Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -19,72 +19,170 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==22 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.DS20Lcan measurerangebetween3cm ~~ 200cm.25 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 27 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**29 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.31 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 33 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 - [[image:image-20231110102635-5.png||height="402"width="807"]]35 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 37 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 39 +[[image:image-20230615152941-1.png||height="459" width="800"]] 40 + 41 + 38 38 == 1.2 Features == 39 39 40 40 41 -* LoRaWAN Class A protocol 42 -* LiDAR distance detector, range 3 ~~ 200cm 43 -* Periodically detect or continuously detect mode 45 +* LoRaWAN 1.0.3 Class A 46 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 47 +* Ultra-low power consumption 48 +* Laser technology for distance detection 49 +* Measure Distance: 0.1m~~12m 50 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 51 +* Monitor Battery Level 52 +* Support Bluetooth v5.1 and LoRaWAN remote configure 53 +* Support wireless OTA update firmware 44 44 * AT Commands to change parameters 45 -* Remotely configure parameters via LoRaWAN Downlink 46 -* Alarm & Counting mode 47 -* Firmware upgradable via program port or LoRa protocol 48 -* Built-in 2400mAh battery or power by external power source 55 +* Downlink to change configure 56 +* 8500mAh Battery for long term use 49 49 50 50 == 1.3 Specification == 51 51 52 52 53 -(% style="color:#037691" %)** LiDARSensor:**61 +(% style="color:#037691" %)**Common DC Characteristics:** 54 54 55 -* Operation Temperature: -40 ~~ 80 °C 56 -* Operation Humidity: 0~~99.9%RH (no Dew) 57 -* Storage Temperature: -10 ~~ 45°C 58 -* Measure Range: 3cm~~200cm @ 90% reflectivity 59 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 60 -* ToF FoV: ±9°, Total 18° 61 -* Light source: VCSEL 63 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 64 +* Operating Temperature: -40 ~~ 85°C 62 62 66 +(% style="color:#037691" %)**Probe Specification:** 67 + 68 +* Storage temperature:-20℃~~75℃ 69 +* Operating temperature : -20℃~~60℃ 70 +* Measure Distance: 71 +** 0.1m ~~ 12m @ 90% Reflectivity 72 +** 0.1m ~~ 4m @ 10% Reflectivity 73 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 74 +* Distance resolution : 1cm 75 +* Ambient light immunity : 70klux 76 +* Enclosure rating : IP65 77 +* Light source : LED 78 +* Central wavelength : 850nm 79 +* FOV : 3.6° 80 +* Material of enclosure : ABS+PC 81 +* Wire length : 25cm 82 + 83 +(% style="color:#037691" %)**LoRa Spec:** 84 + 85 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 86 +* Max +22 dBm constant RF output vs. 87 +* RX sensitivity: down to -139 dBm. 88 +* Excellent blocking immunity 89 + 90 +(% style="color:#037691" %)**Battery:** 91 + 92 +* Li/SOCI2 un-chargeable battery 93 +* Capacity: 8500mAh 94 +* Self-Discharge: <1% / Year @ 25°C 95 +* Max continuously current: 130mA 96 +* Max boost current: 2A, 1 second 97 + 98 +(% style="color:#037691" %)**Power Consumption** 99 + 100 +* Sleep Mode: 5uA @ 3.3v 101 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 102 + 103 +== 1.4 Applications == 104 + 105 + 106 +* Horizontal distance measurement 107 +* Parking management system 108 +* Object proximity and presence detection 109 +* Intelligent trash can management system 110 +* Robot obstacle avoidance 111 +* Automatic control 112 +* Sewer 113 + 63 63 (% style="display:none" %) 64 64 116 +== 1.5 Sleep mode and working mode == 65 65 66 -== 1.4 Power Consumption == 67 67 119 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 68 68 69 -(% style="color: #037691" %)**BatteryPowerMode:**121 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 70 70 71 -* Idle: 0.003 mA @ 3.3v 72 -* Max : 360 mA 73 73 74 - (% style="color:#037691"%)**Continuouslymode**:124 +== 1.6 Button & LEDs == 75 75 76 -* Idle: 21 mA @ 3.3v 77 -* Max : 360 mA 78 78 127 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 79 79 80 80 130 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 131 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 132 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 133 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 134 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 135 +))) 136 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 137 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 138 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 139 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 140 +))) 141 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 81 81 82 -= 2.Configure DS20LtoconnecttoLoRaWANnetwork=143 +== 1.7 BLE connection == 83 83 145 + 146 +LDS12-LB support BLE remote configure. 147 + 148 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 149 + 150 +* Press button to send an uplink 151 +* Press button to active device. 152 +* Device Power on or reset. 153 + 154 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 155 + 156 + 157 +== 1.8 Pin Definitions == 158 + 159 + 160 +[[image:image-20230805144259-1.png||height="413" width="741"]] 161 + 162 +== 1.9 Mechanical == 163 + 164 + 165 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 166 + 167 + 168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 169 + 170 + 171 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 172 + 173 + 174 +(% style="color:blue" %)**Probe Mechanical:** 175 + 176 + 177 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 178 + 179 + 180 += 2. Configure LDS12-LB to connect to LoRaWAN network = 181 + 84 84 == 2.1 How it works == 85 85 86 86 87 -The DS2 0L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.185 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 88 88 89 89 (% style="display:none" %) (%%) 90 90 ... ... @@ -93,14 +93,15 @@ 93 93 94 94 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 95 95 96 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. (% style="display:none" %)194 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 97 97 98 -[[image:image-202311 10102635-5.png||height="402" width="807"]](% style="display:none" %)196 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 99 99 100 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 101 101 102 - EachDS20Lisshipped withastickerwith thedefaultdevice EUI asbelow:199 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 103 103 201 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 202 + 104 104 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 105 105 106 106 ... ... @@ -128,10 +128,10 @@ 128 128 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 129 129 130 130 131 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS2 0L230 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 132 132 133 133 134 -Press the button for 5 seconds to activate the DS2 0L.233 +Press the button for 5 seconds to activate the LDS12-LB. 135 135 136 136 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 137 137 ... ... @@ -143,7 +143,7 @@ 143 143 === 2.3.1 Device Status, FPORT~=5 === 144 144 145 145 146 -Users can use the downlink command(**0x26 01**) to ask DS2 0L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.245 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 147 147 148 148 The Payload format is as below. 149 149 ... ... @@ -157,7 +157,7 @@ 157 157 158 158 [[image:image-20230805103904-1.png||height="131" width="711"]] 159 159 160 -(% style="color:blue" %)**Sensor Model**(%%): For DS2 0L, this value is 0x24259 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 161 161 162 162 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 163 163 ... ... @@ -212,7 +212,7 @@ 212 212 213 213 214 214 ((( 215 -DS2 0L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:314 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 216 216 217 217 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 218 218 ... ... @@ -237,7 +237,7 @@ 237 237 ==== (% style="color:blue" %)**Battery Info**(%%) ==== 238 238 239 239 240 -Check the battery voltage for DS2 0L.339 +Check the battery voltage for LDS12-LB. 241 241 242 242 Ex1: 0x0B45 = 2885mV 243 243 ... ... @@ -301,7 +301,7 @@ 301 301 302 302 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 303 303 304 -Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI . 403 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI . 305 305 306 306 **Example:** 307 307 ... ... @@ -342,7 +342,7 @@ 342 342 === 2.3.3 Historical measuring distance, FPORT~=3 === 343 343 344 344 345 -DS2 0L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].444 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 346 346 347 347 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 348 348 ... ... @@ -367,7 +367,7 @@ 367 367 ))) 368 368 369 369 * ((( 370 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS2 0L will send max bytes according to the current DR and Frequency bands.469 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 371 371 ))) 372 372 373 373 For example, in the US915 band, the max payload for different DR is: ... ... @@ -380,7 +380,7 @@ 380 380 381 381 **d) DR3:** total payload includes 22 entries of data. 382 382 383 -If DS2 0L doesn't have any data in the polling time. It will uplink 11 bytes of 0482 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 384 384 385 385 386 386 **Downlink:** ... ... @@ -434,7 +434,7 @@ 434 434 ))) 435 435 436 436 ((( 437 -DS2 0L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]536 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 438 438 ))) 439 439 440 440 ... ... @@ -463,7 +463,7 @@ 463 463 464 464 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 465 465 466 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS2 0L and add DevEUI.**565 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 467 467 468 468 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 469 469 ... ... @@ -476,25 +476,30 @@ 476 476 == 2.5 Datalog Feature == 477 477 478 478 479 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS2 0L will store the reading for future retrieving purposes.578 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 480 480 481 481 482 482 === 2.5.1 Ways to get datalog via LoRaWAN === 483 483 484 484 485 -Set PNACKMD=1, DS2 0L will wait for ACK for every uplink, when there is no LoRaWAN network,0L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.584 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 486 486 487 487 * ((( 488 -a) DS2 0L will do an ACK check for data records sending to make sure every data arrive server.587 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 489 489 ))) 490 490 * ((( 491 -b) DS2 0L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.590 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 492 492 ))) 493 493 593 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 594 + 595 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 596 + 597 + 494 494 === 2.5.2 Unix TimeStamp === 495 495 496 496 497 -DS2 0L uses Unix TimeStamp format based on601 +LDS12-LB uses Unix TimeStamp format based on 498 498 499 499 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 500 500 ... ... @@ -513,7 +513,7 @@ 513 513 514 514 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 515 515 516 -Once DS2 0L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).620 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 517 517 518 518 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 519 519 ... ... @@ -541,7 +541,7 @@ 541 541 ))) 542 542 543 543 ((( 544 -Uplink Internal =5s,means DS2 0L will send one packet every 5s. range 5~~255s.648 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 545 545 ))) 546 546 547 547 ... ... @@ -548,17 +548,101 @@ 548 548 == 2.6 Frequency Plans == 549 549 550 550 551 -The DS2 0L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.655 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 552 552 553 553 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 554 554 555 555 556 - 3.ConfigureDS20L660 +== 2.7 LiDAR ToF Measurement == 557 557 662 +=== 2.7.1 Principle of Distance Measurement === 663 + 664 + 665 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 666 + 667 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 668 + 669 + 670 +=== 2.7.2 Distance Measurement Characteristics === 671 + 672 + 673 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 674 + 675 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 676 + 677 + 678 +((( 679 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 680 +))) 681 + 682 +((( 683 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 684 +))) 685 + 686 +((( 687 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 688 +))) 689 + 690 + 691 +((( 692 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 693 +))) 694 + 695 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 696 + 697 +((( 698 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 699 +))) 700 + 701 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 702 + 703 +((( 704 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 705 +))) 706 + 707 + 708 +=== 2.7.3 Notice of usage === 709 + 710 + 711 +Possible invalid /wrong reading for LiDAR ToF tech: 712 + 713 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 714 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 715 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 716 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 717 + 718 +=== 2.7.4 Reflectivity of different objects === 719 + 720 + 721 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 722 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 723 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 724 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 725 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 726 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 727 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 728 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 729 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 730 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 731 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 732 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 733 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 734 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 735 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 736 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 737 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 738 +Unpolished white metal surface 739 +)))|(% style="width:93px" %)130% 740 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 741 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 742 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 743 + 744 += 3. Configure LDS12-LB = 745 + 558 558 == 3.1 Configure Methods == 559 559 560 560 561 -DS2 0L supports below configure method:749 +LDS12-LB supports below configure method: 562 562 563 563 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 564 564 ... ... @@ -580,10 +580,10 @@ 580 580 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 581 581 582 582 583 -== 3.3 Commands special design for DS2 0L ==771 +== 3.3 Commands special design for LDS12-LB == 584 584 585 585 586 -These commands only valid for DS2 0L, as below:774 +These commands only valid for LDS12-LB, as below: 587 587 588 588 589 589 === 3.3.1 Set Transmit Interval Time === ... ... @@ -669,10 +669,39 @@ 669 669 670 670 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 671 671 860 +=== 3.3.3 Set Power Output Duration === 861 + 862 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 863 + 864 +~1. first enable the power output to external sensor, 865 + 866 +2. keep it on as per duration, read sensor value and construct uplink payload 867 + 868 +3. final, close the power output. 869 + 870 +(% style="color:blue" %)**AT Command: AT+3V3T** 871 + 872 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 873 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 874 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 875 +OK 876 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 877 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 878 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 879 + 880 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 881 +Format: Command Code (0x07) followed by 3 bytes. 882 + 883 +The first byte is 01,the second and third bytes are the time to turn on. 884 + 885 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 886 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 887 +* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 888 + 672 672 = 4. Battery & Power Consumption = 673 673 674 674 675 -DS2 0L usebuilt-in2400mAhnon-chargeablebatteryfor long-term use upto several years*. See below link for detail information about the battery info and how to replace.892 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 676 676 677 677 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 678 678 ... ... @@ -681,7 +681,7 @@ 681 681 682 682 683 683 (% class="wikigeneratedid" %) 684 -User can change firmware DS2 0L to:901 +User can change firmware LDS12-LB to: 685 685 686 686 * Change Frequency band/ region. 687 687 ... ... @@ -689,7 +689,7 @@ 689 689 690 690 * Fix bugs. 691 691 692 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/ zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**909 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 693 693 694 694 Methods to Update Firmware: 695 695 ... ... @@ -699,10 +699,10 @@ 699 699 700 700 = 6. FAQ = 701 701 702 -== 6.1 What is the frequency plan for DS2 0L? ==919 +== 6.1 What is the frequency plan for LDS12-LB? == 703 703 704 704 705 -DS2 0L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]922 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 706 706 707 707 708 708 = 7. Trouble Shooting = ... ... @@ -737,7 +737,7 @@ 737 737 = 8. Order Info = 738 738 739 739 740 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**957 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 741 741 742 742 (% style="color:red" %)**XXX**(%%): **The default frequency band** 743 743 ... ... @@ -762,7 +762,7 @@ 762 762 763 763 (% style="color:#037691" %)**Package Includes**: 764 764 765 -* DS2 0L LoRaWANSmartDistanceDetector x 1982 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 766 766 767 767 (% style="color:#037691" %)**Dimension and weight**: 768 768
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -84.7 KB - Content