Last modified by Mengting Qiu on 2023/12/14 11:15

From version 116.4
edited by Xiaoling
on 2023/11/13 10:38
Change comment: There is no comment for this version
To version 84.3
edited by Xiaoling
on 2023/06/15 16:41
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,226 +19,262 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 +[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +
40 +
38 38  == 1.2 ​Features ==
39 39  
40 40  
41 -* LoRaWAN Class A protocol
42 -* LiDAR distance detector, range 3 ~~ 200cm
43 -* Periodically detect or continuously detect mode
44 +* LoRaWAN 1.0.3 Class A
45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 +* Ultra-low power consumption
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
51 +* Support Bluetooth v5.1 and LoRaWAN remote configure
52 +* Support wireless OTA update firmware
44 44  * AT Commands to change parameters
45 -* Remotely configure parameters via LoRaWAN Downlink
46 -* Alarm & Counting mode
47 -* Firmware upgradable via program port or LoRa protocol
48 -* Built-in 2400mAh battery or power by external power source
54 +* Downlink to change configure
55 +* 8500mAh Battery for long term use
49 49  
50 50  
58 +
51 51  == 1.3 Specification ==
52 52  
53 53  
54 -(% style="color:#037691" %)**LiDAR Sensor:**
62 +(% style="color:#037691" %)**Common DC Characteristics:**
55 55  
56 -* Operation Temperature: -40 ~~ 80 °C
57 -* Operation Humidity: 0~~99.9%RH (no Dew)
58 -* Storage Temperature: -10 ~~ 45°C
59 -* Measure Range: 3cm~~200cm @ 90% reflectivity
60 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
61 -* ToF FoV: ±9°, Total 18°
62 -* Light source: VCSEL
64 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
65 +* Operating Temperature: -40 ~~ 85°C
63 63  
67 +(% style="color:#037691" %)**Probe Specification:**
64 64  
69 +* Storage temperature:-20℃~~75℃
70 +* Operating temperature : -20℃~~60℃
71 +* Measure Distance:
72 +** 0.1m ~~ 12m @ 90% Reflectivity
73 +** 0.1m ~~ 4m @ 10% Reflectivity
74 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 +* Distance resolution : 5mm
76 +* Ambient light immunity : 70klux
77 +* Enclosure rating : IP65
78 +* Light source : LED
79 +* Central wavelength : 850nm
80 +* FOV : 3.6°
81 +* Material of enclosure : ABS+PC
82 +* Wire length : 25cm
65 65  
84 +(% style="color:#037691" %)**LoRa Spec:**
66 66  
67 -== 1.4 Power Consumption ==
86 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
87 +* Max +22 dBm constant RF output vs.
88 +* RX sensitivity: down to -139 dBm.
89 +* Excellent blocking immunity
68 68  
91 +(% style="color:#037691" %)**Battery:**
69 69  
70 -(% style="color:#037691" %)**Battery Power Mode:**
93 +* Li/SOCI2 un-chargeable battery
94 +* Capacity: 8500mAh
95 +* Self-Discharge: <1% / Year @ 25°C
96 +* Max continuously current: 130mA
97 +* Max boost current: 2A, 1 second
71 71  
72 -* Idle: 0.003 mA @ 3.3v
73 -* Max : 360 mA
99 +(% style="color:#037691" %)**Power Consumption**
74 74  
75 -(% style="color:#037691" %)**Continuously mode**:
101 +* Sleep Mode: 5uA @ 3.3v
102 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
76 76  
77 -* Idle: 21 mA @ 3.3v
78 -* Max : 360 mA
79 79  
80 80  
106 +== 1.4 Applications ==
81 81  
82 82  
83 -= 2. Configure DS20L to connect to LoRaWAN network =
109 +* Horizontal distance measurement
110 +* Parking management system
111 +* Object proximity and presence detection
112 +* Intelligent trash can management system
113 +* Robot obstacle avoidance
114 +* Automatic control
115 +* Sewer
84 84  
85 -== 2.1 How it works ==
86 86  
87 87  
88 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
119 +(% style="display:none" %)
89 89  
90 -(% style="display:none" %) (%%)
121 +== 1.5 Sleep mode and working mode ==
91 91  
92 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
93 93  
124 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
94 94  
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
126 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
96 96  
97 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
98 98  
99 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
129 +== 1.6 Button & LEDs ==
100 100  
101 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
102 102  
103 -Each DS20L is shipped with a sticker with the default device EUI as below:
132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
104 104  
105 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
106 106  
135 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
137 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
140 +)))
141 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
142 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
143 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
144 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
145 +)))
146 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107 107  
108 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
109 109  
110 110  
111 -(% style="color:blue" %)**Register the device**
150 +== 1.7 BLE connection ==
112 112  
113 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
114 114  
153 +LDS12-LB support BLE remote configure.
115 115  
116 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
155 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
117 117  
118 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
157 +* Press button to send an uplink
158 +* Press button to active device.
159 +* Device Power on or reset.
119 119  
161 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120 120  
121 -(% style="color:blue" %)**Add APP EUI in the application**
122 122  
164 +== 1.8 Pin Definitions ==
123 123  
124 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
166 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
125 125  
126 126  
127 -(% style="color:blue" %)**Add APP KEY**
169 +== 1.9 Mechanical ==
128 128  
129 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
130 130  
172 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
131 131  
132 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
133 133  
175 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 134  
135 -Press the button for 5 seconds to activate the DS20L.
136 136  
137 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
178 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
138 138  
139 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
140 140  
181 +(% style="color:blue" %)**Probe Mechanical:**
141 141  
142 -== 2.3 ​Uplink Payload ==
143 143  
144 -=== 2.3.1 Device Status, FPORT~=5 ===
184 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
145 145  
146 146  
147 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
187 += 2. Configure LDS12-LB to connect to LoRaWAN network =
148 148  
149 -The Payload format is as below.
189 +== 2.1 How it works ==
150 150  
151 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
152 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
153 -**Size(bytes)**
154 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
155 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
156 156  
157 -Example parse in TTNv3
192 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 158  
159 -[[image:image-20230805103904-1.png||height="131" width="711"]]
194 +(% style="display:none" %) (%%)
160 160  
161 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24
196 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
162 162  
163 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
164 164  
165 -(% style="color:blue" %)**Frequency Band**:
199 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
166 166  
167 -0x01: EU868
201 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
168 168  
169 -0x02: US915
203 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
170 170  
171 -0x03: IN865
172 172  
173 -0x04: AU915
206 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
174 174  
175 -0x05: KZ865
208 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
176 176  
177 -0x06: RU864
210 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
178 178  
179 -0x07: AS923
180 180  
181 -0x08: AS923-1
213 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
182 182  
183 -0x09: AS923-2
184 184  
185 -0x0a: AS923-3
216 +(% style="color:blue" %)**Register the device**
186 186  
187 -0x0b: CN470
218 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
188 188  
189 -0x0c: EU433
190 190  
191 -0x0d: KR920
221 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
192 192  
193 -0x0e: MA869
223 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
194 194  
195 -(% style="color:blue" %)**Sub-Band**:
196 196  
197 -AU915 and US915:value 0x00 ~~ 0x08
226 +(% style="color:blue" %)**Add APP EUI in the application**
198 198  
199 -CN470: value 0x0B ~~ 0x0C
200 200  
201 -Other Bands: Always 0x00
229 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
202 202  
203 -(% style="color:blue" %)**Battery Info**:
204 204  
205 -Check the battery voltage.
232 +(% style="color:blue" %)**Add APP KEY**
206 206  
207 -Ex1: 0x0B45 = 2885mV
234 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
208 208  
209 -Ex2: 0x0B49 = 2889mV
210 210  
237 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
211 211  
212 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
213 213  
240 +Press the button for 5 seconds to activate the LDS12-LB.
214 214  
215 -(((
216 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
242 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
217 217  
218 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
244 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
219 219  
220 -Uplink Payload totals 11 bytes.
246 +
247 +== 2.3 ​Uplink Payload ==
248 +
249 +
250 +(((
251 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
221 221  )))
222 222  
254 +(((
255 +Uplink payload includes in total 11 bytes.
256 +)))
257 +
223 223  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
224 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
259 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
225 225  **Size(bytes)**
226 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
227 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
228 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
229 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
230 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
231 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
232 -[[Message Type>>||anchor="HMessageType"]]
261 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
262 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
263 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
264 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
265 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
266 +)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
267 +[[Message Type>>||anchor="H2.3.7MessageType"]]
233 233  )))
234 234  
235 -[[image:image-20230805104104-2.png||height="136" width="754"]]
270 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
236 236  
237 237  
238 -==== (% style="color:blue" %)**Battery Info**(%%) ====
273 +=== 2.3.1 Battery Info ===
239 239  
240 240  
241 -Check the battery voltage for DS20L.
276 +Check the battery voltage for LDS12-LB.
242 242  
243 243  Ex1: 0x0B45 = 2885mV
244 244  
... ... @@ -245,7 +245,7 @@
245 245  Ex2: 0x0B49 = 2889mV
246 246  
247 247  
248 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
283 +=== 2.3.2 DS18B20 Temperature sensor ===
249 249  
250 250  
251 251  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
... ... @@ -258,7 +258,7 @@
258 258  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
259 259  
260 260  
261 -==== (% style="color:blue" %)**Distance**(%%) ====
296 +=== 2.3.3 Distance ===
262 262  
263 263  
264 264  Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
... ... @@ -269,7 +269,7 @@
269 269  If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
270 270  
271 271  
272 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
307 +=== 2.3.4 Distance signal strength ===
273 273  
274 274  
275 275  Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
... ... @@ -282,36 +282,21 @@
282 282  Customers can judge whether they need to adjust the environment based on the signal strength.
283 283  
284 284  
285 -**1) When the sensor detects valid data:**
320 +=== 2.3.5 Interrupt Pin ===
286 286  
287 -[[image:image-20230805155335-1.png||height="145" width="724"]]
288 288  
289 -
290 -**2) When the sensor detects invalid data:**
291 -
292 -[[image:image-20230805155428-2.png||height="139" width="726"]]
293 -
294 -
295 -**3) When the sensor is not connected:**
296 -
297 -[[image:image-20230805155515-3.png||height="143" width="725"]]
298 -
299 -
300 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
301 -
302 -
303 303  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
304 304  
305 -Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI .
325 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
306 306  
307 307  **Example:**
308 308  
309 -If byte[0]&0x01=0x00 : Normal uplink packet.
329 +0x00: Normal uplink packet.
310 310  
311 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
331 +0x01: Interrupt Uplink Packet.
312 312  
313 313  
314 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
334 +=== 2.3.6 LiDAR temp ===
315 315  
316 316  
317 317  Characterize the internal temperature value of the sensor.
... ... @@ -321,7 +321,7 @@
321 321  If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
322 322  
323 323  
324 -==== (% style="color:blue" %)**Message Type**(%%) ====
344 +=== 2.3.7 Message Type ===
325 325  
326 326  
327 327  (((
... ... @@ -334,97 +334,14 @@
334 334  
335 335  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
336 336  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
337 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
338 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
357 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
358 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
339 339  
340 -[[image:image-20230805150315-4.png||height="233" width="723"]]
341 341  
342 342  
343 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
362 +=== 2.3.8 Decode payload in The Things Network ===
344 344  
345 345  
346 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
347 -
348 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
349 -
350 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
351 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
352 -**Size(bytes)**
353 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
354 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
355 -Reserve(0xFF)
356 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
357 -LiDAR temp
358 -)))|(% style="width:85px" %)Unix TimeStamp
359 -
360 -**Interrupt flag & Interrupt level:**
361 -
362 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
363 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
364 -**Size(bit)**
365 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
366 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
367 -Interrupt flag
368 -)))
369 -
370 -* (((
371 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
372 -)))
373 -
374 -For example, in the US915 band, the max payload for different DR is:
375 -
376 -**a) DR0:** max is 11 bytes so one entry of data
377 -
378 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
379 -
380 -**c) DR2:** total payload includes 11 entries of data
381 -
382 -**d) DR3:** total payload includes 22 entries of data.
383 -
384 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
385 -
386 -
387 -**Downlink:**
388 -
389 -0x31 64 CC 68 0C 64 CC 69 74 05
390 -
391 -[[image:image-20230805144936-2.png||height="113" width="746"]]
392 -
393 -**Uplink:**
394 -
395 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
396 -
397 -
398 -**Parsed Value:**
399 -
400 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
401 -
402 -
403 -[360,176,30,High,True,2023-08-04 02:53:00],
404 -
405 -[355,168,30,Low,False,2023-08-04 02:53:29],
406 -
407 -[245,211,30,Low,False,2023-08-04 02:54:29],
408 -
409 -[57,700,30,Low,False,2023-08-04 02:55:29],
410 -
411 -[361,164,30,Low,True,2023-08-04 02:56:00],
412 -
413 -[337,184,30,Low,False,2023-08-04 02:56:40],
414 -
415 -[20,4458,30,Low,False,2023-08-04 02:57:40],
416 -
417 -[362,173,30,Low,False,2023-08-04 02:58:53],
418 -
419 -
420 -**History read from serial port:**
421 -
422 -[[image:image-20230805145056-3.png]]
423 -
424 -
425 -=== 2.3.4 Decode payload in The Things Network ===
426 -
427 -
428 428  While using TTN network, you can add the payload format to decode the payload.
429 429  
430 430  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
... ... @@ -435,13 +435,19 @@
435 435  )))
436 436  
437 437  (((
438 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
375 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
439 439  )))
440 440  
441 441  
442 -== 2.4 ​Show Data in DataCake IoT Server ==
379 +== 2.4 Uplink Interval ==
443 443  
444 444  
382 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
383 +
384 +
385 +== 2.5 ​Show Data in DataCake IoT Server ==
386 +
387 +
445 445  (((
446 446  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
447 447  )))
... ... @@ -464,7 +464,7 @@
464 464  
465 465  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
466 466  
467 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
410 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
468 468  
469 469  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
470 470  
... ... @@ -474,29 +474,34 @@
474 474  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
475 475  
476 476  
477 -== 2.5 Datalog Feature ==
420 +== 2.6 Datalog Feature ==
478 478  
479 479  
480 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes.
423 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
481 481  
482 482  
483 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
426 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
484 484  
485 485  
486 -Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
429 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
487 487  
488 488  * (((
489 -a) DS20L will do an ACK check for data records sending to make sure every data arrive server.
432 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
490 490  )))
491 491  * (((
492 -b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.
435 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
493 493  )))
494 494  
495 -=== 2.5.2 Unix TimeStamp ===
438 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
496 496  
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
497 497  
498 -DS20L uses Unix TimeStamp format based on
499 499  
443 +=== 2.6.2 Unix TimeStamp ===
444 +
445 +
446 +LDS12-LB uses Unix TimeStamp format based on
447 +
500 500  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
501 501  
502 502  User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
... ... @@ -509,23 +509,23 @@
509 509  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
510 510  
511 511  
512 -=== 2.5.3 Set Device Time ===
460 +=== 2.6.3 Set Device Time ===
513 513  
514 514  
515 515  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
516 516  
517 -Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
465 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
518 518  
519 519  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
520 520  
521 521  
522 -=== 2.5.4 Poll sensor value ===
470 +=== 2.6.4 Poll sensor value ===
523 523  
524 524  
525 525  Users can poll sensor values based on timestamps. Below is the downlink command.
526 526  
527 527  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
528 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
476 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
529 529  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
530 530  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
531 531  
... ... @@ -542,24 +542,112 @@
542 542  )))
543 543  
544 544  (((
545 -Uplink Internal =5s,means DS20L will send one packet every 5s. range 5~~255s.
493 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
546 546  )))
547 547  
548 548  
549 -== 2.6 Frequency Plans ==
497 +== 2.7 Frequency Plans ==
550 550  
551 551  
552 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
500 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
553 553  
554 554  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
555 555  
556 556  
557 -3. Configure DS20L
505 +== 2.8 LiDAR ToF Measurement ==
558 558  
507 +=== 2.8.1 Principle of Distance Measurement ===
508 +
509 +
510 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
511 +
512 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
513 +
514 +
515 +=== 2.8.2 Distance Measurement Characteristics ===
516 +
517 +
518 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
519 +
520 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
521 +
522 +
523 +(((
524 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
525 +)))
526 +
527 +(((
528 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
529 +)))
530 +
531 +(((
532 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
533 +)))
534 +
535 +
536 +(((
537 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
538 +)))
539 +
540 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
541 +
542 +(((
543 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
544 +)))
545 +
546 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
547 +
548 +(((
549 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
550 +)))
551 +
552 +
553 +=== 2.8.3 Notice of usage ===
554 +
555 +
556 +Possible invalid /wrong reading for LiDAR ToF tech:
557 +
558 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
559 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
560 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
561 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
562 +
563 +
564 +
565 +=== 2.8.4  Reflectivity of different objects ===
566 +
567 +
568 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
569 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
570 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
571 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
572 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
573 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
574 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
575 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
576 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
577 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
578 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
579 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
580 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
581 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
582 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
583 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
584 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
585 +Unpolished white metal surface
586 +)))|(% style="width:93px" %)130%
587 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
588 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
589 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
590 +
591 +
592 +
593 += 3. Configure LDS12-LB =
594 +
559 559  == 3.1 Configure Methods ==
560 560  
561 561  
562 -DS20L supports below configure method:
598 +LDS12-LB supports below configure method:
563 563  
564 564  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
565 565  
... ... @@ -567,6 +567,8 @@
567 567  
568 568  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
569 569  
606 +
607 +
570 570  == 3.2 General Commands ==
571 571  
572 572  
... ... @@ -581,10 +581,10 @@
581 581  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
582 582  
583 583  
584 -== 3.3 Commands special design for DS20L ==
622 +== 3.3 Commands special design for LDS12-LB ==
585 585  
586 586  
587 -These commands only valid for DS20L, as below:
625 +These commands only valid for LDS12-LB, as below:
588 588  
589 589  
590 590  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -635,9 +635,9 @@
635 635  === 3.3.2 Set Interrupt Mode ===
636 636  
637 637  
638 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
676 +Feature, Set Interrupt mode for PA8 of pin.
639 639  
640 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
678 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
641 641  
642 642  (% style="color:blue" %)**AT Command: AT+INTMOD**
643 643  
... ... @@ -648,11 +648,7 @@
648 648  OK
649 649  the mode is 0 =Disable Interrupt
650 650  )))
651 -|(% style="width:154px" %)(((
652 -AT+INTMOD=2
653 -
654 -(default)
655 -)))|(% style="width:196px" %)(((
689 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
656 656  Set Transmit Interval
657 657  0. (Disable Interrupt),
658 658  ~1. (Trigger by rising and falling edge)
... ... @@ -670,10 +670,89 @@
670 670  
671 671  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
672 672  
707 +
708 +
709 +=== 3.3.3 Get Firmware Version Info ===
710 +
711 +
712 +Feature: use downlink to get firmware version.
713 +
714 +(% style="color:blue" %)**Downlink Command: 0x26**
715 +
716 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
717 +|(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)**
718 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
719 +
720 +* Reply to the confirmation package: 26 01
721 +* Reply to non-confirmed packet: 26 00
722 +
723 +Device will send an uplink after got this downlink command. With below payload:
724 +
725 +Configures info payload:
726 +
727 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
728 +|=(% style="background-color:#4F81BD;color:white" %)(((
729 +**Size(bytes)**
730 +)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
731 +|**Value**|Software Type|(((
732 +Frequency Band
733 +)))|Sub-band|(((
734 +Firmware Version
735 +)))|Sensor Type|Reserve|(((
736 +[[Message Type>>||anchor="H2.3.7MessageType"]]
737 +Always 0x02
738 +)))
739 +
740 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
741 +
742 +(% style="color:#037691" %)**Frequency Band**:
743 +
744 +0x01: EU868
745 +
746 +0x02: US915
747 +
748 +0x03: IN865
749 +
750 +0x04: AU915
751 +
752 +0x05: KZ865
753 +
754 +0x06: RU864
755 +
756 +0x07: AS923
757 +
758 +0x08: AS923-1
759 +
760 +0x09: AS923-2
761 +
762 +0xa0: AS923-3
763 +
764 +
765 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
766 +
767 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
768 +
769 +(% style="color:#037691" %)**Sensor Type**:
770 +
771 +0x01: LSE01
772 +
773 +0x02: LDDS75
774 +
775 +0x03: LDDS20
776 +
777 +0x04: LLMS01
778 +
779 +0x05: LSPH01
780 +
781 +0x06: LSNPK01
782 +
783 +0x07: LLDS12
784 +
785 +
673 673  = 4. Battery & Power Consumption =
674 674  
675 675  
676 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
789 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
677 677  
678 678  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
679 679  
... ... @@ -682,7 +682,7 @@
682 682  
683 683  
684 684  (% class="wikigeneratedid" %)
685 -User can change firmware DS20L to:
798 +User can change firmware LDS12-LB to:
686 686  
687 687  * Change Frequency band/ region.
688 688  
... ... @@ -690,7 +690,7 @@
690 690  
691 691  * Fix bugs.
692 692  
693 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
806 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
694 694  
695 695  Methods to Update Firmware:
696 696  
... ... @@ -698,12 +698,14 @@
698 698  
699 699  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
700 700  
814 +
815 +
701 701  = 6. FAQ =
702 702  
703 -== 6.1 What is the frequency plan for DS20L? ==
818 +== 6.1 What is the frequency plan for LDS12-LB? ==
704 704  
705 705  
706 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
821 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
707 707  
708 708  
709 709  = 7. Trouble Shooting =
... ... @@ -738,7 +738,7 @@
738 738  = 8. Order Info =
739 739  
740 740  
741 -Part Number: (% style="color:blue" %)**DS20L-XXX**
856 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
742 742  
743 743  (% style="color:red" %)**XXX**(%%): **The default frequency band**
744 744  
... ... @@ -758,12 +758,14 @@
758 758  
759 759  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
760 760  
876 +
877 +
761 761  = 9. ​Packing Info =
762 762  
763 763  
764 764  (% style="color:#037691" %)**Package Includes**:
765 765  
766 -* DS20L LoRaWAN Smart Distance Detector x 1
883 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
767 767  
768 768  (% style="color:#037691" %)**Dimension and weight**:
769 769  
... ... @@ -775,6 +775,8 @@
775 775  
776 776  * Weight / pcs : g
777 777  
895 +
896 +
778 778  = 10. Support =
779 779  
780 780  
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content