Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
Details
- Page properties
-
- Content
-
... ... @@ -22,7 +22,7 @@ 22 22 == 1.1 What is LoRaWAN Smart Distance Detector == 23 23 24 24 25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. 26 26 27 27 DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 28 consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. ... ... @@ -31,58 +31,155 @@ 31 31 32 32 DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway. 33 33 34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading. 34 34 35 -[[image:image-2023111010 2635-5.png||height="402" width="807"]]36 +[[image:image-20231110091506-4.png||height="391" width="768"]] 36 36 37 37 38 38 == 1.2 Features == 39 39 40 40 41 -* LoRaWAN Class A protocol 42 -* LiDAR distance detector, range 3 ~~ 200cm 43 -* Periodically detect or continuously detect mode 42 +* LoRaWAN 1.0.3 Class A 43 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 44 +* Ultra-low power consumption 45 +* Laser technology for distance detection 46 +* Measure Distance: 0.1m~~12m 47 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 48 +* Monitor Battery Level 49 +* Support Bluetooth v5.1 and LoRaWAN remote configure 50 +* Support wireless OTA update firmware 44 44 * AT Commands to change parameters 45 -* Remotely configure parameters via LoRaWAN Downlink 46 -* Alarm & Counting mode 47 -* Firmware upgradable via program port or LoRa protocol 48 -* Built-in 2400mAh battery or power by external power source 52 +* Downlink to change configure 53 +* 8500mAh Battery for long term use 49 49 50 50 == 1.3 Specification == 51 51 52 52 53 -(% style="color:#037691" %)** LiDARSensor:**58 +(% style="color:#037691" %)**Common DC Characteristics:** 54 54 55 -* Operation Temperature: -40 ~~ 80 °C 56 -* Operation Humidity: 0~~99.9%RH (no Dew) 57 -* Storage Temperature: -10 ~~ 45°C 58 -* Measure Range: 3cm~~200cm @ 90% reflectivity 59 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 60 -* ToF FoV: ±9°, Total 18° 61 -* Light source: VCSEL 60 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 61 +* Operating Temperature: -40 ~~ 85°C 62 62 63 +(% style="color:#037691" %)**Probe Specification:** 63 63 65 +* Storage temperature:-20℃~~75℃ 66 +* Operating temperature : -20℃~~60℃ 67 +* Measure Distance: 68 +** 0.1m ~~ 12m @ 90% Reflectivity 69 +** 0.1m ~~ 4m @ 10% Reflectivity 70 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 71 +* Distance resolution : 1cm 72 +* Ambient light immunity : 70klux 73 +* Enclosure rating : IP65 74 +* Light source : LED 75 +* Central wavelength : 850nm 76 +* FOV : 3.6° 77 +* Material of enclosure : ABS+PC 78 +* Wire length : 25cm 64 64 65 - ==1.4 PowerConsumption==80 +(% style="color:#037691" %)**LoRa Spec:** 66 66 82 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 83 +* Max +22 dBm constant RF output vs. 84 +* RX sensitivity: down to -139 dBm. 85 +* Excellent blocking immunity 67 67 68 -(% style="color:#037691" %)**Battery Power Mode:**87 +(% style="color:#037691" %)**Battery:** 69 69 70 -* Idle: 0.003 mA @ 3.3v 71 -* Max : 360 mA 89 +* Li/SOCI2 un-chargeable battery 90 +* Capacity: 8500mAh 91 +* Self-Discharge: <1% / Year @ 25°C 92 +* Max continuously current: 130mA 93 +* Max boost current: 2A, 1 second 72 72 73 -(% style="color:#037691" %)**Conti nuously mode**:95 +(% style="color:#037691" %)**Power Consumption** 74 74 75 -* Idle:21 mA @ 3.3v76 -* Max:360 mA97 +* Sleep Mode: 5uA @ 3.3v 98 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 77 77 100 +== 1.4 Applications == 78 78 79 79 80 -= 2. Configure DS20L to connect to LoRaWAN network = 103 +* Horizontal distance measurement 104 +* Parking management system 105 +* Object proximity and presence detection 106 +* Intelligent trash can management system 107 +* Robot obstacle avoidance 108 +* Automatic control 109 +* Sewer 81 81 111 +(% style="display:none" %) 112 + 113 +== 1.5 Sleep mode and working mode == 114 + 115 + 116 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 117 + 118 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 119 + 120 + 121 +== 1.6 Button & LEDs == 122 + 123 + 124 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 125 + 126 + 127 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 128 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 129 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 130 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 131 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 132 +))) 133 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 134 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 135 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 136 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 137 +))) 138 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 139 + 140 +== 1.7 BLE connection == 141 + 142 + 143 +LDS12-LB support BLE remote configure. 144 + 145 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 146 + 147 +* Press button to send an uplink 148 +* Press button to active device. 149 +* Device Power on or reset. 150 + 151 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 152 + 153 + 154 +== 1.8 Pin Definitions == 155 + 156 + 157 +[[image:image-20230805144259-1.png||height="413" width="741"]] 158 + 159 +== 1.9 Mechanical == 160 + 161 + 162 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 163 + 164 + 165 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 166 + 167 + 168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 169 + 170 + 171 +(% style="color:blue" %)**Probe Mechanical:** 172 + 173 + 174 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 175 + 176 + 177 += 2. Configure LDS12-LB to connect to LoRaWAN network = 178 + 82 82 == 2.1 How it works == 83 83 84 84 85 -The DS2 0L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.182 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 86 86 87 87 (% style="display:none" %) (%%) 88 88 ... ... @@ -91,14 +91,15 @@ 91 91 92 92 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 93 93 94 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. (% style="display:none" %)191 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 95 95 96 -[[image:image-20231110 102635-5.png||height="402" width="807"]](% style="display:none" %)193 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %) 97 97 98 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 99 99 100 - EachDS20Lisshipped withastickerwith thedefaultdevice EUI asbelow:196 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 101 101 198 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 199 + 102 102 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 103 103 104 104 ... ... @@ -126,10 +126,10 @@ 126 126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 127 127 128 128 129 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS2 0L227 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 130 130 131 131 132 -Press the button for 5 seconds to activate the DS2 0L.230 +Press the button for 5 seconds to activate the LDS12-LB. 133 133 134 134 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 135 135 ... ... @@ -141,7 +141,7 @@ 141 141 === 2.3.1 Device Status, FPORT~=5 === 142 142 143 143 144 -Users can use the downlink command(**0x26 01**) to ask DS2 0L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.242 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 145 145 146 146 The Payload format is as below. 147 147 ... ... @@ -155,7 +155,7 @@ 155 155 156 156 [[image:image-20230805103904-1.png||height="131" width="711"]] 157 157 158 -(% style="color:blue" %)**Sensor Model**(%%): For DS2 0L, this value is 0x24256 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 159 159 160 160 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 161 161 ... ... @@ -210,7 +210,7 @@ 210 210 211 211 212 212 ((( 213 -DS2 0L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:311 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 214 214 215 215 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 216 216 ... ... @@ -235,7 +235,7 @@ 235 235 ==== (% style="color:blue" %)**Battery Info**(%%) ==== 236 236 237 237 238 -Check the battery voltage for DS2 0L.336 +Check the battery voltage for LDS12-LB. 239 239 240 240 Ex1: 0x0B45 = 2885mV 241 241 ... ... @@ -299,7 +299,7 @@ 299 299 300 300 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 301 301 302 -Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI . 400 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI . 303 303 304 304 **Example:** 305 305 ... ... @@ -340,7 +340,7 @@ 340 340 === 2.3.3 Historical measuring distance, FPORT~=3 === 341 341 342 342 343 -DS2 0L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].441 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 344 344 345 345 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 346 346 ... ... @@ -365,7 +365,7 @@ 365 365 ))) 366 366 367 367 * ((( 368 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS2 0L will send max bytes according to the current DR and Frequency bands.466 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 369 369 ))) 370 370 371 371 For example, in the US915 band, the max payload for different DR is: ... ... @@ -378,7 +378,7 @@ 378 378 379 379 **d) DR3:** total payload includes 22 entries of data. 380 380 381 -If DS2 0L doesn't have any data in the polling time. It will uplink 11 bytes of 0479 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 382 382 383 383 384 384 **Downlink:** ... ... @@ -432,7 +432,7 @@ 432 432 ))) 433 433 434 434 ((( 435 -DS2 0L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]533 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 436 436 ))) 437 437 438 438 ... ... @@ -461,7 +461,7 @@ 461 461 462 462 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 463 463 464 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS2 0L and add DevEUI.**562 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 465 465 466 466 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 467 467 ... ... @@ -474,25 +474,30 @@ 474 474 == 2.5 Datalog Feature == 475 475 476 476 477 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS2 0L will store the reading for future retrieving purposes.575 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 478 478 479 479 480 480 === 2.5.1 Ways to get datalog via LoRaWAN === 481 481 482 482 483 -Set PNACKMD=1, DS2 0L will wait for ACK for every uplink, when there is no LoRaWAN network,0L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.581 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 484 484 485 485 * ((( 486 -a) DS2 0L will do an ACK check for data records sending to make sure every data arrive server.584 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 487 487 ))) 488 488 * ((( 489 -b) DS2 0L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.587 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 490 490 ))) 491 491 590 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 591 + 592 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 593 + 594 + 492 492 === 2.5.2 Unix TimeStamp === 493 493 494 494 495 -DS2 0L uses Unix TimeStamp format based on598 +LDS12-LB uses Unix TimeStamp format based on 496 496 497 497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 498 498 ... ... @@ -511,7 +511,7 @@ 511 511 512 512 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 513 513 514 -Once DS2 0L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).617 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 515 515 516 516 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 517 517 ... ... @@ -539,7 +539,7 @@ 539 539 ))) 540 540 541 541 ((( 542 -Uplink Internal =5s,means DS2 0L will send one packet every 5s. range 5~~255s.645 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 543 543 ))) 544 544 545 545 ... ... @@ -546,17 +546,101 @@ 546 546 == 2.6 Frequency Plans == 547 547 548 548 549 -The DS2 0L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.652 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 550 550 551 551 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 552 552 553 553 554 - 3.ConfigureDS20L657 +== 2.7 LiDAR ToF Measurement == 555 555 659 +=== 2.7.1 Principle of Distance Measurement === 660 + 661 + 662 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 663 + 664 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 665 + 666 + 667 +=== 2.7.2 Distance Measurement Characteristics === 668 + 669 + 670 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 671 + 672 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 673 + 674 + 675 +((( 676 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 677 +))) 678 + 679 +((( 680 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 681 +))) 682 + 683 +((( 684 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 685 +))) 686 + 687 + 688 +((( 689 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 690 +))) 691 + 692 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 693 + 694 +((( 695 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 696 +))) 697 + 698 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 699 + 700 +((( 701 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 702 +))) 703 + 704 + 705 +=== 2.7.3 Notice of usage === 706 + 707 + 708 +Possible invalid /wrong reading for LiDAR ToF tech: 709 + 710 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 711 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 712 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 713 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 714 + 715 +=== 2.7.4 Reflectivity of different objects === 716 + 717 + 718 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 719 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 720 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 721 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 722 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 723 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 724 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 725 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 726 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 727 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 728 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 729 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 730 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 731 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 732 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 733 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 734 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 735 +Unpolished white metal surface 736 +)))|(% style="width:93px" %)130% 737 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 738 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 739 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 740 + 741 += 3. Configure LDS12-LB = 742 + 556 556 == 3.1 Configure Methods == 557 557 558 558 559 -DS2 0L supports below configure method:746 +LDS12-LB supports below configure method: 560 560 561 561 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 562 562 ... ... @@ -578,10 +578,10 @@ 578 578 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 579 579 580 580 581 -== 3.3 Commands special design for DS2 0L ==768 +== 3.3 Commands special design for LDS12-LB == 582 582 583 583 584 -These commands only valid for DS2 0L, as below:771 +These commands only valid for LDS12-LB, as below: 585 585 586 586 587 587 === 3.3.1 Set Transmit Interval Time === ... ... @@ -667,10 +667,39 @@ 667 667 668 668 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 669 669 857 +=== 3.3.3 Set Power Output Duration === 858 + 859 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 860 + 861 +~1. first enable the power output to external sensor, 862 + 863 +2. keep it on as per duration, read sensor value and construct uplink payload 864 + 865 +3. final, close the power output. 866 + 867 +(% style="color:blue" %)**AT Command: AT+3V3T** 868 + 869 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 870 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 871 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 872 +OK 873 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 874 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 875 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 876 + 877 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 878 +Format: Command Code (0x07) followed by 3 bytes. 879 + 880 +The first byte is 01,the second and third bytes are the time to turn on. 881 + 882 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 883 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 884 +* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 885 + 670 670 = 4. Battery & Power Consumption = 671 671 672 672 673 -DS2 0L usebuilt-in2400mAhnon-chargeablebatteryfor long-term use upto several years*. See below link for detail information about the battery info and how to replace.889 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 674 674 675 675 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 676 676 ... ... @@ -679,7 +679,7 @@ 679 679 680 680 681 681 (% class="wikigeneratedid" %) 682 -User can change firmware DS2 0L to:898 +User can change firmware LDS12-LB to: 683 683 684 684 * Change Frequency band/ region. 685 685 ... ... @@ -687,7 +687,7 @@ 687 687 688 688 * Fix bugs. 689 689 690 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/ zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**906 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 691 691 692 692 Methods to Update Firmware: 693 693 ... ... @@ -697,10 +697,10 @@ 697 697 698 698 = 6. FAQ = 699 699 700 -== 6.1 What is the frequency plan for DS2 0L? ==916 +== 6.1 What is the frequency plan for LDS12-LB? == 701 701 702 702 703 -DS2 0L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]919 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 704 704 705 705 706 706 = 7. Trouble Shooting = ... ... @@ -735,7 +735,7 @@ 735 735 = 8. Order Info = 736 736 737 737 738 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**954 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 739 739 740 740 (% style="color:red" %)**XXX**(%%): **The default frequency band** 741 741 ... ... @@ -760,7 +760,7 @@ 760 760 761 761 (% style="color:#037691" %)**Package Includes**: 762 762 763 -* DS2 0L LoRaWANSmartDistanceDetector x 1979 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 764 764 765 765 (% style="color:#037691" %)**Dimension and weight**: 766 766
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -84.7 KB - Content
- image-20231128133704-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -190.6 KB - Content