Last modified by Mengting Qiu on 2023/12/14 11:15

From version 118.2
edited by Xiaoling
on 2023/11/28 14:00
Change comment: There is no comment for this version
To version 82.20
edited by Xiaoling
on 2023/06/14 17:35
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,220 +19,256 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
39 +
40 +
38 38  == 1.2 ​Features ==
39 39  
40 40  
41 -* LoRaWAN Class A protocol
42 -* LiDAR distance detector, range 3 ~~ 200cm
43 -* Periodically detect or continuously detect mode
44 +* LoRaWAN 1.0.3 Class A
45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 +* Ultra-low power consumption
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
51 +* Support Bluetooth v5.1 and LoRaWAN remote configure
52 +* Support wireless OTA update firmware
44 44  * AT Commands to change parameters
45 -* Remotely configure parameters via LoRaWAN Downlink
46 -* Alarm & Counting mode
47 -* Firmware upgradable via program port or LoRa protocol
48 -* Built-in 2400mAh battery or power by external power source
54 +* Downlink to change configure
55 +* 8500mAh Battery for long term use
49 49  
50 50  == 1.3 Specification ==
51 51  
52 52  
53 -(% style="color:#037691" %)**LiDAR Sensor:**
60 +(% style="color:#037691" %)**Common DC Characteristics:**
54 54  
55 -* Operation Temperature: -40 ~~ 80 °C
56 -* Operation Humidity: 0~~99.9%RH (no Dew)
57 -* Storage Temperature: -10 ~~ 45°C
58 -* Measure Range: 3cm~~200cm @ 90% reflectivity
59 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 -* ToF FoV: ±9°, Total 18°
61 -* Light source: VCSEL
62 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 +* Operating Temperature: -40 ~~ 85°C
62 62  
63 -== 1.4 Power Consumption ==
65 +(% style="color:#037691" %)**Probe Specification:**
64 64  
67 +* Storage temperature:-20℃~~75℃
68 +* Operating temperature : -20℃~~60℃
69 +* Measure Distance:
70 +** 0.1m ~~ 12m @ 90% Reflectivity
71 +** 0.1m ~~ 4m @ 10% Reflectivity
72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 +* Distance resolution : 5mm
74 +* Ambient light immunity : 70klux
75 +* Enclosure rating : IP65
76 +* Light source : LED
77 +* Central wavelength : 850nm
78 +* FOV : 3.6°
79 +* Material of enclosure : ABS+PC
80 +* Wire length : 25cm
65 65  
66 -(% style="color:#037691" %)**Battery Power Mode:**
82 +(% style="color:#037691" %)**LoRa Spec:**
67 67  
68 -* Idle: 0.003 mA @ 3.3v
69 -* Max : 360 mA
84 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 +* Max +22 dBm constant RF output vs.
86 +* RX sensitivity: down to -139 dBm.
87 +* Excellent blocking immunity
70 70  
71 -(% style="color:#037691" %)**Continuously mode**:
89 +(% style="color:#037691" %)**Battery:**
72 72  
73 -* Idle: 21 mA @ 3.3v
74 -* Max : 360 mA
91 +* Li/SOCI2 un-chargeable battery
92 +* Capacity: 8500mAh
93 +* Self-Discharge: <1% / Year @ 25°C
94 +* Max continuously current: 130mA
95 +* Max boost current: 2A, 1 second
75 75  
76 -= 2. Configure DS20L to connect to LoRaWAN network =
97 +(% style="color:#037691" %)**Power Consumption**
77 77  
78 -== 2.1 How it works ==
99 +* Sleep Mode: 5uA @ 3.3v
100 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
102 +== 1.4 Applications ==
80 80  
81 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
82 82  
83 -(% style="display:none" %) (%%)
105 +* Horizontal distance measurement
106 +* Parking management system
107 +* Object proximity and presence detection
108 +* Intelligent trash can management system
109 +* Robot obstacle avoidance
110 +* Automatic control
111 +* Sewer
84 84  
85 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
113 +(% style="display:none" %)
86 86  
115 +== 1.5 Sleep mode and working mode ==
87 87  
88 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
89 89  
90 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
118 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
91 91  
92 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
120 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
93 93  
94 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
95 95  
96 -Each DS20L is shipped with a sticker with the default device EUI as below:
123 +== 1.6 Button & LEDs ==
97 97  
98 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
99 99  
126 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
100 100  
101 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
102 102  
129 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
131 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 +)))
135 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 +)))
140 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
103 103  
104 -(% style="color:blue" %)**Register the device**
142 +== 1.7 BLE connection ==
105 105  
106 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
107 107  
145 +LDS12-LB support BLE remote configure.
108 108  
109 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
147 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
110 110  
111 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
149 +* Press button to send an uplink
150 +* Press button to active device.
151 +* Device Power on or reset.
112 112  
153 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
113 113  
114 -(% style="color:blue" %)**Add APP EUI in the application**
115 115  
156 +== 1.8 Pin Definitions ==
116 116  
117 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
158 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
118 118  
119 119  
120 -(% style="color:blue" %)**Add APP KEY**
121 121  
122 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
162 +== 1.9 Mechanical ==
123 123  
124 124  
125 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
165 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
126 126  
127 -[[image:image-20231128133704-1.png||height="189" width="441"]]
128 128  
129 -Press the button for 5 seconds to activate the DS20L.
168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
130 130  
131 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
132 132  
133 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
171 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
134 134  
135 135  
136 -== 2.3 ​Uplink Payload ==
174 +(% style="color:blue" %)**Probe Mechanical:**
137 137  
138 -=== 2.3.1 Device Status, FPORT~=5 ===
139 139  
140 140  
141 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
178 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
142 142  
143 -The Payload format is as below.
144 144  
145 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
146 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
147 -**Size(bytes)**
148 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
149 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
181 += 2. Configure LDS12-LB to connect to LoRaWAN network =
150 150  
151 -Example parse in TTNv3
183 +== 2.1 How it works ==
152 152  
153 -[[image:1701149922873-259.png]]
154 154  
155 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
186 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
156 156  
157 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
188 +(% style="display:none" %) (%%)
158 158  
159 -(% style="color:blue" %)**Frequency Band**:
190 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
160 160  
161 -0x01: EU868
162 162  
163 -0x02: US915
193 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164 164  
165 -0x03: IN865
195 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 166  
167 -0x04: AU915
197 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
168 168  
169 -0x05: KZ865
170 170  
171 -0x06: RU864
200 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
172 172  
173 -0x07: AS923
202 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
174 174  
175 -0x08: AS923-1
204 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
176 176  
177 -0x09: AS923-2
178 178  
179 -0x0a: AS923-3
207 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
180 180  
181 -0x0b: CN470
182 182  
183 -0x0c: EU433
210 +(% style="color:blue" %)**Register the device**
184 184  
185 -0x0d: KR920
212 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
186 186  
187 -0x0e: MA869
188 188  
189 -(% style="color:blue" %)**Sub-Band**:
215 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
190 190  
191 -AU915 and US915:value 0x00 ~~ 0x08
217 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
192 192  
193 -CN470: value 0x0B ~~ 0x0C
194 194  
195 -Other Bands: Always 0x00
220 +(% style="color:blue" %)**Add APP EUI in the application**
196 196  
197 -(% style="color:blue" %)**Battery Info**:
198 198  
199 -Check the battery voltage.
223 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
200 200  
201 -Ex1: 0x0B45 = 2885mV
202 202  
203 -Ex2: 0x0B49 = 2889mV
226 +(% style="color:blue" %)**Add APP KEY**
204 204  
228 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
205 205  
206 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
207 207  
231 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
208 208  
209 -(((
210 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
211 211  
212 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
234 +Press the button for 5 seconds to activate the LDS12-LB.
213 213  
214 -Uplink Payload totals 11 bytes.
236 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
237 +
238 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
239 +
240 +
241 +== 2.3 ​Uplink Payload ==
242 +
243 +
244 +(((
245 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
215 215  )))
216 216  
248 +(((
249 +Uplink payload includes in total 11 bytes.
250 +)))
251 +
217 217  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
218 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
253 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
219 219  **Size(bytes)**
220 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
221 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
222 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
223 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
224 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
225 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
226 -[[Message Type>>||anchor="HMessageType"]]
255 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
256 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
257 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
258 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
259 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
260 +)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
261 +[[Message Type>>||anchor="H2.3.7MessageType"]]
227 227  )))
228 228  
229 -[[image:image-20230805104104-2.png||height="136" width="754"]]
264 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
230 230  
231 231  
232 -==== (% style="color:blue" %)**Battery Info**(%%) ====
267 +=== 2.3.1 Battery Info ===
233 233  
234 234  
235 -Check the battery voltage for DS20L.
270 +Check the battery voltage for LDS12-LB.
236 236  
237 237  Ex1: 0x0B45 = 2885mV
238 238  
... ... @@ -239,7 +239,7 @@
239 239  Ex2: 0x0B49 = 2889mV
240 240  
241 241  
242 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
277 +=== 2.3.2 DS18B20 Temperature sensor ===
243 243  
244 244  
245 245  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
... ... @@ -252,7 +252,7 @@
252 252  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
253 253  
254 254  
255 -==== (% style="color:blue" %)**Distance**(%%) ====
290 +=== 2.3.3 Distance ===
256 256  
257 257  
258 258  Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
... ... @@ -263,7 +263,7 @@
263 263  If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
264 264  
265 265  
266 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
301 +=== 2.3.4 Distance signal strength ===
267 267  
268 268  
269 269  Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
... ... @@ -276,36 +276,21 @@
276 276  Customers can judge whether they need to adjust the environment based on the signal strength.
277 277  
278 278  
279 -**1) When the sensor detects valid data:**
314 +=== 2.3.5 Interrupt Pin ===
280 280  
281 -[[image:image-20230805155335-1.png||height="145" width="724"]]
282 282  
283 -
284 -**2) When the sensor detects invalid data:**
285 -
286 -[[image:image-20230805155428-2.png||height="139" width="726"]]
287 -
288 -
289 -**3) When the sensor is not connected:**
290 -
291 -[[image:image-20230805155515-3.png||height="143" width="725"]]
292 -
293 -
294 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
295 -
296 -
297 297  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
298 298  
299 -Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI .
319 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
300 300  
301 301  **Example:**
302 302  
303 -If byte[0]&0x01=0x00 : Normal uplink packet.
323 +0x00: Normal uplink packet.
304 304  
305 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
325 +0x01: Interrupt Uplink Packet.
306 306  
307 307  
308 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
328 +=== 2.3.6 LiDAR temp ===
309 309  
310 310  
311 311  Characterize the internal temperature value of the sensor.
... ... @@ -315,7 +315,7 @@
315 315  If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
316 316  
317 317  
318 -==== (% style="color:blue" %)**Message Type**(%%) ====
338 +=== 2.3.7 Message Type ===
319 319  
320 320  
321 321  (((
... ... @@ -328,160 +328,251 @@
328 328  
329 329  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
330 330  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
331 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
332 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
351 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
352 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
333 333  
334 -[[image:image-20230805150315-4.png||height="233" width="723"]]
335 335  
355 +=== 2.3.8 Decode payload in The Things Network ===
336 336  
337 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
338 338  
358 +While using TTN network, you can add the payload format to decode the payload.
339 339  
340 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
341 341  
342 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
343 343  
344 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
345 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
346 -**Size(bytes)**
347 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
348 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
349 -Reserve(0xFF)
350 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
351 -LiDAR temp
352 -)))|(% style="width:85px" %)Unix TimeStamp
363 +(((
364 +The payload decoder function for TTN is here:
365 +)))
353 353  
354 -**Interrupt flag & Interrupt level:**
367 +(((
368 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
369 +)))
355 355  
356 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
357 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
358 -**Size(bit)**
359 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
360 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
361 -Interrupt flag
371 +
372 +== 2.4 Uplink Interval ==
373 +
374 +
375 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
376 +
377 +
378 +== 2.5 ​Show Data in DataCake IoT Server ==
379 +
380 +
381 +(((
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
362 362  )))
363 363  
364 -* (((
365 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
385 +
386 +(((
387 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
366 366  )))
367 367  
368 -For example, in the US915 band, the max payload for different DR is:
390 +(((
391 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
392 +)))
369 369  
370 -**a) DR0:** max is 11 bytes so one entry of data
371 371  
372 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
395 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
373 373  
374 -**c) DR2:** total payload includes 11 entries of data
375 375  
376 -**d) DR3:** total payload includes 22 entries of data.
398 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
377 377  
378 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
379 379  
401 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
380 380  
381 -**Downlink:**
403 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
382 382  
383 -0x31 64 CC 68 0C 64 CC 69 74 05
405 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
384 384  
385 -[[image:image-20230805144936-2.png||height="113" width="746"]]
386 386  
387 -**Uplink:**
408 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
388 388  
389 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
410 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
390 390  
391 391  
392 -**Parsed Value:**
413 +== 2.6 Datalog Feature ==
393 393  
394 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
395 395  
416 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
396 396  
397 -[360,176,30,High,True,2023-08-04 02:53:00],
398 398  
399 -[355,168,30,Low,False,2023-08-04 02:53:29],
419 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
400 400  
401 -[245,211,30,Low,False,2023-08-04 02:54:29],
402 402  
403 -[57,700,30,Low,False,2023-08-04 02:55:29],
422 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
404 404  
405 -[361,164,30,Low,True,2023-08-04 02:56:00],
424 +* (((
425 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
426 +)))
427 +* (((
428 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
429 +)))
406 406  
407 -[337,184,30,Low,False,2023-08-04 02:56:40],
431 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
408 408  
409 -[20,4458,30,Low,False,2023-08-04 02:57:40],
433 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
410 410  
411 -[362,173,30,Low,False,2023-08-04 02:58:53],
412 412  
436 +=== 2.6.2 Unix TimeStamp ===
413 413  
414 -**History read from serial port:**
415 415  
416 -[[image:image-20230805145056-3.png]]
439 +LDS12-LB uses Unix TimeStamp format based on
417 417  
441 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
418 418  
419 -=== 2.3.4 Decode payload in The Things Network ===
443 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
420 420  
445 +Below is the converter example
421 421  
422 -While using TTN network, you can add the payload format to decode the payload.
447 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
423 423  
424 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
425 425  
450 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
426 426  
452 +
453 +=== 2.6.3 Set Device Time ===
454 +
455 +
456 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
457 +
458 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
459 +
460 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
461 +
462 +
463 +=== 2.6.4 Poll sensor value ===
464 +
465 +
466 +Users can poll sensor values based on timestamps. Below is the downlink command.
467 +
468 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
469 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
470 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
471 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
472 +
427 427  (((
428 -The payload decoder function for TTN is here:
474 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
429 429  )))
430 430  
431 431  (((
432 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
478 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
433 433  )))
434 434  
481 +(((
482 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
483 +)))
435 435  
436 -== 2.4 ​Show Data in DataCake IoT Server ==
485 +(((
486 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
487 +)))
437 437  
438 438  
490 +== 2.7 Frequency Plans ==
491 +
492 +
493 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
494 +
495 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
496 +
497 +
498 +== 2.8 LiDAR ToF Measurement ==
499 +
500 +=== 2.8.1 Principle of Distance Measurement ===
501 +
502 +
503 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
504 +
505 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
506 +
507 +
508 +=== 2.8.2 Distance Measurement Characteristics ===
509 +
510 +
511 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
512 +
513 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
514 +
515 +
439 439  (((
440 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
517 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
441 441  )))
442 442  
520 +(((
521 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
522 +)))
443 443  
444 444  (((
445 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
525 +(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
446 446  )))
447 447  
528 +
448 448  (((
449 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
530 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
450 450  )))
451 451  
452 452  
453 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
534 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
454 454  
455 455  
456 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
537 +(((
538 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
539 +)))
457 457  
541 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
458 458  
459 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
543 +(((
544 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
545 +)))
460 460  
461 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
462 462  
463 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
548 +=== 2.8.3 Notice of usage ===
464 464  
465 465  
466 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
551 +Possible invalid /wrong reading for LiDAR ToF tech:
467 467  
468 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
553 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
554 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
555 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
556 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
469 469  
470 470  
471 -== 2.5 Frequency Plans ==
472 472  
473 473  
474 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
561 +=== 2.8.4  Reflectivity of different objects ===
475 475  
476 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
477 477  
564 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
565 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
566 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
567 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
568 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
569 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
570 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
571 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
572 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
573 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
574 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
575 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
576 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
577 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
578 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
579 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
580 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
581 +Unpolished white metal surface
582 +)))|(% style="width:93px" %)130%
583 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
584 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
585 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
478 478  
479 -= 3. Configure DS20L =
480 480  
588 +
589 +
590 += 3. Configure LDS12-LB =
591 +
481 481  == 3.1 Configure Methods ==
482 482  
483 483  
484 -DS20L supports below configure method:
595 +LDS12-LB supports below configure method:
485 485  
486 486  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
487 487  
... ... @@ -489,6 +489,9 @@
489 489  
490 490  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
491 491  
603 +
604 +
605 +
492 492  == 3.2 General Commands ==
493 493  
494 494  
... ... @@ -503,10 +503,10 @@
503 503  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
504 504  
505 505  
506 -== 3.3 Commands special design for DS20L ==
620 +== 3.3 Commands special design for LDS12-LB ==
507 507  
508 508  
509 -These commands only valid for DS20L, as below:
623 +These commands only valid for LDS12-LB, as below:
510 510  
511 511  
512 512  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -548,16 +548,15 @@
548 548  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
549 549  )))
550 550  * (((
551 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
665 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
552 552  )))
553 553  
554 -
555 555  === 3.3.2 Set Interrupt Mode ===
556 556  
557 557  
558 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
671 +Feature, Set Interrupt mode for PA8 of pin.
559 559  
560 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
673 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
561 561  
562 562  (% style="color:blue" %)**AT Command: AT+INTMOD**
563 563  
... ... @@ -568,11 +568,7 @@
568 568  OK
569 569  the mode is 0 =Disable Interrupt
570 570  )))
571 -|(% style="width:154px" %)(((
572 -AT+INTMOD=3
573 -
574 -(default)
575 -)))|(% style="width:196px" %)(((
684 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
576 576  Set Transmit Interval
577 577  0. (Disable Interrupt),
578 578  ~1. (Trigger by rising and falling edge)
... ... @@ -592,76 +592,89 @@
592 592  
593 593  
594 594  
595 -== 3.3.3 Set work mode ==
596 596  
597 597  
598 -Feature: Switch working mode
706 +=== 3.3.3 Get Firmware Version Info ===
599 599  
600 -(% style="color:blue" %)**AT Command: AT+MOD**
601 601  
602 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
603 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 108px;background-color:#4F81BD;color:white" %)**Response**
604 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
605 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
606 -OK
709 +Feature: use downlink to get firmware version.
607 607  
608 -Attention:Take effect after ATZ
711 +(% style="color:blue" %)**Downlink Command: 0x26**
712 +
713 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
714 +|(% style="background-color:#4F81BD;color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4F81BD;color:white; width:57px" %)**FPort**|(% style="background-color:#4F81BD;color:white; width:91px" %)**Type Code**|(% style="background-color:#4F81BD;color:white; width:153px" %)**Downlink payload size(bytes)**
715 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
716 +
717 +* Reply to the confirmation package: 26 01
718 +* Reply to non-confirmed packet: 26 00
719 +
720 +Device will send an uplink after got this downlink command. With below payload:
721 +
722 +Configures info payload:
723 +
724 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
725 +|=(% style="background-color:#4F81BD;color:white" %)(((
726 +**Size(bytes)**
727 +)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
728 +|**Value**|Software Type|(((
729 +Frequency Band
730 +)))|Sub-band|(((
731 +Firmware Version
732 +)))|Sensor Type|Reserve|(((
733 +[[Message Type>>||anchor="H2.3.7MessageType"]]
734 +Always 0x02
609 609  )))
610 610  
611 -(% style="color:blue" %)**Downlink Command:**
737 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
612 612  
613 -* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
739 +(% style="color:#037691" %)**Frequency Band**:
614 614  
615 -* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
741 +*0x01: EU868
616 616  
743 +*0x02: US915
617 617  
618 -=== 3.3.4 Set threshold and threshold mode ===
745 +*0x03: IN865
619 619  
747 +*0x04: AU915
620 620  
621 -Feature, Set threshold and threshold mode
749 +*0x05: KZ865
622 622  
623 -When **AT+DOL=0,0,0,0,400** is set, No threshold is used, the sampling time is 400ms.
751 +*0x06: RU864
624 624  
625 -**AT Command: AT+DOL**
753 +*0x07: AS923
626 626  
627 -(% border="1" cellspacing="4" style="width:571.818px" %)
628 -|(% style="width:172px" %)**Command Example**|(% style="width:279px" %)**Function**|(% style="width:118px" %)**Response**
629 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
630 -0,0,0,0,400
755 +*0x08: AS923-1
631 631  
632 -OK
633 -)))
634 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
757 +*0x09: AS923-2
635 635  
759 +*0xa0: AS923-3
636 636  
637 -(% border="1" cellspacing="4" style="width:668.818px" %)
638 -|(% rowspan="11" style="width:166px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:226px" %)The first bit sets the limit mode|(% style="width:251px" %)0:Do not use upper and lower limits
639 -|(% style="width:251px" %)1:Use upper and lower limits
640 -|(% style="width:251px" %)2:Less than the lower limit
641 -|(% style="width:251px" %)3:Greater than the lower limit
642 -|(% style="width:251px" %)4:Less than the upper limit
643 -|(% style="width:251px" %)5: Greater than the upper limit
644 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
645 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
646 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
647 -|(% style="width:251px" %)1 Person or object counting statistics
648 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
649 -0~~10000ms
650 650  
651 -
652 -)))
762 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
653 653  
654 -**Downlink Command: 0x07**
764 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
655 655  
656 -Format: Command Code (0x07) followed by 9bytes.
766 +(% style="color:#037691" %)**Sensor Type**:
657 657  
658 -* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
659 -* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
768 +0x01: LSE01
660 660  
770 +0x02: LDDS75
771 +
772 +0x03: LDDS20
773 +
774 +0x04: LLMS01
775 +
776 +0x05: LSPH01
777 +
778 +0x06: LSNPK01
779 +
780 +0x07: LLDS12
781 +
782 +
661 661  = 4. Battery & Power Consumption =
662 662  
663 663  
664 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
786 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
665 665  
666 666  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
667 667  
... ... @@ -670,7 +670,7 @@
670 670  
671 671  
672 672  (% class="wikigeneratedid" %)
673 -User can change firmware DS20L to:
795 +User can change firmware LDS12-LB to:
674 674  
675 675  * Change Frequency band/ region.
676 676  
... ... @@ -678,7 +678,7 @@
678 678  
679 679  * Fix bugs.
680 680  
681 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
803 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
682 682  
683 683  Methods to Update Firmware:
684 684  
... ... @@ -688,10 +688,10 @@
688 688  
689 689  = 6. FAQ =
690 690  
691 -== 6.1 What is the frequency plan for DS20L? ==
813 +== 6.1 What is the frequency plan for LDS12-LB? ==
692 692  
693 693  
694 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
816 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
695 695  
696 696  
697 697  = 7. Trouble Shooting =
... ... @@ -706,11 +706,11 @@
706 706  
707 707  
708 708  (((
709 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
831 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
710 710  )))
711 711  
712 712  (((
713 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
835 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
714 714  )))
715 715  
716 716  
... ... @@ -719,7 +719,7 @@
719 719  )))
720 720  
721 721  (((
722 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
844 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
723 723  )))
724 724  
725 725  
... ... @@ -726,7 +726,7 @@
726 726  = 8. Order Info =
727 727  
728 728  
729 -Part Number: (% style="color:blue" %)**DS20L-XXX**
851 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
730 730  
731 731  (% style="color:red" %)**XXX**(%%): **The default frequency band**
732 732  
... ... @@ -751,7 +751,7 @@
751 751  
752 752  (% style="color:#037691" %)**Package Includes**:
753 753  
754 -* DS20L LoRaWAN Smart Distance Detector x 1
876 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
755 755  
756 756  (% style="color:#037691" %)**Dimension and weight**:
757 757  
1701149922873-259.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.5 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.6 KB
Content