Last modified by Mengting Qiu on 2023/12/14 11:15

From version 118.2
edited by Xiaoling
on 2023/11/28 14:00
Change comment: There is no comment for this version
To version 113.4
edited by Xiaoling
on 2023/11/10 09:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -22,7 +22,7 @@
22 22  == 1.1 What is LoRaWAN Smart Distance Detector ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
26 26  
27 27  DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 28  consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
... ... @@ -31,8 +31,9 @@
31 31  
32 32  DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
33 33  
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
36 36  
37 37  
38 38  == 1.2 ​Features ==
... ... @@ -44,6 +44,7 @@
44 44  * AT Commands to change parameters
45 45  * Remotely configure parameters via LoRaWAN Downlink
46 46  * Alarm & Counting mode
48 +* Datalog Feature
47 47  * Firmware upgradable via program port or LoRa protocol
48 48  * Built-in 2400mAh battery or power by external power source
49 49  
... ... @@ -50,35 +50,121 @@
50 50  == 1.3 Specification ==
51 51  
52 52  
53 -(% style="color:#037691" %)**LiDAR Sensor:**
55 +(% style="color:#037691" %)**Common DC Characteristics:**
54 54  
55 -* Operation Temperature: -40 ~~ 80 °C
56 -* Operation Humidity: 0~~99.9%RH (no Dew)
57 -* Storage Temperature: -10 ~~ 45°C
57 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
58 +* Operating Temperature: -40 ~~ 85°C
59 +
60 +(% style="color:#037691" %)**Probe Specification:**
61 +
58 58  * Measure Range: 3cm~~200cm @ 90% reflectivity
59 59  * Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 60  * ToF FoV: ±9°, Total 18°
61 61  * Light source: VCSEL
62 62  
63 -== 1.4 Power Consumption ==
67 +(% style="color:#037691" %)**LoRa Spec:**
64 64  
69 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
70 +* Max +22 dBm constant RF output vs.
71 +* RX sensitivity: down to -139 dBm.
72 +* Excellent blocking immunity
65 65  
66 -(% style="color:#037691" %)**Battery Power Mode:**
74 +(% style="color:#037691" %)**Battery:**
67 67  
68 -* Idle: 0.003 mA @ 3.3v
69 -* Max : 360 mA
76 +* Li/SOCI2 un-chargeable battery
77 +* Capacity: 8500mAh
78 +* Self-Discharge: <1% / Year @ 25°C
79 +* Max continuously current: 130mA
80 +* Max boost current: 2A, 1 second
70 70  
71 -(% style="color:#037691" %)**Continuously mode**:
82 +(% style="color:#037691" %)**Power Consumption**
72 72  
73 -* Idle: 21 mA @ 3.3v
74 -* Max : 360 mA
84 +* Sleep Mode: 5uA @ 3.3v
85 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
75 75  
76 -= 2. Configure DS20L to connect to LoRaWAN network =
87 +== 1.4 Applications ==
77 77  
89 +
90 +* Horizontal distance measurement
91 +* Parking management system
92 +* Object proximity and presence detection
93 +* Intelligent trash can management system
94 +* Robot obstacle avoidance
95 +* Automatic control
96 +* Sewer
97 +
98 +(% style="display:none" %)
99 +
100 +== 1.5 Sleep mode and working mode ==
101 +
102 +
103 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
104 +
105 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
106 +
107 +
108 +== 1.6 Button & LEDs ==
109 +
110 +
111 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
112 +
113 +
114 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
115 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
116 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
117 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
118 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
119 +)))
120 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
121 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
122 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
123 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
124 +)))
125 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
126 +
127 +== 1.7 BLE connection ==
128 +
129 +
130 +LDS12-LB support BLE remote configure.
131 +
132 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
133 +
134 +* Press button to send an uplink
135 +* Press button to active device.
136 +* Device Power on or reset.
137 +
138 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
139 +
140 +
141 +== 1.8 Pin Definitions ==
142 +
143 +
144 +[[image:image-20230805144259-1.png||height="413" width="741"]]
145 +
146 +== 1.9 Mechanical ==
147 +
148 +
149 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
150 +
151 +
152 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
153 +
154 +
155 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
156 +
157 +
158 +(% style="color:blue" %)**Probe Mechanical:**
159 +
160 +
161 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
162 +
163 +
164 += 2. Configure LDS12-LB to connect to LoRaWAN network =
165 +
78 78  == 2.1 How it works ==
79 79  
80 80  
81 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
169 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
82 82  
83 83  (% style="display:none" %) (%%)
84 84  
... ... @@ -87,14 +87,15 @@
87 87  
88 88  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
89 89  
90 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
178 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
91 91  
92 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
180 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
93 93  
94 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
95 95  
96 -Each DS20L is shipped with a sticker with the default device EUI as below:
183 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
97 97  
185 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
186 +
98 98  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
99 99  
100 100  
... ... @@ -122,11 +122,10 @@
122 122  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
123 123  
124 124  
125 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
214 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
126 126  
127 -[[image:image-20231128133704-1.png||height="189" width="441"]]
128 128  
129 -Press the button for 5 seconds to activate the DS20L.
217 +Press the button for 5 seconds to activate the LDS12-LB.
130 130  
131 131  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
132 132  
... ... @@ -138,7 +138,7 @@
138 138  === 2.3.1 Device Status, FPORT~=5 ===
139 139  
140 140  
141 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
229 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
142 142  
143 143  The Payload format is as below.
144 144  
... ... @@ -150,9 +150,9 @@
150 150  
151 151  Example parse in TTNv3
152 152  
153 -[[image:1701149922873-259.png]]
241 +[[image:image-20230805103904-1.png||height="131" width="711"]]
154 154  
155 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
243 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
156 156  
157 157  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
158 158  
... ... @@ -207,7 +207,7 @@
207 207  
208 208  
209 209  (((
210 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
298 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
211 211  
212 212  periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
213 213  
... ... @@ -232,7 +232,7 @@
232 232  ==== (% style="color:blue" %)**Battery Info**(%%) ====
233 233  
234 234  
235 -Check the battery voltage for DS20L.
323 +Check the battery voltage for LDS12-LB.
236 236  
237 237  Ex1: 0x0B45 = 2885mV
238 238  
... ... @@ -296,7 +296,7 @@
296 296  
297 297  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
298 298  
299 -Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI .
387 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
300 300  
301 301  **Example:**
302 302  
... ... @@ -337,7 +337,7 @@
337 337  === 2.3.3 Historical measuring distance, FPORT~=3 ===
338 338  
339 339  
340 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
428 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
341 341  
342 342  The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
343 343  
... ... @@ -362,7 +362,7 @@
362 362  )))
363 363  
364 364  * (((
365 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
453 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
366 366  )))
367 367  
368 368  For example, in the US915 band, the max payload for different DR is:
... ... @@ -375,7 +375,7 @@
375 375  
376 376  **d) DR3:** total payload includes 22 entries of data.
377 377  
378 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
466 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
379 379  
380 380  
381 381  **Downlink:**
... ... @@ -429,7 +429,7 @@
429 429  )))
430 430  
431 431  (((
432 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
520 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
433 433  )))
434 434  
435 435  
... ... @@ -458,7 +458,7 @@
458 458  
459 459  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
460 460  
461 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
549 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
462 462  
463 463  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
464 464  
... ... @@ -468,20 +468,181 @@
468 468  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
469 469  
470 470  
471 -== 2.5 Frequency Plans ==
559 +== 2.5 Datalog Feature ==
472 472  
473 473  
474 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
562 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
475 475  
564 +
565 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
566 +
567 +
568 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
569 +
570 +* (((
571 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
572 +)))
573 +* (((
574 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
575 +)))
576 +
577 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
578 +
579 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
580 +
581 +
582 +=== 2.5.2 Unix TimeStamp ===
583 +
584 +
585 +LDS12-LB uses Unix TimeStamp format based on
586 +
587 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
588 +
589 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
590 +
591 +Below is the converter example
592 +
593 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
594 +
595 +
596 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
597 +
598 +
599 +=== 2.5.3 Set Device Time ===
600 +
601 +
602 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
603 +
604 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
605 +
606 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
607 +
608 +
609 +=== 2.5.4 Poll sensor value ===
610 +
611 +
612 +Users can poll sensor values based on timestamps. Below is the downlink command.
613 +
614 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
615 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
616 +|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
617 +|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
618 +
619 +(((
620 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
621 +)))
622 +
623 +(((
624 +For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
625 +)))
626 +
627 +(((
628 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
629 +)))
630 +
631 +(((
632 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
633 +)))
634 +
635 +
636 +== 2.6 Frequency Plans ==
637 +
638 +
639 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
640 +
476 476  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
477 477  
478 478  
479 -= 3. Configure DS20L =
644 +== 2.7 LiDAR ToF Measurement ==
480 480  
646 +=== 2.7.1 Principle of Distance Measurement ===
647 +
648 +
649 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
650 +
651 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
652 +
653 +
654 +=== 2.7.2 Distance Measurement Characteristics ===
655 +
656 +
657 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
658 +
659 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
660 +
661 +
662 +(((
663 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
664 +)))
665 +
666 +(((
667 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
668 +)))
669 +
670 +(((
671 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
672 +)))
673 +
674 +
675 +(((
676 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
677 +)))
678 +
679 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
680 +
681 +(((
682 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
683 +)))
684 +
685 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
686 +
687 +(((
688 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
689 +)))
690 +
691 +
692 +=== 2.7.3 Notice of usage ===
693 +
694 +
695 +Possible invalid /wrong reading for LiDAR ToF tech:
696 +
697 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
698 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
699 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
700 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
701 +
702 +=== 2.7.4  Reflectivity of different objects ===
703 +
704 +
705 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
706 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
707 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
708 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
709 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
710 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
711 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
712 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
713 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
714 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
715 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
716 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
717 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
718 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
719 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
720 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
721 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
722 +Unpolished white metal surface
723 +)))|(% style="width:93px" %)130%
724 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
725 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
726 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
727 +
728 += 3. Configure LDS12-LB =
729 +
481 481  == 3.1 Configure Methods ==
482 482  
483 483  
484 -DS20L supports below configure method:
733 +LDS12-LB supports below configure method:
485 485  
486 486  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
487 487  
... ... @@ -503,10 +503,10 @@
503 503  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
504 504  
505 505  
506 -== 3.3 Commands special design for DS20L ==
755 +== 3.3 Commands special design for LDS12-LB ==
507 507  
508 508  
509 -These commands only valid for DS20L, as below:
758 +These commands only valid for LDS12-LB, as below:
510 510  
511 511  
512 512  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -548,10 +548,12 @@
548 548  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
549 549  )))
550 550  * (((
551 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
552 -)))
800 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
553 553  
554 554  
803 +
804 +)))
805 +
555 555  === 3.3.2 Set Interrupt Mode ===
556 556  
557 557  
... ... @@ -569,7 +569,7 @@
569 569  the mode is 0 =Disable Interrupt
570 570  )))
571 571  |(% style="width:154px" %)(((
572 -AT+INTMOD=3
823 +AT+INTMOD=2
573 573  
574 574  (default)
575 575  )))|(% style="width:196px" %)(((
... ... @@ -590,78 +590,39 @@
590 590  
591 591  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
592 592  
844 +=== 3.3.3  Set Power Output Duration ===
593 593  
846 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
594 594  
595 -== 3.3.3 Set work mode ==
848 +~1. first enable the power output to external sensor,
596 596  
850 +2. keep it on as per duration, read sensor value and construct uplink payload
597 597  
598 -Feature: Switch working mode
852 +3. final, close the power output.
599 599  
600 -(% style="color:blue" %)**AT Command: AT+MOD**
854 +(% style="color:blue" %)**AT Command: AT+3V3T**
601 601  
602 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
603 -|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 108px;background-color:#4F81BD;color:white" %)**Response**
604 -|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
605 -|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
856 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
857 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
858 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
606 606  OK
860 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
861 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
862 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
607 607  
608 -Attention:Take effect after ATZ
609 -)))
864 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
865 +Format: Command Code (0x07) followed by 3 bytes.
610 610  
611 -(% style="color:blue" %)**Downlink Command:**
867 +The first byte is 01,the second and third bytes are the time to turn on.
612 612  
613 -* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
869 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
870 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
871 +* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
614 614  
615 -* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
616 -
617 -
618 -=== 3.3.4 Set threshold and threshold mode ===
619 -
620 -
621 -Feature, Set threshold and threshold mode
622 -
623 -When **AT+DOL=0,0,0,0,400** is set, No threshold is used, the sampling time is 400ms.
624 -
625 -**AT Command: AT+DOL**
626 -
627 -(% border="1" cellspacing="4" style="width:571.818px" %)
628 -|(% style="width:172px" %)**Command Example**|(% style="width:279px" %)**Function**|(% style="width:118px" %)**Response**
629 -|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
630 -0,0,0,0,400
631 -
632 -OK
633 -)))
634 -|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
635 -
636 -
637 -(% border="1" cellspacing="4" style="width:668.818px" %)
638 -|(% rowspan="11" style="width:166px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:226px" %)The first bit sets the limit mode|(% style="width:251px" %)0:Do not use upper and lower limits
639 -|(% style="width:251px" %)1:Use upper and lower limits
640 -|(% style="width:251px" %)2:Less than the lower limit
641 -|(% style="width:251px" %)3:Greater than the lower limit
642 -|(% style="width:251px" %)4:Less than the upper limit
643 -|(% style="width:251px" %)5: Greater than the upper limit
644 -|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
645 -|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
646 -|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
647 -|(% style="width:251px" %)1 Person or object counting statistics
648 -|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
649 -0~~10000ms
650 -
651 -
652 -)))
653 -
654 -**Downlink Command: 0x07**
655 -
656 -Format: Command Code (0x07) followed by 9bytes.
657 -
658 -* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
659 -* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
660 -
661 661  = 4. Battery & Power Consumption =
662 662  
663 663  
664 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
876 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
665 665  
666 666  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
667 667  
... ... @@ -670,7 +670,7 @@
670 670  
671 671  
672 672  (% class="wikigeneratedid" %)
673 -User can change firmware DS20L to:
885 +User can change firmware LDS12-LB to:
674 674  
675 675  * Change Frequency band/ region.
676 676  
... ... @@ -678,7 +678,7 @@
678 678  
679 679  * Fix bugs.
680 680  
681 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
893 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
682 682  
683 683  Methods to Update Firmware:
684 684  
... ... @@ -688,10 +688,10 @@
688 688  
689 689  = 6. FAQ =
690 690  
691 -== 6.1 What is the frequency plan for DS20L? ==
903 +== 6.1 What is the frequency plan for LDS12-LB? ==
692 692  
693 693  
694 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
906 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
695 695  
696 696  
697 697  = 7. Trouble Shooting =
... ... @@ -726,7 +726,7 @@
726 726  = 8. Order Info =
727 727  
728 728  
729 -Part Number: (% style="color:blue" %)**DS20L-XXX**
941 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
730 730  
731 731  (% style="color:red" %)**XXX**(%%): **The default frequency band**
732 732  
... ... @@ -751,7 +751,7 @@
751 751  
752 752  (% style="color:#037691" %)**Package Includes**:
753 753  
754 -* DS20L LoRaWAN Smart Distance Detector x 1
966 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
755 755  
756 756  (% style="color:#037691" %)**Dimension and weight**:
757 757  
1701149922873-259.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.5 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.6 KB
Content