Last modified by Mengting Qiu on 2023/12/14 11:15

From version 116.3
edited by Xiaoling
on 2023/11/13 10:38
Change comment: There is no comment for this version
To version 113.3
edited by Xiaoling
on 2023/11/10 09:28
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -22,7 +22,7 @@
22 22  == 1.1 What is LoRaWAN Smart Distance Detector ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
26 26  
27 27  DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 28  consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
... ... @@ -31,62 +31,155 @@
31 31  
32 32  DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
33 33  
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
36 36  
37 37  
38 38  == 1.2 ​Features ==
39 39  
40 40  
41 -* LoRaWAN Class A protocol
42 -* LiDAR distance detector, range 3 ~~ 200cm
43 -* Periodically detect or continuously detect mode
42 +* LoRaWAN 1.0.3 Class A
43 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
44 +* Ultra-low power consumption
45 +* Laser technology for distance detection
46 +* Measure Distance: 0.1m~~12m
47 +* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
48 +* Monitor Battery Level
49 +* Support Bluetooth v5.1 and LoRaWAN remote configure
50 +* Support wireless OTA update firmware
44 44  * AT Commands to change parameters
45 -* Remotely configure parameters via LoRaWAN Downlink
46 -* Alarm & Counting mode
47 -* Firmware upgradable via program port or LoRa protocol
48 -* Built-in 2400mAh battery or power by external power source
52 +* Downlink to change configure
53 +* 8500mAh Battery for long term use
49 49  
50 -(% style="display:none" %)
51 -
52 52  == 1.3 Specification ==
53 53  
54 54  
55 -(% style="color:#037691" %)**LiDAR Sensor:**
58 +(% style="color:#037691" %)**Common DC Characteristics:**
56 56  
57 -* Operation Temperature: -40 ~~ 80 °C
58 -* Operation Humidity: 0~~99.9%RH (no Dew)
59 -* Storage Temperature: -10 ~~ 45°C
60 -* Measure Range: 3cm~~200cm @ 90% reflectivity
61 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 -* ToF FoV: ±9°, Total 18°
63 -* Light source: VCSEL
60 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
61 +* Operating Temperature: -40 ~~ 85°C
64 64  
63 +(% style="color:#037691" %)**Probe Specification:**
64 +
65 +* Storage temperature:-20℃~~75℃
66 +* Operating temperature : -20℃~~60℃
67 +* Measure Distance:
68 +** 0.1m ~~ 12m @ 90% Reflectivity
69 +** 0.1m ~~ 4m @ 10% Reflectivity
70 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
71 +* Distance resolution : 1cm
72 +* Ambient light immunity : 70klux
73 +* Enclosure rating : IP65
74 +* Light source : LED
75 +* Central wavelength : 850nm
76 +* FOV : 3.6°
77 +* Material of enclosure : ABS+PC
78 +* Wire length : 25cm
79 +
80 +(% style="color:#037691" %)**LoRa Spec:**
81 +
82 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
83 +* Max +22 dBm constant RF output vs.
84 +* RX sensitivity: down to -139 dBm.
85 +* Excellent blocking immunity
86 +
87 +(% style="color:#037691" %)**Battery:**
88 +
89 +* Li/SOCI2 un-chargeable battery
90 +* Capacity: 8500mAh
91 +* Self-Discharge: <1% / Year @ 25°C
92 +* Max continuously current: 130mA
93 +* Max boost current: 2A, 1 second
94 +
95 +(% style="color:#037691" %)**Power Consumption**
96 +
97 +* Sleep Mode: 5uA @ 3.3v
98 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
99 +
100 +== 1.4 Applications ==
101 +
102 +
103 +* Horizontal distance measurement
104 +* Parking management system
105 +* Object proximity and presence detection
106 +* Intelligent trash can management system
107 +* Robot obstacle avoidance
108 +* Automatic control
109 +* Sewer
110 +
65 65  (% style="display:none" %)
66 66  
113 +== 1.5 Sleep mode and working mode ==
67 67  
68 -== 1.4 Power Consumption ==
69 69  
116 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
70 70  
71 -(% style="color:#037691" %)**Battery Power Mode:**
118 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
72 72  
73 -* Idle: 0.003 mA @ 3.3v
74 -* Max : 360 mA
75 75  
76 -(% style="color:#037691" %)**Continuously mode**:
121 +== 1.6 Button & LEDs ==
77 77  
78 -* Idle: 21 mA @ 3.3v
79 -* Max : 360 mA
80 80  
124 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
81 81  
82 82  
127 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
128 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
129 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
130 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
131 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
132 +)))
133 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
134 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
135 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
136 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
137 +)))
138 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
83 83  
84 -= 2. Configure DS20L to connect to LoRaWAN network =
140 +== 1.7 BLE connection ==
85 85  
142 +
143 +LDS12-LB support BLE remote configure.
144 +
145 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
146 +
147 +* Press button to send an uplink
148 +* Press button to active device.
149 +* Device Power on or reset.
150 +
151 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
152 +
153 +
154 +== 1.8 Pin Definitions ==
155 +
156 +
157 +[[image:image-20230805144259-1.png||height="413" width="741"]]
158 +
159 +== 1.9 Mechanical ==
160 +
161 +
162 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
163 +
164 +
165 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
166 +
167 +
168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
169 +
170 +
171 +(% style="color:blue" %)**Probe Mechanical:**
172 +
173 +
174 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
175 +
176 +
177 += 2. Configure LDS12-LB to connect to LoRaWAN network =
178 +
86 86  == 2.1 How it works ==
87 87  
88 88  
89 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
182 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
90 90  
91 91  (% style="display:none" %) (%%)
92 92  
... ... @@ -95,14 +95,15 @@
95 95  
96 96  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
97 97  
98 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
191 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
99 99  
100 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
193 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
101 101  
102 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
103 103  
104 -Each DS20L is shipped with a sticker with the default device EUI as below:
196 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
105 105  
198 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
199 +
106 106  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
107 107  
108 108  
... ... @@ -130,10 +130,10 @@
130 130  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
131 131  
132 132  
133 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
227 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
134 134  
135 135  
136 -Press the button for 5 seconds to activate the DS20L.
230 +Press the button for 5 seconds to activate the LDS12-LB.
137 137  
138 138  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
139 139  
... ... @@ -145,7 +145,7 @@
145 145  === 2.3.1 Device Status, FPORT~=5 ===
146 146  
147 147  
148 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
242 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
149 149  
150 150  The Payload format is as below.
151 151  
... ... @@ -159,7 +159,7 @@
159 159  
160 160  [[image:image-20230805103904-1.png||height="131" width="711"]]
161 161  
162 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24
256 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
163 163  
164 164  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
165 165  
... ... @@ -214,7 +214,7 @@
214 214  
215 215  
216 216  (((
217 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
311 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
218 218  
219 219  periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
220 220  
... ... @@ -239,7 +239,7 @@
239 239  ==== (% style="color:blue" %)**Battery Info**(%%) ====
240 240  
241 241  
242 -Check the battery voltage for DS20L.
336 +Check the battery voltage for LDS12-LB.
243 243  
244 244  Ex1: 0x0B45 = 2885mV
245 245  
... ... @@ -303,7 +303,7 @@
303 303  
304 304  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
305 305  
306 -Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI .
400 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
307 307  
308 308  **Example:**
309 309  
... ... @@ -344,7 +344,7 @@
344 344  === 2.3.3 Historical measuring distance, FPORT~=3 ===
345 345  
346 346  
347 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
441 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
348 348  
349 349  The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
350 350  
... ... @@ -369,7 +369,7 @@
369 369  )))
370 370  
371 371  * (((
372 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
466 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
373 373  )))
374 374  
375 375  For example, in the US915 band, the max payload for different DR is:
... ... @@ -382,7 +382,7 @@
382 382  
383 383  **d) DR3:** total payload includes 22 entries of data.
384 384  
385 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
479 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
386 386  
387 387  
388 388  **Downlink:**
... ... @@ -436,7 +436,7 @@
436 436  )))
437 437  
438 438  (((
439 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
533 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
440 440  )))
441 441  
442 442  
... ... @@ -465,7 +465,7 @@
465 465  
466 466  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
467 467  
468 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
562 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
469 469  
470 470  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
471 471  
... ... @@ -478,25 +478,30 @@
478 478  == 2.5 Datalog Feature ==
479 479  
480 480  
481 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes.
575 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
482 482  
483 483  
484 484  === 2.5.1 Ways to get datalog via LoRaWAN ===
485 485  
486 486  
487 -Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
581 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
488 488  
489 489  * (((
490 -a) DS20L will do an ACK check for data records sending to make sure every data arrive server.
584 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
491 491  )))
492 492  * (((
493 -b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.
587 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
494 494  )))
495 495  
590 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
591 +
592 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
593 +
594 +
496 496  === 2.5.2 Unix TimeStamp ===
497 497  
498 498  
499 -DS20L uses Unix TimeStamp format based on
598 +LDS12-LB uses Unix TimeStamp format based on
500 500  
501 501  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
502 502  
... ... @@ -515,7 +515,7 @@
515 515  
516 516  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
517 517  
518 -Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
617 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
519 519  
520 520  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
521 521  
... ... @@ -543,7 +543,7 @@
543 543  )))
544 544  
545 545  (((
546 -Uplink Internal =5s,means DS20L will send one packet every 5s. range 5~~255s.
645 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
547 547  )))
548 548  
549 549  
... ... @@ -550,17 +550,101 @@
550 550  == 2.6 Frequency Plans ==
551 551  
552 552  
553 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
652 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
554 554  
555 555  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
556 556  
557 557  
558 -3. Configure DS20L
657 +== 2.7 LiDAR ToF Measurement ==
559 559  
659 +=== 2.7.1 Principle of Distance Measurement ===
660 +
661 +
662 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
663 +
664 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
665 +
666 +
667 +=== 2.7.2 Distance Measurement Characteristics ===
668 +
669 +
670 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
671 +
672 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
673 +
674 +
675 +(((
676 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
677 +)))
678 +
679 +(((
680 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
681 +)))
682 +
683 +(((
684 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
685 +)))
686 +
687 +
688 +(((
689 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
690 +)))
691 +
692 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
693 +
694 +(((
695 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
696 +)))
697 +
698 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
699 +
700 +(((
701 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
702 +)))
703 +
704 +
705 +=== 2.7.3 Notice of usage ===
706 +
707 +
708 +Possible invalid /wrong reading for LiDAR ToF tech:
709 +
710 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
711 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
712 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
713 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
714 +
715 +=== 2.7.4  Reflectivity of different objects ===
716 +
717 +
718 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
719 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
720 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
721 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
722 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
723 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
724 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
725 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
726 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
727 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
728 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
729 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
730 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
731 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
732 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
733 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
734 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
735 +Unpolished white metal surface
736 +)))|(% style="width:93px" %)130%
737 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
738 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
739 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
740 +
741 += 3. Configure LDS12-LB =
742 +
560 560  == 3.1 Configure Methods ==
561 561  
562 562  
563 -DS20L supports below configure method:
746 +LDS12-LB supports below configure method:
564 564  
565 565  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
566 566  
... ... @@ -582,10 +582,10 @@
582 582  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
583 583  
584 584  
585 -== 3.3 Commands special design for DS20L ==
768 +== 3.3 Commands special design for LDS12-LB ==
586 586  
587 587  
588 -These commands only valid for DS20L, as below:
771 +These commands only valid for LDS12-LB, as below:
589 589  
590 590  
591 591  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -671,10 +671,39 @@
671 671  
672 672  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
673 673  
857 +=== 3.3.3  Set Power Output Duration ===
858 +
859 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
860 +
861 +~1. first enable the power output to external sensor,
862 +
863 +2. keep it on as per duration, read sensor value and construct uplink payload
864 +
865 +3. final, close the power output.
866 +
867 +(% style="color:blue" %)**AT Command: AT+3V3T**
868 +
869 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
870 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
871 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
872 +OK
873 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
874 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
875 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
876 +
877 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
878 +Format: Command Code (0x07) followed by 3 bytes.
879 +
880 +The first byte is 01,the second and third bytes are the time to turn on.
881 +
882 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
883 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
884 +* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
885 +
674 674  = 4. Battery & Power Consumption =
675 675  
676 676  
677 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
889 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
678 678  
679 679  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
680 680  
... ... @@ -683,7 +683,7 @@
683 683  
684 684  
685 685  (% class="wikigeneratedid" %)
686 -User can change firmware DS20L to:
898 +User can change firmware LDS12-LB to:
687 687  
688 688  * Change Frequency band/ region.
689 689  
... ... @@ -691,7 +691,7 @@
691 691  
692 692  * Fix bugs.
693 693  
694 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
906 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
695 695  
696 696  Methods to Update Firmware:
697 697  
... ... @@ -701,10 +701,10 @@
701 701  
702 702  = 6. FAQ =
703 703  
704 -== 6.1 What is the frequency plan for DS20L? ==
916 +== 6.1 What is the frequency plan for LDS12-LB? ==
705 705  
706 706  
707 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
919 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
708 708  
709 709  
710 710  = 7. Trouble Shooting =
... ... @@ -739,7 +739,7 @@
739 739  = 8. Order Info =
740 740  
741 741  
742 -Part Number: (% style="color:blue" %)**DS20L-XXX**
954 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
743 743  
744 744  (% style="color:red" %)**XXX**(%%): **The default frequency band**
745 745  
... ... @@ -764,7 +764,7 @@
764 764  
765 765  (% style="color:#037691" %)**Package Includes**:
766 766  
767 -* DS20L LoRaWAN Smart Distance Detector x 1
979 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
768 768  
769 769  (% style="color:#037691" %)**Dimension and weight**:
770 770  
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content