Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 16 removed)
- image-20230615152941-1.png
- image-20230615153004-2.png
- image-20230805103904-1.png
- image-20230805104104-2.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
- image-20231110102635-5.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -DS2 0L -- LoRaWANSmartDistanceDetector User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-202311 10085342-2.png||height="481" width="481"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,223 +19,259 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.DS20Lcan measurerangebetween3cm ~~ 200cm.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 - [[image:image-20231110102635-5.png||height="402"width="807"]]34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 +[[image:image-20230614162334-2.png||height="468" width="800"]] 39 + 40 + 38 38 == 1.2 Features == 39 39 40 40 41 -* LoRaWAN Class A protocol 42 -* LiDAR distance detector, range 3 ~~ 200cm 43 -* Periodically detect or continuously detect mode 44 +* LoRaWAN 1.0.3 Class A 45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 +* Ultra-low power consumption 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 51 +* Support Bluetooth v5.1 and LoRaWAN remote configure 52 +* Support wireless OTA update firmware 44 44 * AT Commands to change parameters 45 -* Remotely configure parameters via LoRaWAN Downlink 46 -* Alarm & Counting mode 47 -* Firmware upgradable via program port or LoRa protocol 48 -* Built-in 2400mAh battery or power by external power source 54 +* Downlink to change configure 55 +* 8500mAh Battery for long term use 49 49 50 50 == 1.3 Specification == 51 51 52 52 53 -(% style="color:#037691" %)** LiDARSensor:**60 +(% style="color:#037691" %)**Common DC Characteristics:** 54 54 55 -* Operation Temperature: -40 ~~ 80 °C 56 -* Operation Humidity: 0~~99.9%RH (no Dew) 57 -* Storage Temperature: -10 ~~ 45°C 58 -* Measure Range: 3cm~~200cm @ 90% reflectivity 59 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 60 -* ToF FoV: ±9°, Total 18° 61 -* Light source: VCSEL 62 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 63 +* Operating Temperature: -40 ~~ 85°C 62 62 65 +(% style="color:#037691" %)**Probe Specification:** 63 63 67 +* Storage temperature:-20℃~~75℃ 68 +* Operating temperature : -20℃~~60℃ 69 +* Measure Distance: 70 +** 0.1m ~~ 12m @ 90% Reflectivity 71 +** 0.1m ~~ 4m @ 10% Reflectivity 72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 74 +* Ambient light immunity : 70klux 75 +* Enclosure rating : IP65 76 +* Light source : LED 77 +* Central wavelength : 850nm 78 +* FOV : 3.6° 79 +* Material of enclosure : ABS+PC 80 +* Wire length : 25cm 64 64 65 - ==1.4 PowerConsumption==82 +(% style="color:#037691" %)**LoRa Spec:** 66 66 84 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 85 +* Max +22 dBm constant RF output vs. 86 +* RX sensitivity: down to -139 dBm. 87 +* Excellent blocking immunity 67 67 68 -(% style="color:#037691" %)**Battery Power Mode:**89 +(% style="color:#037691" %)**Battery:** 69 69 70 -* Idle: 0.003 mA @ 3.3v 71 -* Max : 360 mA 91 +* Li/SOCI2 un-chargeable battery 92 +* Capacity: 8500mAh 93 +* Self-Discharge: <1% / Year @ 25°C 94 +* Max continuously current: 130mA 95 +* Max boost current: 2A, 1 second 72 72 73 -(% style="color:#037691" %)**Conti nuously mode**:97 +(% style="color:#037691" %)**Power Consumption** 74 74 75 -* Idle:21 mA @ 3.3v76 -* Max:360 mA99 +* Sleep Mode: 5uA @ 3.3v 100 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 77 77 78 78 103 +== 1.4 Applications == 79 79 80 -= 2. Configure DS20L to connect to LoRaWAN network = 81 81 82 -== 2.1 How it works == 106 +* Horizontal distance measurement 107 +* Parking management system 108 +* Object proximity and presence detection 109 +* Intelligent trash can management system 110 +* Robot obstacle avoidance 111 +* Automatic control 112 +* Sewer 83 83 84 84 85 - The DS20L is configured as(% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keysin the LoRaWAN IoT server andpress the button to activate the DS20L. It willautomaticallyjointhe network via OTAA and start to sendthesensor value. The default uplink interval is 20 minutes.115 +(% style="display:none" %) 86 86 87 - (%style="display:none"%) (%%)117 +== 1.5 Sleep mode and working mode == 88 88 89 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 90 90 120 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 91 91 92 - Following isanexampleforhowtojointhe [[TTN v3LoRaWANNetwork>>url:https://console.cloud.thethings.network/]].Below isthenetworkstructure;weusethe[[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]]asaLoRaWANgatewayinthis example.122 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 93 93 94 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %) 95 95 96 - [[image:image-20231110102635-5.png||height="402"width="807"]](% style="display:none"%)125 +== 1.6 Button & LEDs == 97 97 98 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 99 99 100 - Each DS20LisshippedwithastickerwiththedefaultdeviceEUI asbelow:128 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 101 101 102 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 103 103 131 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 132 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 133 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 134 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 135 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 136 +))) 137 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 138 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 139 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 140 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 141 +))) 142 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 104 104 105 - Youcanenterthis key in the LoRaWAN Server portal. Below is TTN screenshot:144 +== 1.7 BLE connection == 106 106 107 107 108 - (%style="color:blue"%)**Registerthe device**147 +LDS12-LB support BLE remote configure. 109 109 110 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]149 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 111 111 151 +* Press button to send an uplink 152 +* Press button to active device. 153 +* Device Power on or reset. 112 112 113 - (%style="color:blue"%)**AddAPPEUIandDEVEUI**155 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 114 114 115 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 116 116 158 +== 1.8 Pin Definitions == 117 117 118 - (% style="color:blue"%)**AddP EUIinhepplication**160 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 119 119 120 120 121 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 122 122 164 +== 1.9 Mechanical == 123 123 124 -(% style="color:blue" %)**Add APP KEY** 125 125 126 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]167 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 127 127 128 128 129 - (%style="color:blue"%)**Step2:**(%%)ActivateDS20L170 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 130 130 131 131 132 - Press thebutton for5 secondstoctivatethe DS20L.173 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 133 133 134 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 135 135 136 - Afterjoinsuccess, itwill start toupload messagestoTTN and you can seethemessages in the panel.176 +(% style="color:blue" %)**Probe Mechanical:** 137 137 138 138 139 -== 2.3 Uplink Payload == 140 140 141 - === 2.3.1evicetatus, FPORT~=5=180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 142 142 143 143 144 - Userscanuse the downlinkcommand(**0x26 01**) to askDS20L tosend device configure detail, includedeviceconfigurestatus. DS20Lwill uplink a payloadvia FPort=5 toserver.183 += 2. Configure LDS12-LB to connect to LoRaWAN network = 145 145 146 - ThePayloadformatisasbelow.185 +== 2.1 How it works == 147 147 148 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 149 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 150 -**Size(bytes)** 151 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 152 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 153 153 154 - Example parse in TTNv3188 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 - [[image:image-20230805103904-1.png||height="131"width="711"]]190 +(% style="display:none" %) (%%) 157 157 158 - (% style="color:blue"%)**SensorModel**(%%):ForDS20L,thisalueis0x24192 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 159 159 160 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 161 161 162 - (%style="color:blue"%)**FrequencyBand**:195 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 163 163 164 - 0x01:EU868197 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 165 165 166 -0 x02:US915199 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %) 167 167 168 -0x03: IN865 169 169 170 - 0x04: AU915202 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 171 171 172 - 0x05:KZ865204 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 173 173 174 -0 x06: RU864206 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 175 175 176 -0x07: AS923 177 177 178 - 0x08:AS923-1209 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 179 179 180 -0x09: AS923-2 181 181 182 - 0x0a:AS923-3212 +(% style="color:blue" %)**Register the device** 183 183 184 - 0x0b: CN470214 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 185 185 186 -0x0c: EU433 187 187 188 - 0x0d:KR920217 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 189 189 190 - 0x0e:9219 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 191 191 192 -(% style="color:blue" %)**Sub-Band**: 193 193 194 - AU915and US915:value0x00~~0x08222 +(% style="color:blue" %)**Add APP EUI in the application** 195 195 196 -CN470: value 0x0B ~~ 0x0C 197 197 198 - OtherBands:Alwaysx00225 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 199 199 200 -(% style="color:blue" %)**Battery Info**: 201 201 202 - Checkthe batteryvoltage.228 +(% style="color:blue" %)**Add APP KEY** 203 203 204 - Ex1:0x0B4585mV230 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 205 205 206 -Ex2: 0x0B49 = 2889mV 207 207 233 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 208 208 209 -=== 2.3.2 Uplink Payload, FPORT~=2 === 210 210 236 +Press the button for 5 seconds to activate the LDS12-LB. 211 211 212 -((( 213 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will: 238 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 214 214 215 - periodicallysendthis uplinkevery 20minutes, thisinterval [[canbechanged>>||anchor="H3.3.1SetTransmitIntervalTime"]].240 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 216 216 217 -Uplink Payload totals 11 bytes. 242 + 243 +== 2.3 Uplink Payload == 244 + 245 + 246 +((( 247 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 218 218 ))) 219 219 250 +((( 251 +Uplink payload includes in total 11 bytes. 252 +))) 253 + 254 + 220 220 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 221 -|=(% style="width: 6 0px;background-color:#4F81BD;color:white" %)(((256 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 222 222 **Size(bytes)** 223 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color:; width: 70px;" %)**1**|=(% style="background-color:; width: 70px;" %)**1**224 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 225 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 226 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|( % style="width:122px" %)(((227 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]228 -)))| (% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((229 -[[Message Type>>||anchor="HMessageType"]] 258 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1** 259 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)((( 260 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 261 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|((( 262 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]] 263 +)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|((( 264 +[[Message Type>>||anchor="H2.3.7MessageType"]] 230 230 ))) 231 231 232 -[[image:i mage-20230805104104-2.png||height="136" width="754"]]267 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 233 233 234 234 235 -=== =(%style="color:blue" %)**Battery Info**(%%)====270 +=== 2.3.1 Battery Info === 236 236 237 237 238 -Check the battery voltage for DS2 0L.273 +Check the battery voltage for LDS12-LB. 239 239 240 240 Ex1: 0x0B45 = 2885mV 241 241 ... ... @@ -242,7 +242,7 @@ 242 242 Ex2: 0x0B49 = 2889mV 243 243 244 244 245 -=== =(%style="color:blue" %)**DS18B20 Temperature sensor**(%%)====280 +=== 2.3.2 DS18B20 Temperature sensor === 246 246 247 247 248 248 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. ... ... @@ -255,7 +255,7 @@ 255 255 If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 256 256 257 257 258 -=== =(%style="color:blue" %)**Distance**(%%)====293 +=== 2.3.3 Distance === 259 259 260 260 261 261 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. ... ... @@ -266,7 +266,7 @@ 266 266 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 267 267 268 268 269 -=== =(%style="color:blue" %)**Distance signal strength**(%%)====304 +=== 2.3.4 Distance signal strength === 270 270 271 271 272 272 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. ... ... @@ -279,36 +279,21 @@ 279 279 Customers can judge whether they need to adjust the environment based on the signal strength. 280 280 281 281 282 - **1)Whenthesensordetectsvaliddata:**317 +=== 2.3.5 Interrupt Pin === 283 283 284 -[[image:image-20230805155335-1.png||height="145" width="724"]] 285 285 320 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 286 286 287 - **2)Whenthesensordetects invaliddata:**322 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 288 288 289 -[[image:image-20230805155428-2.png||height="139" width="726"]] 290 - 291 - 292 -**3) When the sensor is not connected:** 293 - 294 -[[image:image-20230805155515-3.png||height="143" width="725"]] 295 - 296 - 297 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 298 - 299 - 300 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 301 - 302 -Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI . 303 - 304 304 **Example:** 305 305 306 - If byte[0]&0x01=0x00: Normal uplink packet.326 +0x00: Normal uplink packet. 307 307 308 - If byte[0]&0x01=0x01: Interrupt Uplink Packet.328 +0x01: Interrupt Uplink Packet. 309 309 310 310 311 -=== =(%style="color:blue" %)**LiDAR temp**(%%)====331 +=== 2.3.6 LiDAR temp === 312 312 313 313 314 314 Characterize the internal temperature value of the sensor. ... ... @@ -318,7 +318,7 @@ 318 318 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 319 319 320 320 321 -=== =(%style="color:blue" %)**Message Type**(%%)====341 +=== 2.3.7 Message Type === 322 322 323 323 324 324 ((( ... ... @@ -331,115 +331,40 @@ 331 331 332 332 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 333 333 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 334 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 335 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 354 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 355 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 336 336 337 -[[image:image-20230805150315-4.png||height="233" width="723"]] 338 338 339 339 340 -=== 2.3.3 Historical measuring distance, FPORT~=3 === 341 341 360 +=== 2.3.8 Decode payload in The Things Network === 342 342 343 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 344 344 345 - Thehistoricalpayloadincludesone orultipliesentriesandveryentryhas thesamepayloadas Real-Time measuring distance.363 +While using TTN network, you can add the payload format to decode the payload. 346 346 347 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 348 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 349 -**Size(bytes)** 350 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 351 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 352 -Reserve(0xFF) 353 -)))|Distance|Distance signal strength|(% style="width:88px" %)((( 354 -LiDAR temp 355 -)))|(% style="width:85px" %)Unix TimeStamp 356 356 357 - **Interrupt flag& Interrupt level:**366 +[[image:1654592762713-715.png]] 358 358 359 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 360 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 361 -**Size(bit)** 362 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 363 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 364 -Interrupt flag 368 + 369 +((( 370 +The payload decoder function for TTN is here: 365 365 ))) 366 366 367 - *(((368 - Each data entry is11bytesandhas thesame structureas[[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], tosaveairtimeandbattery, DS20L will send max bytesaccordingtothecurrent DR andFrequency bands.373 +((( 374 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 369 369 ))) 370 370 371 -For example, in the US915 band, the max payload for different DR is: 372 372 373 - **a)DR0:** maxis 11 bytes so oneentry of data378 +== 2.4 Uplink Interval == 374 374 375 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 376 376 377 - **c)DR2:** total payload includes11entriesofdata381 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 378 378 379 -**d) DR3:** total payload includes 22 entries of data. 380 380 381 - IfDS20Ldoesn'thave any data in thepollingtime. It will uplink 11 bytesof 0384 +== 2.5 Show Data in DataCake IoT Server == 382 382 383 383 384 -**Downlink:** 385 - 386 -0x31 64 CC 68 0C 64 CC 69 74 05 387 - 388 -[[image:image-20230805144936-2.png||height="113" width="746"]] 389 - 390 -**Uplink:** 391 - 392 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 393 - 394 - 395 -**Parsed Value:** 396 - 397 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 398 - 399 - 400 -[360,176,30,High,True,2023-08-04 02:53:00], 401 - 402 -[355,168,30,Low,False,2023-08-04 02:53:29], 403 - 404 -[245,211,30,Low,False,2023-08-04 02:54:29], 405 - 406 -[57,700,30,Low,False,2023-08-04 02:55:29], 407 - 408 -[361,164,30,Low,True,2023-08-04 02:56:00], 409 - 410 -[337,184,30,Low,False,2023-08-04 02:56:40], 411 - 412 -[20,4458,30,Low,False,2023-08-04 02:57:40], 413 - 414 -[362,173,30,Low,False,2023-08-04 02:58:53], 415 - 416 - 417 -**History read from serial port:** 418 - 419 -[[image:image-20230805145056-3.png]] 420 - 421 - 422 -=== 2.3.4 Decode payload in The Things Network === 423 - 424 - 425 -While using TTN network, you can add the payload format to decode the payload. 426 - 427 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 428 - 429 - 430 430 ((( 431 -The payload decoder function for TTN is here: 432 -))) 433 - 434 -((( 435 -DS20L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 436 -))) 437 - 438 - 439 -== 2.4 Show Data in DataCake IoT Server == 440 - 441 - 442 -((( 443 443 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 444 444 ))) 445 445 ... ... @@ -461,7 +461,7 @@ 461 461 462 462 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 463 463 464 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS2 0L and add DevEUI.**409 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 465 465 466 466 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 467 467 ... ... @@ -471,29 +471,34 @@ 471 471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 472 472 473 473 474 -== 2. 5Datalog Feature ==419 +== 2.6 Datalog Feature == 475 475 476 476 477 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS2 0L will store the reading for future retrieving purposes.422 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 478 478 479 479 480 -=== 2. 5.1 Ways to get datalog via LoRaWAN ===425 +=== 2.6.1 Ways to get datalog via LoRaWAN === 481 481 482 482 483 -Set PNACKMD=1, DS2 0L will wait for ACK for every uplink, when there is no LoRaWAN network,0L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.428 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 484 484 485 485 * ((( 486 -a) DS2 0L will do an ACK check for data records sending to make sure every data arrive server.431 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 487 487 ))) 488 488 * ((( 489 -b) DS2 0L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.434 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 490 490 ))) 491 491 492 - ===2.5.2 UnixTimeStamp ===437 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 493 493 439 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 494 494 495 -DS20L uses Unix TimeStamp format based on 496 496 442 +=== 2.6.2 Unix TimeStamp === 443 + 444 + 445 +LDS12-LB uses Unix TimeStamp format based on 446 + 497 497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 498 498 499 499 User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : ... ... @@ -506,23 +506,23 @@ 506 506 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 507 507 508 508 509 -=== 2. 5.3 Set Device Time ===459 +=== 2.6.3 Set Device Time === 510 510 511 511 512 512 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 513 513 514 -Once DS2 0L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).464 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 515 515 516 516 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 517 517 518 518 519 -=== 2. 5.4 Poll sensor value ===469 +=== 2.6.4 Poll sensor value === 520 520 521 521 522 522 Users can poll sensor values based on timestamps. Below is the downlink command. 523 523 524 524 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 525 -|(% colspan="4" style="background-color:# 4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**475 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 526 526 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 527 527 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 528 528 ... ... @@ -539,24 +539,112 @@ 539 539 ))) 540 540 541 541 ((( 542 -Uplink Internal =5s,means DS2 0L will send one packet every 5s. range 5~~255s.492 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 543 543 ))) 544 544 545 545 546 -== 2. 6Frequency Plans ==496 +== 2.7 Frequency Plans == 547 547 548 548 549 -The DS2 0L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.499 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 550 550 551 551 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 552 552 553 553 554 - 3.ConfigureDS20L504 +== 2.8 LiDAR ToF Measurement == 555 555 506 +=== 2.8.1 Principle of Distance Measurement === 507 + 508 + 509 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 510 + 511 + 512 +[[image:1654831757579-263.png]] 513 + 514 + 515 +=== 2.8.2 Distance Measurement Characteristics === 516 + 517 + 518 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 519 + 520 +[[image:1654831774373-275.png]] 521 + 522 + 523 +((( 524 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 525 +))) 526 + 527 +((( 528 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 529 +))) 530 + 531 +((( 532 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 533 +))) 534 + 535 + 536 +((( 537 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 538 +))) 539 + 540 + 541 +[[image:1654831797521-720.png]] 542 + 543 + 544 +((( 545 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 546 +))) 547 + 548 +[[image:1654831810009-716.png]] 549 + 550 + 551 +((( 552 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 553 +))) 554 + 555 + 556 +=== 2.8.3 Notice of usage: === 557 + 558 + 559 +Possible invalid /wrong reading for LiDAR ToF tech: 560 + 561 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 562 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 563 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 564 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 565 + 566 +=== 2.8.4 Reflectivity of different objects === 567 + 568 + 569 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 570 +|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity 571 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 572 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 573 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 574 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 575 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 576 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 577 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 578 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 579 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 580 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 581 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 582 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 583 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 584 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 585 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 586 +Unpolished white metal surface 587 +)))|(% style="width:93px" %)130% 588 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 589 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 590 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 591 + 592 += 3. Configure LDS12-LB = 593 + 556 556 == 3.1 Configure Methods == 557 557 558 558 559 -DS2 0L supports below configure method:597 +LDS12-LB supports below configure method: 560 560 561 561 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 562 562 ... ... @@ -578,10 +578,10 @@ 578 578 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 579 579 580 580 581 -== 3.3 Commands special design for DS2 0L ==619 +== 3.3 Commands special design for LDS12-LB == 582 582 583 583 584 -These commands only valid for DS2 0L, as below:622 +These commands only valid for LDS12-LB, as below: 585 585 586 586 587 587 === 3.3.1 Set Transmit Interval Time === ... ... @@ -596,7 +596,7 @@ 596 596 ))) 597 597 598 598 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 599 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**637 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 600 600 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 601 601 30000 602 602 OK ... ... @@ -624,32 +624,25 @@ 624 624 ))) 625 625 * ((( 626 626 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 627 - 628 - 629 - 630 630 ))) 631 631 632 632 === 3.3.2 Set Interrupt Mode === 633 633 634 634 635 -Feature, Set Interrupt mode for pinofGPIO_EXTI.670 +Feature, Set Interrupt mode for PA8 of pin. 636 636 637 -When AT+INTMOD=0 is set, GPIO_EXTIis used as a digital input port.672 +When AT+INTMOD=0 is set, PA8 is used as a digital input port. 638 638 639 639 (% style="color:blue" %)**AT Command: AT+INTMOD** 640 640 641 641 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 642 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**677 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 643 643 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 644 644 0 645 645 OK 646 646 the mode is 0 =Disable Interrupt 647 647 ))) 648 -|(% style="width:154px" %)((( 649 -AT+INTMOD=2 650 - 651 -(default) 652 -)))|(% style="width:196px" %)((( 683 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 653 653 Set Transmit Interval 654 654 0. (Disable Interrupt), 655 655 ~1. (Trigger by rising and falling edge) ... ... @@ -667,10 +667,91 @@ 667 667 668 668 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 669 669 701 + 702 + 703 +=== 3.3.3 Get Firmware Version Info === 704 + 705 + 706 +Feature: use downlink to get firmware version. 707 + 708 +(% style="color:#037691" %)**Downlink Command: 0x26** 709 + 710 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %) 711 +|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)** 712 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2 713 + 714 +* Reply to the confirmation package: 26 01 715 +* Reply to non-confirmed packet: 26 00 716 + 717 +Device will send an uplink after got this downlink command. With below payload: 718 + 719 +Configures info payload: 720 + 721 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 722 +|=(% style="background-color:#D9E2F3;color:#0070C0" %)((( 723 +**Size(bytes)** 724 +)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 725 +|**Value**|Software Type|((( 726 +Frequency 727 +Band 728 +)))|Sub-band|((( 729 +Firmware 730 +Version 731 +)))|Sensor Type|Reserve|((( 732 +[[Message Type>>||anchor="H2.3.7A0MessageType"]] 733 +Always 0x02 734 +))) 735 + 736 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12 737 + 738 +(% style="color:#037691" %)**Frequency Band**: 739 + 740 +*0x01: EU868 741 + 742 +*0x02: US915 743 + 744 +*0x03: IN865 745 + 746 +*0x04: AU915 747 + 748 +*0x05: KZ865 749 + 750 +*0x06: RU864 751 + 752 +*0x07: AS923 753 + 754 +*0x08: AS923-1 755 + 756 +*0x09: AS923-2 757 + 758 +*0xa0: AS923-3 759 + 760 + 761 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08 762 + 763 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 764 + 765 +(% style="color:#037691" %)**Sensor Type**: 766 + 767 +0x01: LSE01 768 + 769 +0x02: LDDS75 770 + 771 +0x03: LDDS20 772 + 773 +0x04: LLMS01 774 + 775 +0x05: LSPH01 776 + 777 +0x06: LSNPK01 778 + 779 +0x07: LLDS12 780 + 781 + 670 670 = 4. Battery & Power Consumption = 671 671 672 672 673 -DS2 0L usebuilt-in2400mAhnon-chargeablebatteryfor long-term use upto several years*. See below link for detail information about the battery info and how to replace.785 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 674 674 675 675 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 676 676 ... ... @@ -679,7 +679,7 @@ 679 679 680 680 681 681 (% class="wikigeneratedid" %) 682 -User can change firmware DS2 0L to:794 +User can change firmware LDS12-LB to: 683 683 684 684 * Change Frequency band/ region. 685 685 ... ... @@ -687,7 +687,7 @@ 687 687 688 688 * Fix bugs. 689 689 690 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/ zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**802 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 691 691 692 692 Methods to Update Firmware: 693 693 ... ... @@ -697,10 +697,10 @@ 697 697 698 698 = 6. FAQ = 699 699 700 -== 6.1 What is the frequency plan for DS2 0L? ==812 +== 6.1 What is the frequency plan for LDS12-LB? == 701 701 702 702 703 -DS2 0L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]815 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 704 704 705 705 706 706 = 7. Trouble Shooting = ... ... @@ -715,11 +715,11 @@ 715 715 716 716 717 717 ((( 718 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance .(such as glass and water, etc.)830 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 719 719 ))) 720 720 721 721 ((( 722 - (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.834 +Troubleshooting: Please avoid use of this product under such circumstance in practice. 723 723 ))) 724 724 725 725 ... ... @@ -728,7 +728,7 @@ 728 728 ))) 729 729 730 730 ((( 731 - (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.843 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 732 732 ))) 733 733 734 734 ... ... @@ -735,7 +735,7 @@ 735 735 = 8. Order Info = 736 736 737 737 738 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**850 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 739 739 740 740 (% style="color:red" %)**XXX**(%%): **The default frequency band** 741 741 ... ... @@ -760,7 +760,7 @@ 760 760 761 761 (% style="color:#037691" %)**Package Includes**: 762 762 763 -* DS2 0L LoRaWANSmartDistanceDetector x 1875 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 764 764 765 765 (% style="color:#037691" %)**Dimension and weight**: 766 766
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -84.7 KB - Content