width:251px" %)0:Do not use upper and lower limits 639 -|(% style="width:251px" %)1:Use upper and lower limits 640 -|(% style="width:251px" %)2:Less than the lower limit 641 -|(% style="width:251px" %)3:Greater than the lower limit 642 -|(% style="width:251px" %)4:Less than the upper limit 643 -|(% style="width:251px" %)5: Greater than the upper limit 644 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM 645 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM 646 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high 647 -|(% style="width:251px" %)1 Person or object counting statistics 648 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)((( 649 -0~~10000ms 650 650 651 - 652 -))) 761 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08 653 653 654 -(% style="color: blue" %)**DownlinkCommand: 0x07**763 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 655 655 656 - Format:Command Code (0x07)followedby9bytes.765 +(% style="color:#037691" %)**Sensor Type**: 657 657 658 - * Example0:Downlink Payload:070000000000000190 **~-~-->** AT+MOD=0,0,0,0,400767 +0x01: LSE01 659 659 660 - * Example 1: Downlink Payload: 070107080064000190 **~-~-->** AT+MOD=1,1800,100,0,400769 +0x02: LDDS75 661 661 771 +0x03: LDDS20 662 662 773 +0x04: LLMS01 663 663 775 +0x05: LSPH01 664 664 777 +0x06: LSNPK01 778 + 779 +0x07: LLDS12 780 + 781 + 665 665 = 4. Battery & Power Consumption = 666 666 667 667 668 -DS2 0L usebuilt-in2400mAhnon-chargeablebatteryfor long-term use upto several years*. See below link for detail information about the battery info and how to replace.785 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 669 669 670 670 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 671 671 ... ... @@ -674,7 +674,7 @@ 674 674 675 675 676 676 (% class="wikigeneratedid" %) 677 -User can change firmware DS2 0L to:794 +User can change firmware LDS12-LB to: 678 678 679 679 * Change Frequency band/ region. 680 680 ... ... @@ -682,7 +682,7 @@ 682 682 683 683 * Fix bugs. 684 684 685 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/ zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**802 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 686 686 687 687 Methods to Update Firmware: 688 688 ... ... @@ -692,10 +692,10 @@ 692 692 693 693 = 6. FAQ = 694 694 695 -== 6.1 What is the frequency plan for DS2 0L? ==812 +== 6.1 What is the frequency plan for LDS12-LB? == 696 696 697 697 698 -DS2 0L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]815 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 699 699 700 700 701 701 = 7. Trouble Shooting = ... ... @@ -710,11 +710,11 @@ 710 710 711 711 712 712 ((( 713 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance .(such as glass and water, etc.)830 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 714 714 ))) 715 715 716 716 ((( 717 - (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.834 +Troubleshooting: Please avoid use of this product under such circumstance in practice. 718 718 ))) 719 719 720 720 ... ... @@ -723,7 +723,7 @@ 723 723 ))) 724 724 725 725 ((( 726 - (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.843 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 727 727 ))) 728 728 729 729 ... ... @@ -730,7 +730,7 @@ 730 730 = 8. Order Info = 731 731 732 732 733 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**850 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 734 734 735 735 (% style="color:red" %)**XXX**(%%): **The default frequency band** 736 736 ... ... @@ -755,7 +755,7 @@ 755 755 756 756 (% style="color:#037691" %)**Package Includes**: 757 757 758 -* DS2 0L LoRaWANSmartDistanceDetector x 1875 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 759 759 760 760 (% style="color:#037691" %)**Dimension and weight**: 761 761
- 1701149922873-259.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -24.5 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -84.7 KB - Content
- image-20231128133704-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -190.6 KB - Content