Last modified by Mengting Qiu on 2023/12/14 11:15

From version 116.1
edited by kai
on 2023/11/11 17:02
Change comment: There is no comment for this version
To version 84.3
edited by Xiaoling
on 2023/06/15 16:41
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.kai
1 +XWiki.Xiaoling
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,222 +19,262 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -[[image:image-20231110102635-5.png||height="402" width="807"]]
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 +[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +
40 +
38 38  == 1.2 ​Features ==
39 39  
40 40  
41 -* LoRaWAN Class A protocol
42 -* LiDAR distance detector, range 3 ~~ 200cm
43 -* Periodically detect or continuously detect mode
44 +* LoRaWAN 1.0.3 Class A
45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 +* Ultra-low power consumption
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
51 +* Support Bluetooth v5.1 and LoRaWAN remote configure
52 +* Support wireless OTA update firmware
44 44  * AT Commands to change parameters
45 -* Remotely configure parameters via LoRaWAN Downlink
46 -* Alarm & Counting mode
47 -* Firmware upgradable via program port or LoRa protocol
48 -* Built-in 2400mAh battery or power by external power source
54 +* Downlink to change configure
55 +* 8500mAh Battery for long term use
49 49  
57 +
58 +
50 50  == 1.3 Specification ==
51 51  
52 52  
53 -(% style="color:#037691" %)**LiDAR Sensor:**
62 +(% style="color:#037691" %)**Common DC Characteristics:**
54 54  
55 -* Operation Temperature: -40 ~~ 80 °C
56 -* Operation Humidity: 0~~99.9%RH (no Dew)
57 -* Storage Temperature: -10 ~~ 45°C
58 -* Measure Range: 3cm~~200cm @ 90% reflectivity
59 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 -* ToF FoV: ±9°, Total 18°
61 -* Light source: VCSEL
64 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
65 +* Operating Temperature: -40 ~~ 85°C
62 62  
63 -(% style="display:none" %)
67 +(% style="color:#037691" %)**Probe Specification:**
64 64  
69 +* Storage temperature:-20℃~~75℃
70 +* Operating temperature : -20℃~~60℃
71 +* Measure Distance:
72 +** 0.1m ~~ 12m @ 90% Reflectivity
73 +** 0.1m ~~ 4m @ 10% Reflectivity
74 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 +* Distance resolution : 5mm
76 +* Ambient light immunity : 70klux
77 +* Enclosure rating : IP65
78 +* Light source : LED
79 +* Central wavelength : 850nm
80 +* FOV : 3.6°
81 +* Material of enclosure : ABS+PC
82 +* Wire length : 25cm
65 65  
66 -== 1.4 Power Consumption ==
84 +(% style="color:#037691" %)**LoRa Spec:**
67 67  
86 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
87 +* Max +22 dBm constant RF output vs.
88 +* RX sensitivity: down to -139 dBm.
89 +* Excellent blocking immunity
68 68  
69 -**Battery Power Mode:**
91 +(% style="color:#037691" %)**Battery:**
70 70  
71 -* Idle: 0.003 mA @ 3.3v
72 -* Max : 360 mA
93 +* Li/SOCI2 un-chargeable battery
94 +* Capacity: 8500mAh
95 +* Self-Discharge: <1% / Year @ 25°C
96 +* Max continuously current: 130mA
97 +* Max boost current: 2A, 1 second
73 73  
74 -**Continuously mode**:
99 +(% style="color:#037691" %)**Power Consumption**
75 75  
76 -* Idle: 21 mA @ 3.3v
77 -* Max : 360 mA
101 +* Sleep Mode: 5uA @ 3.3v
102 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
78 78  
79 -= 2. Configure DS20L to connect to LoRaWAN network =
80 80  
81 -== 2.1 How it works ==
82 82  
106 +== 1.4 Applications ==
83 83  
84 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
85 85  
86 -(% style="display:none" %) (%%)
109 +* Horizontal distance measurement
110 +* Parking management system
111 +* Object proximity and presence detection
112 +* Intelligent trash can management system
113 +* Robot obstacle avoidance
114 +* Automatic control
115 +* Sewer
87 87  
88 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
89 89  
90 90  
91 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
119 +(% style="display:none" %)
92 92  
93 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
121 +== 1.5 Sleep mode and working mode ==
94 94  
95 -[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
96 96  
97 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
124 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
98 98  
99 -Each DS20L is shipped with a sticker with the default device EUI as below:
126 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
100 100  
101 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
102 102  
129 +== 1.6 Button & LEDs ==
103 103  
104 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
105 105  
132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
106 106  
107 -(% style="color:blue" %)**Register the device**
108 108  
109 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
135 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
137 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
140 +)))
141 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
142 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
143 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
144 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
145 +)))
146 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
110 110  
111 111  
112 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
113 113  
114 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
150 +== 1.7 BLE connection ==
115 115  
116 116  
117 -(% style="color:blue" %)**Add APP EUI in the application**
153 +LDS12-LB support BLE remote configure.
118 118  
155 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
119 119  
120 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
157 +* Press button to send an uplink
158 +* Press button to active device.
159 +* Device Power on or reset.
121 121  
161 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
122 122  
123 -(% style="color:blue" %)**Add APP KEY**
124 124  
125 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
164 +== 1.8 Pin Definitions ==
126 126  
166 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
127 127  
128 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
129 129  
169 +== 1.9 Mechanical ==
130 130  
131 -Press the button for 5 seconds to activate the DS20L.
132 132  
133 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
172 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
134 134  
135 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
136 136  
175 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
137 137  
138 -== 2.3 ​Uplink Payload ==
139 139  
140 -=== 2.3.1 Device Status, FPORT~=5 ===
178 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
141 141  
142 142  
143 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
181 +(% style="color:blue" %)**Probe Mechanical:**
144 144  
145 -The Payload format is as below.
146 146  
147 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
148 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
149 -**Size(bytes)**
150 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
151 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
184 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
152 152  
153 -Example parse in TTNv3
154 154  
155 -[[image:image-20230805103904-1.png||height="131" width="711"]]
187 += 2. Configure LDS12-LB to connect to LoRaWAN network =
156 156  
157 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24
189 +== 2.1 How it works ==
158 158  
159 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
160 160  
161 -(% style="color:blue" %)**Frequency Band**:
192 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
162 162  
163 -0x01: EU868
194 +(% style="display:none" %) (%%)
164 164  
165 -0x02: US915
196 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
166 166  
167 -0x03: IN865
168 168  
169 -0x04: AU915
199 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
170 170  
171 -0x05: KZ865
201 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172 172  
173 -0x06: RU864
203 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
174 174  
175 -0x07: AS923
176 176  
177 -0x08: AS923-1
206 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
178 178  
179 -0x09: AS923-2
208 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
180 180  
181 -0x0a: AS923-3
210 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
182 182  
183 -0x0b: CN470
184 184  
185 -0x0c: EU433
213 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
186 186  
187 -0x0d: KR920
188 188  
189 -0x0e: MA869
216 +(% style="color:blue" %)**Register the device**
190 190  
191 -(% style="color:blue" %)**Sub-Band**:
218 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
192 192  
193 -AU915 and US915:value 0x00 ~~ 0x08
194 194  
195 -CN470: value 0x0B ~~ 0x0C
221 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
196 196  
197 -Other Bands: Always 0x00
223 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
198 198  
199 -(% style="color:blue" %)**Battery Info**:
200 200  
201 -Check the battery voltage.
226 +(% style="color:blue" %)**Add APP EUI in the application**
202 202  
203 -Ex1: 0x0B45 = 2885mV
204 204  
205 -Ex2: 0x0B49 = 2889mV
229 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
206 206  
207 207  
208 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
232 +(% style="color:blue" %)**Add APP KEY**
209 209  
234 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
210 210  
211 -(((
212 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
213 213  
214 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
237 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
215 215  
216 -Uplink Payload totals 11 bytes.
239 +
240 +Press the button for 5 seconds to activate the LDS12-LB.
241 +
242 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
243 +
244 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
245 +
246 +
247 +== 2.3 ​Uplink Payload ==
248 +
249 +
250 +(((
251 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
217 217  )))
218 218  
254 +(((
255 +Uplink payload includes in total 11 bytes.
256 +)))
257 +
219 219  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
259 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
221 221  **Size(bytes)**
222 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
223 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
224 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
225 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
226 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
227 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
228 -[[Message Type>>||anchor="HMessageType"]]
261 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
262 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
263 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
264 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
265 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
266 +)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
267 +[[Message Type>>||anchor="H2.3.7MessageType"]]
229 229  )))
230 230  
231 -[[image:image-20230805104104-2.png||height="136" width="754"]]
270 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
232 232  
233 233  
234 -==== (% style="color:blue" %)**Battery Info**(%%) ====
273 +=== 2.3.1 Battery Info ===
235 235  
236 236  
237 -Check the battery voltage for DS20L.
276 +Check the battery voltage for LDS12-LB.
238 238  
239 239  Ex1: 0x0B45 = 2885mV
240 240  
... ... @@ -241,7 +241,7 @@
241 241  Ex2: 0x0B49 = 2889mV
242 242  
243 243  
244 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
283 +=== 2.3.2 DS18B20 Temperature sensor ===
245 245  
246 246  
247 247  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
... ... @@ -254,7 +254,7 @@
254 254  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
255 255  
256 256  
257 -==== (% style="color:blue" %)**Distance**(%%) ====
296 +=== 2.3.3 Distance ===
258 258  
259 259  
260 260  Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
... ... @@ -265,7 +265,7 @@
265 265  If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
266 266  
267 267  
268 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
307 +=== 2.3.4 Distance signal strength ===
269 269  
270 270  
271 271  Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
... ... @@ -278,36 +278,21 @@
278 278  Customers can judge whether they need to adjust the environment based on the signal strength.
279 279  
280 280  
281 -**1) When the sensor detects valid data:**
320 +=== 2.3.5 Interrupt Pin ===
282 282  
283 -[[image:image-20230805155335-1.png||height="145" width="724"]]
284 284  
285 -
286 -**2) When the sensor detects invalid data:**
287 -
288 -[[image:image-20230805155428-2.png||height="139" width="726"]]
289 -
290 -
291 -**3) When the sensor is not connected:**
292 -
293 -[[image:image-20230805155515-3.png||height="143" width="725"]]
294 -
295 -
296 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
297 -
298 -
299 299  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
300 300  
301 -Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI .
325 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
302 302  
303 303  **Example:**
304 304  
305 -If byte[0]&0x01=0x00 : Normal uplink packet.
329 +0x00: Normal uplink packet.
306 306  
307 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
331 +0x01: Interrupt Uplink Packet.
308 308  
309 309  
310 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
334 +=== 2.3.6 LiDAR temp ===
311 311  
312 312  
313 313  Characterize the internal temperature value of the sensor.
... ... @@ -317,7 +317,7 @@
317 317  If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
318 318  
319 319  
320 -==== (% style="color:blue" %)**Message Type**(%%) ====
344 +=== 2.3.7 Message Type ===
321 321  
322 322  
323 323  (((
... ... @@ -330,97 +330,14 @@
330 330  
331 331  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
332 332  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
333 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
334 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
357 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
358 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
335 335  
336 -[[image:image-20230805150315-4.png||height="233" width="723"]]
337 337  
338 338  
339 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
362 +=== 2.3.8 Decode payload in The Things Network ===
340 340  
341 341  
342 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
343 -
344 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
345 -
346 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
347 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
348 -**Size(bytes)**
349 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
350 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
351 -Reserve(0xFF)
352 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
353 -LiDAR temp
354 -)))|(% style="width:85px" %)Unix TimeStamp
355 -
356 -**Interrupt flag & Interrupt level:**
357 -
358 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
359 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
360 -**Size(bit)**
361 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
362 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
363 -Interrupt flag
364 -)))
365 -
366 -* (((
367 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
368 -)))
369 -
370 -For example, in the US915 band, the max payload for different DR is:
371 -
372 -**a) DR0:** max is 11 bytes so one entry of data
373 -
374 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
375 -
376 -**c) DR2:** total payload includes 11 entries of data
377 -
378 -**d) DR3:** total payload includes 22 entries of data.
379 -
380 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
381 -
382 -
383 -**Downlink:**
384 -
385 -0x31 64 CC 68 0C 64 CC 69 74 05
386 -
387 -[[image:image-20230805144936-2.png||height="113" width="746"]]
388 -
389 -**Uplink:**
390 -
391 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
392 -
393 -
394 -**Parsed Value:**
395 -
396 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
397 -
398 -
399 -[360,176,30,High,True,2023-08-04 02:53:00],
400 -
401 -[355,168,30,Low,False,2023-08-04 02:53:29],
402 -
403 -[245,211,30,Low,False,2023-08-04 02:54:29],
404 -
405 -[57,700,30,Low,False,2023-08-04 02:55:29],
406 -
407 -[361,164,30,Low,True,2023-08-04 02:56:00],
408 -
409 -[337,184,30,Low,False,2023-08-04 02:56:40],
410 -
411 -[20,4458,30,Low,False,2023-08-04 02:57:40],
412 -
413 -[362,173,30,Low,False,2023-08-04 02:58:53],
414 -
415 -
416 -**History read from serial port:**
417 -
418 -[[image:image-20230805145056-3.png]]
419 -
420 -
421 -=== 2.3.4 Decode payload in The Things Network ===
422 -
423 -
424 424  While using TTN network, you can add the payload format to decode the payload.
425 425  
426 426  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
... ... @@ -431,13 +431,19 @@
431 431  )))
432 432  
433 433  (((
434 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
375 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
435 435  )))
436 436  
437 437  
438 -== 2.4 ​Show Data in DataCake IoT Server ==
379 +== 2.4 Uplink Interval ==
439 439  
440 440  
382 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
383 +
384 +
385 +== 2.5 ​Show Data in DataCake IoT Server ==
386 +
387 +
441 441  (((
442 442  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
443 443  )))
... ... @@ -460,7 +460,7 @@
460 460  
461 461  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
462 462  
463 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
410 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
464 464  
465 465  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
466 466  
... ... @@ -470,29 +470,34 @@
470 470  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
471 471  
472 472  
473 -== 2.5 Datalog Feature ==
420 +== 2.6 Datalog Feature ==
474 474  
475 475  
476 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes.
423 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
477 477  
478 478  
479 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
426 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
480 480  
481 481  
482 -Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
429 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
483 483  
484 484  * (((
485 -a) DS20L will do an ACK check for data records sending to make sure every data arrive server.
432 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
486 486  )))
487 487  * (((
488 -b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.
435 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
489 489  )))
490 490  
491 -=== 2.5.2 Unix TimeStamp ===
438 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
492 492  
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
493 493  
494 -DS20L uses Unix TimeStamp format based on
495 495  
443 +=== 2.6.2 Unix TimeStamp ===
444 +
445 +
446 +LDS12-LB uses Unix TimeStamp format based on
447 +
496 496  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
497 497  
498 498  User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
... ... @@ -505,23 +505,23 @@
505 505  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
506 506  
507 507  
508 -=== 2.5.3 Set Device Time ===
460 +=== 2.6.3 Set Device Time ===
509 509  
510 510  
511 511  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
512 512  
513 -Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
465 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
514 514  
515 515  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
516 516  
517 517  
518 -=== 2.5.4 Poll sensor value ===
470 +=== 2.6.4 Poll sensor value ===
519 519  
520 520  
521 521  Users can poll sensor values based on timestamps. Below is the downlink command.
522 522  
523 523  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
524 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
476 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
525 525  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
526 526  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
527 527  
... ... @@ -538,24 +538,112 @@
538 538  )))
539 539  
540 540  (((
541 -Uplink Internal =5s,means DS20L will send one packet every 5s. range 5~~255s.
493 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
542 542  )))
543 543  
544 544  
545 -== 2.6 Frequency Plans ==
497 +== 2.7 Frequency Plans ==
546 546  
547 547  
548 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
500 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
549 549  
550 550  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
551 551  
552 552  
553 -3. Configure DS20L
505 +== 2.8 LiDAR ToF Measurement ==
554 554  
507 +=== 2.8.1 Principle of Distance Measurement ===
508 +
509 +
510 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
511 +
512 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
513 +
514 +
515 +=== 2.8.2 Distance Measurement Characteristics ===
516 +
517 +
518 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
519 +
520 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
521 +
522 +
523 +(((
524 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
525 +)))
526 +
527 +(((
528 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
529 +)))
530 +
531 +(((
532 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
533 +)))
534 +
535 +
536 +(((
537 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
538 +)))
539 +
540 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
541 +
542 +(((
543 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
544 +)))
545 +
546 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
547 +
548 +(((
549 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
550 +)))
551 +
552 +
553 +=== 2.8.3 Notice of usage ===
554 +
555 +
556 +Possible invalid /wrong reading for LiDAR ToF tech:
557 +
558 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
559 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
560 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
561 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
562 +
563 +
564 +
565 +=== 2.8.4  Reflectivity of different objects ===
566 +
567 +
568 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
569 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
570 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
571 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
572 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
573 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
574 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
575 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
576 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
577 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
578 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
579 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
580 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
581 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
582 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
583 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
584 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
585 +Unpolished white metal surface
586 +)))|(% style="width:93px" %)130%
587 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
588 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
589 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
590 +
591 +
592 +
593 += 3. Configure LDS12-LB =
594 +
555 555  == 3.1 Configure Methods ==
556 556  
557 557  
558 -DS20L supports below configure method:
598 +LDS12-LB supports below configure method:
559 559  
560 560  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
561 561  
... ... @@ -563,6 +563,8 @@
563 563  
564 564  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
565 565  
606 +
607 +
566 566  == 3.2 General Commands ==
567 567  
568 568  
... ... @@ -577,10 +577,10 @@
577 577  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
578 578  
579 579  
580 -== 3.3 Commands special design for DS20L ==
622 +== 3.3 Commands special design for LDS12-LB ==
581 581  
582 582  
583 -These commands only valid for DS20L, as below:
625 +These commands only valid for LDS12-LB, as below:
584 584  
585 585  
586 586  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -631,9 +631,9 @@
631 631  === 3.3.2 Set Interrupt Mode ===
632 632  
633 633  
634 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
676 +Feature, Set Interrupt mode for PA8 of pin.
635 635  
636 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
678 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
637 637  
638 638  (% style="color:blue" %)**AT Command: AT+INTMOD**
639 639  
... ... @@ -644,11 +644,7 @@
644 644  OK
645 645  the mode is 0 =Disable Interrupt
646 646  )))
647 -|(% style="width:154px" %)(((
648 -AT+INTMOD=2
649 -
650 -(default)
651 -)))|(% style="width:196px" %)(((
689 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
652 652  Set Transmit Interval
653 653  0. (Disable Interrupt),
654 654  ~1. (Trigger by rising and falling edge)
... ... @@ -666,10 +666,89 @@
666 666  
667 667  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
668 668  
707 +
708 +
709 +=== 3.3.3 Get Firmware Version Info ===
710 +
711 +
712 +Feature: use downlink to get firmware version.
713 +
714 +(% style="color:blue" %)**Downlink Command: 0x26**
715 +
716 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
717 +|(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)**
718 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
719 +
720 +* Reply to the confirmation package: 26 01
721 +* Reply to non-confirmed packet: 26 00
722 +
723 +Device will send an uplink after got this downlink command. With below payload:
724 +
725 +Configures info payload:
726 +
727 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
728 +|=(% style="background-color:#4F81BD;color:white" %)(((
729 +**Size(bytes)**
730 +)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
731 +|**Value**|Software Type|(((
732 +Frequency Band
733 +)))|Sub-band|(((
734 +Firmware Version
735 +)))|Sensor Type|Reserve|(((
736 +[[Message Type>>||anchor="H2.3.7MessageType"]]
737 +Always 0x02
738 +)))
739 +
740 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
741 +
742 +(% style="color:#037691" %)**Frequency Band**:
743 +
744 +0x01: EU868
745 +
746 +0x02: US915
747 +
748 +0x03: IN865
749 +
750 +0x04: AU915
751 +
752 +0x05: KZ865
753 +
754 +0x06: RU864
755 +
756 +0x07: AS923
757 +
758 +0x08: AS923-1
759 +
760 +0x09: AS923-2
761 +
762 +0xa0: AS923-3
763 +
764 +
765 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
766 +
767 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
768 +
769 +(% style="color:#037691" %)**Sensor Type**:
770 +
771 +0x01: LSE01
772 +
773 +0x02: LDDS75
774 +
775 +0x03: LDDS20
776 +
777 +0x04: LLMS01
778 +
779 +0x05: LSPH01
780 +
781 +0x06: LSNPK01
782 +
783 +0x07: LLDS12
784 +
785 +
669 669  = 4. Battery & Power Consumption =
670 670  
671 671  
672 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
789 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
673 673  
674 674  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
675 675  
... ... @@ -678,7 +678,7 @@
678 678  
679 679  
680 680  (% class="wikigeneratedid" %)
681 -User can change firmware DS20L to:
798 +User can change firmware LDS12-LB to:
682 682  
683 683  * Change Frequency band/ region.
684 684  
... ... @@ -686,7 +686,7 @@
686 686  
687 687  * Fix bugs.
688 688  
689 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
806 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
690 690  
691 691  Methods to Update Firmware:
692 692  
... ... @@ -694,12 +694,14 @@
694 694  
695 695  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
696 696  
814 +
815 +
697 697  = 6. FAQ =
698 698  
699 -== 6.1 What is the frequency plan for DS20L? ==
818 +== 6.1 What is the frequency plan for LDS12-LB? ==
700 700  
701 701  
702 -DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
821 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
703 703  
704 704  
705 705  = 7. Trouble Shooting =
... ... @@ -734,7 +734,7 @@
734 734  = 8. Order Info =
735 735  
736 736  
737 -Part Number: (% style="color:blue" %)**DS20L-XXX**
856 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
738 738  
739 739  (% style="color:red" %)**XXX**(%%): **The default frequency band**
740 740  
... ... @@ -754,12 +754,14 @@
754 754  
755 755  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
756 756  
876 +
877 +
757 757  = 9. ​Packing Info =
758 758  
759 759  
760 760  (% style="color:#037691" %)**Package Includes**:
761 761  
762 -* DS20L LoRaWAN Smart Distance Detector x 1
883 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
763 763  
764 764  (% style="color:#037691" %)**Dimension and weight**:
765 765  
... ... @@ -771,6 +771,8 @@
771 771  
772 772  * Weight / pcs : g
773 773  
895 +
896 +
774 774  = 10. Support =
775 775  
776 776  
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.7 KB
Content