Last modified by Mengting Qiu on 2023/12/14 11:15

From version 116.5
edited by Xiaoling
on 2023/11/13 11:28
Change comment: There is no comment for this version
To version 82.2
edited by Xiaoling
on 2023/06/14 16:25
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,427 +19,436 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
39 +
40 +
38 38  == 1.2 ​Features ==
39 39  
40 40  
41 -* LoRaWAN Class A protocol
42 -* LiDAR distance detector, range 3 ~~ 200cm
43 -* Periodically detect or continuously detect mode
44 +* LoRaWAN 1.0.3 Class A
45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 +* Ultra-low power consumption
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
51 +* Support Bluetooth v5.1 and LoRaWAN remote configure
52 +* Support wireless OTA update firmware
44 44  * AT Commands to change parameters
45 -* Remotely configure parameters via LoRaWAN Downlink
46 -* Alarm & Counting mode
47 -* Firmware upgradable via program port or LoRa protocol
48 -* Built-in 2400mAh battery or power by external power source
54 +* Downlink to change configure
55 +* 8500mAh Battery for long term use
49 49  
50 50  == 1.3 Specification ==
51 51  
52 52  
53 -(% style="color:#037691" %)**LiDAR Sensor:**
60 +(% style="color:#037691" %)**Common DC Characteristics:**
54 54  
55 -* Operation Temperature: -40 ~~ 80 °C
56 -* Operation Humidity: 0~~99.9%RH (no Dew)
57 -* Storage Temperature: -10 ~~ 45°C
58 -* Measure Range: 3cm~~200cm @ 90% reflectivity
59 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 -* ToF FoV: ±9°, Total 18°
61 -* Light source: VCSEL
62 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 +* Operating Temperature: -40 ~~ 85°C
62 62  
65 +(% style="color:#037691" %)**LoRa Spec:**
63 63  
67 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
68 +* Max +22 dBm constant RF output vs.
69 +* RX sensitivity: down to -139 dBm.
70 +* Excellent blocking immunity
64 64  
65 -== 1.4 Power Consumption ==
72 +(% style="color:#037691" %)**Battery:**
66 66  
74 +* Li/SOCI2 un-chargeable battery
75 +* Capacity: 8500mAh
76 +* Self-Discharge: <1% / Year @ 25°C
77 +* Max continuously current: 130mA
78 +* Max boost current: 2A, 1 second
67 67  
68 -(% style="color:#037691" %)**Battery Power Mode:**
80 +(% style="color:#037691" %)**Power Consumption**
69 69  
70 -* Idle: 0.003 mA @ 3.3v
71 -* Max : 360 mA
82 +* Sleep Mode: 5uA @ 3.3v
83 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
72 72  
73 -(% style="color:#037691" %)**Continuously mode**:
85 +== 1.4 Suitable Container & Liquid ==
74 74  
75 -* Idle: 21 mA @ 3.3v
76 -* Max : 360 mA
77 77  
88 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
89 +* Container shape is regular, and surface is smooth.
90 +* Container Thickness:
91 +** Pure metal material.  2~~8mm, best is 3~~5mm
92 +** Pure non metal material: <10 mm
93 +* Pure liquid without irregular deposition.
78 78  
95 +(% style="display:none" %)
79 79  
80 -= 2. Configure DS20L to connect to LoRaWAN network =
97 +== 1.5 Install LDS12-LB ==
81 81  
82 -== 2.1 How it works ==
83 83  
100 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
84 84  
85 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
102 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
86 86  
87 -(% style="display:none" %) (%%)
104 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
88 88  
89 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
90 90  
107 +(((
108 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
109 +)))
91 91  
92 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
111 +(((
112 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
113 +)))
93 93  
94 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
115 +[[image:image-20230613143052-5.png]]
95 95  
96 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
97 97  
98 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
118 +No polish needed if the container is shine metal surface without paint or non-metal container.
99 99  
100 -Each DS20L is shipped with a sticker with the default device EUI as below:
120 +[[image:image-20230613143125-6.png]]
101 101  
102 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
103 103  
123 +(((
124 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
125 +)))
104 104  
105 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
127 +(((
128 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
129 +)))
106 106  
131 +(((
132 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level.
133 +)))
107 107  
108 -(% style="color:blue" %)**Register the device**
135 +(((
136 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
137 +)))
109 109  
110 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
111 111  
140 +(((
141 +(% style="color:blue" %)**LED Status:**
142 +)))
112 112  
113 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
144 +* (((
145 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
146 +)))
114 114  
115 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
148 +* (((
149 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
150 +)))
151 +* (((
152 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
153 +)))
116 116  
155 +(((
156 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
157 +)))
117 117  
118 -(% style="color:blue" %)**Add APP EUI in the application**
119 119  
160 +(((
161 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
162 +)))
120 120  
121 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
122 122  
165 +(((
166 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
167 +)))
123 123  
124 -(% style="color:blue" %)**Add APP KEY**
169 +(((
170 +Prepare Eproxy AB glue.
171 +)))
125 125  
126 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
173 +(((
174 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
175 +)))
127 127  
177 +(((
178 +Reset LDS12-LB and see if the BLUE LED is slowly blinking.
179 +)))
128 128  
129 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
181 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
130 130  
131 131  
132 -Press the button for 5 seconds to activate the DS20L.
184 +(((
185 +(% style="color:red" %)**Note :**
133 133  
134 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
187 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 +)))
135 135  
136 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
190 +(((
191 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
192 +)))
137 137  
138 138  
139 -== 2.3 ​Uplink Payload ==
195 +== 1.6 Applications ==
140 140  
141 -=== 2.3.1 Device Status, FPORT~=5 ===
142 142  
198 +* Smart liquid control solution
143 143  
144 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
200 +* Smart liquefied gas solution
145 145  
146 -The Payload format is as below.
202 +== 1.7 Precautions ==
147 147  
148 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
149 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
150 -**Size(bytes)**
151 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
152 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
153 153  
154 -Example parse in TTNv3
205 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
155 155  
156 -[[image:image-20230805103904-1.png||height="131" width="711"]]
207 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
157 157  
158 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24
209 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
159 159  
160 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
211 +(% style="display:none" %)
161 161  
162 -(% style="color:blue" %)**Frequency Band**:
213 +== 1.8 Sleep mode and working mode ==
163 163  
164 -0x01: EU868
165 165  
166 -0x02: US915
216 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
167 167  
168 -0x03: IN865
218 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
169 169  
170 -0x04: AU915
171 171  
172 -0x05: KZ865
221 +== 1.9 Button & LEDs ==
173 173  
174 -0x06: RU864
175 175  
176 -0x07: AS923
224 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
177 177  
178 -0x08: AS923-1
179 179  
180 -0x09: AS923-2
227 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
228 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
229 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
230 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
231 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
232 +)))
233 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
234 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
235 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
236 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
237 +)))
238 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
181 181  
182 -0x0a: AS923-3
240 +== 1.10 BLE connection ==
183 183  
184 -0x0b: CN470
185 185  
186 -0x0c: EU433
243 +LDS12-LB support BLE remote configure.
187 187  
188 -0x0d: KR920
245 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
189 189  
190 -0x0e: MA869
247 +* Press button to send an uplink
248 +* Press button to active device.
249 +* Device Power on or reset.
191 191  
192 -(% style="color:blue" %)**Sub-Band**:
251 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
193 193  
194 -AU915 and US915:value 0x00 ~~ 0x08
195 195  
196 -CN470: value 0x0B ~~ 0x0C
254 +== 1.11 Pin Definitions ==
197 197  
198 -Other Bands: Always 0x00
256 +[[image:image-20230523174230-1.png]]
199 199  
200 -(% style="color:blue" %)**Battery Info**:
201 201  
202 -Check the battery voltage.
259 +== 1.12 Mechanical ==
203 203  
204 -Ex1: 0x0B45 = 2885mV
205 205  
206 -Ex2: 0x0B49 = 2889mV
262 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
207 207  
208 208  
209 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
265 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
210 210  
211 211  
212 -(((
213 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
268 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
214 214  
215 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
216 216  
217 -Uplink Payload totals 11 bytes.
218 -)))
271 +(% style="color:blue" %)**Probe Mechanical:**
219 219  
220 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
221 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
222 -**Size(bytes)**
223 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
224 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
225 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
226 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
227 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
228 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
229 -[[Message Type>>||anchor="HMessageType"]]
230 -)))
273 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
231 231  
232 -[[image:image-20230805104104-2.png||height="136" width="754"]]
233 233  
276 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
234 234  
235 -==== (% style="color:blue" %)**Battery Info**(%%) ====
236 236  
279 += 2. Configure LDS12-LB to connect to LoRaWAN network =
237 237  
238 -Check the battery voltage for DS20L.
281 +== 2.1 How it works ==
239 239  
240 -Ex1: 0x0B45 = 2885mV
241 241  
242 -Ex2: 0x0B49 = 2889mV
284 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
243 243  
286 +(% style="display:none" %) (%%)
244 244  
245 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
288 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
246 246  
247 247  
248 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
291 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
249 249  
293 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
250 250  
251 -**Example**:
295 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
252 252  
253 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
254 254  
255 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
298 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
256 256  
300 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
257 257  
258 -==== (% style="color:blue" %)**Distance**(%%) ====
302 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
259 259  
260 260  
261 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
305 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
262 262  
263 263  
264 -**Example**:
308 +(% style="color:blue" %)**Register the device**
265 265  
266 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
310 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
267 267  
268 268  
269 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
313 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
270 270  
315 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
271 271  
272 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
273 273  
318 +(% style="color:blue" %)**Add APP EUI in the application**
274 274  
275 -**Example**:
276 276  
277 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
321 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
278 278  
279 -Customers can judge whether they need to adjust the environment based on the signal strength.
280 280  
324 +(% style="color:blue" %)**Add APP KEY**
281 281  
282 -**1) When the sensor detects valid data:**
326 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
283 283  
284 -[[image:image-20230805155335-1.png||height="145" width="724"]]
285 285  
329 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
286 286  
287 -**2) When the sensor detects invalid data:**
288 288  
289 -[[image:image-20230805155428-2.png||height="139" width="726"]]
332 +Press the button for 5 seconds to activate the LDS12-LB.
290 290  
334 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
291 291  
292 -**3) When the sensor is not connected:**
336 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
293 293  
294 -[[image:image-20230805155515-3.png||height="143" width="725"]]
295 295  
339 +== 2.3  ​Uplink Payload ==
296 296  
297 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
298 298  
342 +(((
343 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
344 +)))
299 299  
300 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
346 +(((
347 +Uplink payload includes in total 8 bytes.
348 +)))
301 301  
302 -Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI .
350 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
351 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
352 +**Size(bytes)**
353 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
354 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
355 +[[Distance>>||anchor="H2.3.2A0Distance"]]
356 +(unit: mm)
357 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
358 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
359 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
303 303  
304 -**Example:**
361 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
305 305  
306 -If byte[0]&0x01=0x00 : Normal uplink packet.
307 307  
308 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
364 +=== 2.3.1  Battery Info ===
309 309  
310 310  
311 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
367 +Check the battery voltage for LDS12-LB.
312 312  
369 +Ex1: 0x0B45 = 2885mV
313 313  
314 -Characterize the internal temperature value of the sensor.
371 +Ex2: 0x0B49 = 2889mV
315 315  
316 -**Example: **
317 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
318 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
319 319  
374 +=== 2.3.2  Distance ===
320 320  
321 -==== (% style="color:blue" %)**Message Type**(%%) ====
322 322  
323 -
324 324  (((
325 -For a normal uplink payload, the message type is always 0x01.
378 +Get the distance. Flat object range 20mm - 2000mm.
326 326  )))
327 327  
328 328  (((
329 -Valid Message Type:
330 -)))
382 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
331 331  
332 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
333 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
334 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
335 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
336 -
337 -[[image:image-20230805150315-4.png||height="233" width="723"]]
338 -
339 -
340 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
341 -
342 -
343 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
344 -
345 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
346 -
347 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
348 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
349 -**Size(bytes)**
350 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
351 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
352 -Reserve(0xFF)
353 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
354 -LiDAR temp
355 -)))|(% style="width:85px" %)Unix TimeStamp
356 -
357 -**Interrupt flag & Interrupt level:**
358 -
359 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
360 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
361 -**Size(bit)**
362 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
363 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
364 -Interrupt flag
384 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
365 365  )))
366 366  
367 -* (((
368 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
369 -)))
387 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
370 370  
371 -For example, in the US915 band, the max payload for different DR is:
389 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
372 372  
373 -**a) DR0:** max is 11 bytes so one entry of data
391 +=== 2.3.3  Interrupt Pin ===
374 374  
375 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
376 376  
377 -**c) DR2:** total payload includes 11 entries of data
394 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
378 378  
379 -**d) DR3:** total payload includes 22 entries of data.
396 +**Example:**
380 380  
381 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
398 +0x00: Normal uplink packet.
382 382  
400 +0x01: Interrupt Uplink Packet.
383 383  
384 -**Downlink:**
385 385  
386 -0x31 64 CC 68 0C 64 CC 69 74 05
403 +=== 2.3.4  DS18B20 Temperature sensor ===
387 387  
388 -[[image:image-20230805144936-2.png||height="113" width="746"]]
389 389  
390 -**Uplink:**
406 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
391 391  
392 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
408 +**Example**:
393 393  
410 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
394 394  
395 -**Parsed Value:**
412 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
396 396  
397 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
398 398  
415 +=== 2.3.5  Sensor Flag ===
399 399  
400 -[360,176,30,High,True,2023-08-04 02:53:00],
401 401  
402 -[355,168,30,Low,False,2023-08-04 02:53:29],
418 +(((
419 +0x01: Detect Ultrasonic Sensor
420 +)))
403 403  
404 -[245,211,30,Low,False,2023-08-04 02:54:29],
422 +(((
423 +0x00: No Ultrasonic Sensor
424 +)))
405 405  
406 -[57,700,30,Low,False,2023-08-04 02:55:29],
407 407  
408 -[361,164,30,Low,True,2023-08-04 02:56:00],
427 +=== 2.3.6  Decode payload in The Things Network ===
409 409  
410 -[337,184,30,Low,False,2023-08-04 02:56:40],
411 411  
412 -[20,4458,30,Low,False,2023-08-04 02:57:40],
430 +While using TTN network, you can add the payload format to decode the payload.
413 413  
414 -[362,173,30,Low,False,2023-08-04 02:58:53],
432 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
415 415  
434 +The payload decoder function for TTN V3 is here:
416 416  
417 -**History read from serial port:**
436 +(((
437 +LDS12-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
438 +)))
418 418  
419 -[[image:image-20230805145056-3.png]]
420 420  
441 +== 2.4  Uplink Interval ==
421 421  
422 -=== 2.3.4 Decode payload in The Things Network ===
423 423  
444 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
424 424  
425 -While using TTN network, you can add the payload format to decode the payload.
426 426  
427 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
447 +== 2.5  ​Show Data in DataCake IoT Server ==
428 428  
429 429  
430 430  (((
431 -The payload decoder function for TTN is here:
432 -)))
433 -
434 -(((
435 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
436 -)))
437 -
438 -
439 -== 2.4 ​Show Data in DataCake IoT Server ==
440 -
441 -
442 -(((
443 443  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
444 444  )))
445 445  
... ... @@ -461,7 +461,7 @@
461 461  
462 462  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
463 463  
464 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
472 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
465 465  
466 466  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
467 467  
... ... @@ -471,29 +471,34 @@
471 471  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
472 472  
473 473  
474 -== 2.5 Datalog Feature ==
482 +== 2.6 Datalog Feature ==
475 475  
476 476  
477 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes.
485 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
478 478  
479 479  
480 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
488 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
481 481  
482 482  
483 -Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
491 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
484 484  
485 485  * (((
486 -a) DS20L will do an ACK check for data records sending to make sure every data arrive server.
494 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
487 487  )))
488 488  * (((
489 -b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.
497 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
490 490  )))
491 491  
492 -=== 2.5.2 Unix TimeStamp ===
500 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
493 493  
502 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
494 494  
495 -DS20L uses Unix TimeStamp format based on
496 496  
505 +=== 2.6.2 Unix TimeStamp ===
506 +
507 +
508 +LDS12-LB uses Unix TimeStamp format based on
509 +
497 497  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
498 498  
499 499  User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
... ... @@ -506,23 +506,23 @@
506 506  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
507 507  
508 508  
509 -=== 2.5.3 Set Device Time ===
522 +=== 2.6.3 Set Device Time ===
510 510  
511 511  
512 512  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
513 513  
514 -Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
527 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
515 515  
516 516  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
517 517  
518 518  
519 -=== 2.5.4 Poll sensor value ===
532 +=== 2.6.4 Poll sensor value ===
520 520  
521 521  
522 522  Users can poll sensor values based on timestamps. Below is the downlink command.
523 523  
524 524  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
525 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
538 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
526 526  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
527 527  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
528 528  
... ... @@ -539,24 +539,24 @@
539 539  )))
540 540  
541 541  (((
542 -Uplink Internal =5s,means DS20L will send one packet every 5s. range 5~~255s.
555 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
543 543  )))
544 544  
545 545  
546 -== 2.6 Frequency Plans ==
559 +== 2.7 Frequency Plans ==
547 547  
548 548  
549 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
562 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
550 550  
551 551  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
552 552  
553 553  
554 -3. Configure DS20L
567 += 3. Configure LDS12-LB =
555 555  
556 556  == 3.1 Configure Methods ==
557 557  
558 558  
559 -DS20L supports below configure method:
572 +LDS12-LB supports below configure method:
560 560  
561 561  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
562 562  
... ... @@ -578,10 +578,10 @@
578 578  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
579 579  
580 580  
581 -== 3.3 Commands special design for DS20L ==
594 +== 3.3 Commands special design for LDS12-LB ==
582 582  
583 583  
584 -These commands only valid for DS20L, as below:
597 +These commands only valid for LDS12-LB, as below:
585 585  
586 586  
587 587  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -596,7 +596,7 @@
596 596  )))
597 597  
598 598  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
599 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
612 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
600 600  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
601 601  30000
602 602  OK
... ... @@ -632,24 +632,20 @@
632 632  === 3.3.2 Set Interrupt Mode ===
633 633  
634 634  
635 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
648 +Feature, Set Interrupt mode for PA8 of pin.
636 636  
637 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
650 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
638 638  
639 639  (% style="color:blue" %)**AT Command: AT+INTMOD**
640 640  
641 641  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
642 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
655 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
643 643  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
644 644  0
645 645  OK
646 646  the mode is 0 =Disable Interrupt
647 647  )))
648 -|(% style="width:154px" %)(((
649 -AT+INTMOD=2
650 -
651 -(default)
652 -)))|(% style="width:196px" %)(((
661 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
653 653  Set Transmit Interval
654 654  0. (Disable Interrupt),
655 655  ~1. (Trigger by rising and falling edge)
... ... @@ -670,7 +670,7 @@
670 670  = 4. Battery & Power Consumption =
671 671  
672 672  
673 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
682 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
674 674  
675 675  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
676 676  
... ... @@ -679,7 +679,7 @@
679 679  
680 680  
681 681  (% class="wikigeneratedid" %)
682 -User can change firmware DS20L to:
691 +User can change firmware LDS12-LB to:
683 683  
684 684  * Change Frequency band/ region.
685 685  
... ... @@ -687,7 +687,7 @@
687 687  
688 688  * Fix bugs.
689 689  
690 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
699 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
691 691  
692 692  Methods to Update Firmware:
693 693  
... ... @@ -697,10 +697,10 @@
697 697  
698 698  = 6. FAQ =
699 699  
700 -== 6.1 What is the frequency plan for DS20L? ==
709 +== 6.1 What is the frequency plan for LDS12-LB? ==
701 701  
702 702  
703 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
712 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
704 704  
705 705  
706 706  = 7. Trouble Shooting =
... ... @@ -715,11 +715,11 @@
715 715  
716 716  
717 717  (((
718 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
727 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
719 719  )))
720 720  
721 721  (((
722 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
731 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
723 723  )))
724 724  
725 725  
... ... @@ -728,7 +728,7 @@
728 728  )))
729 729  
730 730  (((
731 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
740 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
732 732  )))
733 733  
734 734  
... ... @@ -735,7 +735,7 @@
735 735  = 8. Order Info =
736 736  
737 737  
738 -Part Number: (% style="color:blue" %)**DS20L-XXX**
747 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
739 739  
740 740  (% style="color:red" %)**XXX**(%%): **The default frequency band**
741 741  
... ... @@ -760,7 +760,7 @@
760 760  
761 761  (% style="color:#037691" %)**Package Includes**:
762 762  
763 -* DS20L LoRaWAN Smart Distance Detector x 1
772 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
764 764  
765 765  (% style="color:#037691" %)**Dimension and weight**:
766 766  
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content