Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
From version 115.1
edited by Edwin Chen
on 2023/11/11 10:33
on 2023/11/11 10:33
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 16 removed)
- image-20230615152941-1.png
- image-20230615153004-2.png
- image-20230805103904-1.png
- image-20230805104104-2.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
- image-20231110102635-5.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -DS2 0L -- LoRaWANSmartDistanceDetector User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-202311 10085342-2.png||height="481" width="481"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,225 +19,259 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.DS20Lcan measurerangebetween3cm ~~ 200cm.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 34 34 35 - [[image:image-20231110102635-5.png||height="402"width="807"]]34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 36 36 36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 +[[image:image-20230614162334-2.png||height="468" width="800"]] 39 + 40 + 38 38 == 1.2 Features == 39 39 40 40 41 -* LoRaWAN Class A protocol 42 -* LiDAR distance detector, range 3 ~~ 200cm 43 -* Periodically detect or continuously detect mode 44 +* LoRaWAN 1.0.3 Class A 45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 +* Ultra-low power consumption 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 51 +* Support Bluetooth v5.1 and LoRaWAN remote configure 52 +* Support wireless OTA update firmware 44 44 * AT Commands to change parameters 45 -* Remotely configure parameters via LoRaWAN Downlink 46 -* Alarm & Counting mode 47 -* Firmware upgradable via program port or LoRa protocol 48 -* Built-in 2400mAh battery or power by external power source 54 +* Downlink to change configure 55 +* 8500mAh Battery for long term use 49 49 50 - 51 51 == 1.3 Specification == 52 52 53 53 54 -(% style="color:#037691" %)** LiDARSensor:**60 +(% style="color:#037691" %)**Common DC Characteristics:** 55 55 56 -* Operation Temperature: -40 ~~ 80 °C 57 -* Operation Humidity: 0~~99.9%RH (no Dew) 58 -* Storage Temperature: -10 ~~ 45°C 59 -* Measure Range: 3cm~~200cm @ 90% reflectivity 60 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 61 -* ToF FoV: ±9°, Total 18° 62 -* Light source: VCSEL 62 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 63 +* Operating Temperature: -40 ~~ 85°C 63 63 64 -(% style=" display:none" %)65 +(% style="color:#037691" %)**Probe Specification:** 65 65 67 +* Storage temperature:-20℃~~75℃ 68 +* Operating temperature : -20℃~~60℃ 69 +* Measure Distance: 70 +** 0.1m ~~ 12m @ 90% Reflectivity 71 +** 0.1m ~~ 4m @ 10% Reflectivity 72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 74 +* Ambient light immunity : 70klux 75 +* Enclosure rating : IP65 76 +* Light source : LED 77 +* Central wavelength : 850nm 78 +* FOV : 3.6° 79 +* Material of enclosure : ABS+PC 80 +* Wire length : 25cm 66 66 67 - ==1.4 PowerConsumption==82 +(% style="color:#037691" %)**LoRa Spec:** 68 68 84 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 85 +* Max +22 dBm constant RF output vs. 86 +* RX sensitivity: down to -139 dBm. 87 +* Excellent blocking immunity 69 69 70 -**Battery Power Mode:**89 +(% style="color:#037691" %)**Battery:** 71 71 72 -* Idle: xxx mA @ 3.3v 73 -* Max : xxx mA 91 +* Li/SOCI2 un-chargeable battery 92 +* Capacity: 8500mAh 93 +* Self-Discharge: <1% / Year @ 25°C 94 +* Max continuously current: 130mA 95 +* Max boost current: 2A, 1 second 74 74 97 +(% style="color:#037691" %)**Power Consumption** 75 75 76 -**Continuously mode**: 99 +* Sleep Mode: 5uA @ 3.3v 100 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 77 77 78 -* Idle: xxx mA @ 3.3v 79 -* Max : xxx mA 80 80 103 +== 1.4 Applications == 81 81 82 -= 2. Configure DS20L to connect to LoRaWAN network = 83 83 84 -== 2.1 How it works == 106 +* Horizontal distance measurement 107 +* Parking management system 108 +* Object proximity and presence detection 109 +* Intelligent trash can management system 110 +* Robot obstacle avoidance 111 +* Automatic control 112 +* Sewer 85 85 86 86 87 - The DS20L is configured as(% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keysin the LoRaWAN IoT server andpress the button to activate the DS20L. It willautomaticallyjointhe network via OTAA and start to sendthesensor value. The default uplink interval is 20 minutes.115 +(% style="display:none" %) 88 88 89 - (%style="display:none"%) (%%)117 +== 1.5 Sleep mode and working mode == 90 90 91 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 92 92 120 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 93 93 94 - Following isanexampleforhowtojointhe [[TTN v3LoRaWANNetwork>>url:https://console.cloud.thethings.network/]].Below isthenetworkstructure;weusethe[[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]]asaLoRaWANgatewayinthis example.122 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 95 95 96 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %) 97 97 98 - [[image:image-20231110102635-5.png||height="402"width="807"]](% style="display:none"%)125 +== 1.6 Button & LEDs == 99 99 100 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 101 101 102 - Each DS20LisshippedwithastickerwiththedefaultdeviceEUI asbelow:128 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 103 103 104 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 105 105 131 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 132 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 133 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 134 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 135 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 136 +))) 137 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 138 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 139 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 140 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 141 +))) 142 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 107 - Youcanenterthis key in the LoRaWAN Server portal. Below is TTN screenshot:144 +== 1.7 BLE connection == 108 108 109 109 110 - (%style="color:blue"%)**Registerthe device**147 +LDS12-LB support BLE remote configure. 111 111 112 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]149 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 113 113 151 +* Press button to send an uplink 152 +* Press button to active device. 153 +* Device Power on or reset. 114 114 115 - (%style="color:blue"%)**AddAPPEUIandDEVEUI**155 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 116 116 117 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 118 118 158 +== 1.8 Pin Definitions == 119 119 120 - (% style="color:blue"%)**AddP EUIinhepplication**160 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 121 121 122 122 123 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 124 124 164 +== 1.9 Mechanical == 125 125 126 -(% style="color:blue" %)**Add APP KEY** 127 127 128 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]167 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 129 129 130 130 131 - (%style="color:blue"%)**Step2:**(%%)ActivateDS20L170 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 132 132 133 133 134 - Press thebutton for5 secondstoctivatethe DS20L.173 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 135 135 136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 137 137 138 - Afterjoinsuccess, itwill start toupload messagestoTTN and you can seethemessages in the panel.176 +(% style="color:blue" %)**Probe Mechanical:** 139 139 140 140 141 -== 2.3 Uplink Payload == 142 142 143 - === 2.3.1evicetatus, FPORT~=5=180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 144 144 145 145 146 - Userscanuse the downlinkcommand(**0x26 01**) to askDS20L tosend device configure detail, includedeviceconfigurestatus. DS20Lwill uplink a payloadvia FPort=5 toserver.183 += 2. Configure LDS12-LB to connect to LoRaWAN network = 147 147 148 - ThePayloadformatisasbelow.185 +== 2.1 How it works == 149 149 150 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 151 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 152 -**Size(bytes)** 153 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 154 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 155 155 156 - Example parse in TTNv3188 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 157 157 158 - [[image:image-20230805103904-1.png||height="131"width="711"]]190 +(% style="display:none" %) (%%) 159 159 160 - (% style="color:blue"%)**SensorModel**(%%):ForDS20L,thisalueis0x24192 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 161 161 162 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 163 163 164 - (%style="color:blue"%)**FrequencyBand**:195 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 165 165 166 - 0x01:EU868197 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 167 167 168 -0 x02:US915199 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %) 169 169 170 -0x03: IN865 171 171 172 - 0x04: AU915202 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 173 173 174 - 0x05:KZ865204 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 175 175 176 -0 x06: RU864206 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 177 177 178 -0x07: AS923 179 179 180 - 0x08:AS923-1209 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 181 181 182 -0x09: AS923-2 183 183 184 - 0x0a:AS923-3212 +(% style="color:blue" %)**Register the device** 185 185 186 - 0x0b: CN470214 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 187 187 188 -0x0c: EU433 189 189 190 - 0x0d:KR920217 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 191 191 192 - 0x0e:9219 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 193 193 194 -(% style="color:blue" %)**Sub-Band**: 195 195 196 - AU915and US915:value0x00~~0x08222 +(% style="color:blue" %)**Add APP EUI in the application** 197 197 198 -CN470: value 0x0B ~~ 0x0C 199 199 200 - OtherBands:Alwaysx00225 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 201 201 202 -(% style="color:blue" %)**Battery Info**: 203 203 204 - Checkthe batteryvoltage.228 +(% style="color:blue" %)**Add APP KEY** 205 205 206 - Ex1:0x0B4585mV230 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 207 207 208 -Ex2: 0x0B49 = 2889mV 209 209 233 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 210 210 211 -=== 2.3.2 Uplink Payload, FPORT~=2 === 212 212 236 +Press the button for 5 seconds to activate the LDS12-LB. 213 213 214 -((( 215 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will: 238 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 216 216 217 - periodicallysendthis uplinkevery 20minutes, thisinterval [[canbechanged>>||anchor="H3.3.1SetTransmitIntervalTime"]].240 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 218 218 219 -Uplink Payload totals 11 bytes. 242 + 243 +== 2.3 Uplink Payload == 244 + 245 + 246 +((( 247 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 220 220 ))) 221 221 250 +((( 251 +Uplink payload includes in total 11 bytes. 252 +))) 253 + 254 + 222 222 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 223 -|=(% style="width: 6 0px;background-color:#4F81BD;color:white" %)(((256 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 224 224 **Size(bytes)** 225 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color:; width: 70px;" %)**1**|=(% style="background-color:; width: 70px;" %)**1**226 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 227 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 228 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|( % style="width:122px" %)(((229 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]230 -)))| (% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((231 -[[Message Type>>||anchor="HMessageType"]] 258 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1** 259 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)((( 260 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 261 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|((( 262 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]] 263 +)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|((( 264 +[[Message Type>>||anchor="H2.3.7MessageType"]] 232 232 ))) 233 233 234 -[[image:i mage-20230805104104-2.png||height="136" width="754"]]267 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 235 235 236 236 237 -=== =(%style="color:blue" %)**Battery Info**(%%)====270 +=== 2.3.1 Battery Info === 238 238 239 239 240 -Check the battery voltage for DS2 0L.273 +Check the battery voltage for LDS12-LB. 241 241 242 242 Ex1: 0x0B45 = 2885mV 243 243 ... ... @@ -244,7 +244,7 @@ 244 244 Ex2: 0x0B49 = 2889mV 245 245 246 246 247 -=== =(%style="color:blue" %)**DS18B20 Temperature sensor**(%%)====280 +=== 2.3.2 DS18B20 Temperature sensor === 248 248 249 249 250 250 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. ... ... @@ -257,7 +257,7 @@ 257 257 If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 258 258 259 259 260 -=== =(%style="color:blue" %)**Distance**(%%)====293 +=== 2.3.3 Distance === 261 261 262 262 263 263 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. ... ... @@ -268,7 +268,7 @@ 268 268 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 269 269 270 270 271 -=== =(%style="color:blue" %)**Distance signal strength**(%%)====304 +=== 2.3.4 Distance signal strength === 272 272 273 273 274 274 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. ... ... @@ -281,36 +281,21 @@ 281 281 Customers can judge whether they need to adjust the environment based on the signal strength. 282 282 283 283 284 - **1)Whenthesensordetectsvaliddata:**317 +=== 2.3.5 Interrupt Pin === 285 285 286 -[[image:image-20230805155335-1.png||height="145" width="724"]] 287 287 320 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 288 288 289 - **2)Whenthesensordetects invaliddata:**322 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 290 290 291 -[[image:image-20230805155428-2.png||height="139" width="726"]] 292 - 293 - 294 -**3) When the sensor is not connected:** 295 - 296 -[[image:image-20230805155515-3.png||height="143" width="725"]] 297 - 298 - 299 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 300 - 301 - 302 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 303 - 304 -Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI . 305 - 306 306 **Example:** 307 307 308 - If byte[0]&0x01=0x00: Normal uplink packet.326 +0x00: Normal uplink packet. 309 309 310 - If byte[0]&0x01=0x01: Interrupt Uplink Packet.328 +0x01: Interrupt Uplink Packet. 311 311 312 312 313 -=== =(%style="color:blue" %)**LiDAR temp**(%%)====331 +=== 2.3.6 LiDAR temp === 314 314 315 315 316 316 Characterize the internal temperature value of the sensor. ... ... @@ -320,7 +320,7 @@ 320 320 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 321 321 322 322 323 -=== =(%style="color:blue" %)**Message Type**(%%)====341 +=== 2.3.7 Message Type === 324 324 325 325 326 326 ((( ... ... @@ -333,115 +333,40 @@ 333 333 334 334 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 335 335 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 336 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 337 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 354 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 355 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 338 338 339 -[[image:image-20230805150315-4.png||height="233" width="723"]] 340 340 341 341 342 -=== 2.3.3 Historical measuring distance, FPORT~=3 === 343 343 360 +=== 2.3.8 Decode payload in The Things Network === 344 344 345 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 346 346 347 - Thehistoricalpayloadincludesone orultipliesentriesandveryentryhas thesamepayloadas Real-Time measuring distance.363 +While using TTN network, you can add the payload format to decode the payload. 348 348 349 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 350 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 351 -**Size(bytes)** 352 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 353 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 354 -Reserve(0xFF) 355 -)))|Distance|Distance signal strength|(% style="width:88px" %)((( 356 -LiDAR temp 357 -)))|(% style="width:85px" %)Unix TimeStamp 358 358 359 - **Interrupt flag& Interrupt level:**366 +[[image:1654592762713-715.png]] 360 360 361 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 362 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 363 -**Size(bit)** 364 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 365 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 366 -Interrupt flag 368 + 369 +((( 370 +The payload decoder function for TTN is here: 367 367 ))) 368 368 369 - *(((370 - Each data entry is11bytesandhas thesame structureas[[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], tosaveairtimeandbattery, DS20L will send max bytesaccordingtothecurrent DR andFrequency bands.373 +((( 374 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 371 371 ))) 372 372 373 -For example, in the US915 band, the max payload for different DR is: 374 374 375 - **a)DR0:** maxis 11 bytes so oneentry of data378 +== 2.4 Uplink Interval == 376 376 377 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 378 378 379 - **c)DR2:** total payload includes11entriesofdata381 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 380 380 381 -**d) DR3:** total payload includes 22 entries of data. 382 382 383 - IfDS20Ldoesn'thave any data in thepollingtime. It will uplink 11 bytesof 0384 +== 2.5 Show Data in DataCake IoT Server == 384 384 385 385 386 -**Downlink:** 387 - 388 -0x31 64 CC 68 0C 64 CC 69 74 05 389 - 390 -[[image:image-20230805144936-2.png||height="113" width="746"]] 391 - 392 -**Uplink:** 393 - 394 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 395 - 396 - 397 -**Parsed Value:** 398 - 399 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 400 - 401 - 402 -[360,176,30,High,True,2023-08-04 02:53:00], 403 - 404 -[355,168,30,Low,False,2023-08-04 02:53:29], 405 - 406 -[245,211,30,Low,False,2023-08-04 02:54:29], 407 - 408 -[57,700,30,Low,False,2023-08-04 02:55:29], 409 - 410 -[361,164,30,Low,True,2023-08-04 02:56:00], 411 - 412 -[337,184,30,Low,False,2023-08-04 02:56:40], 413 - 414 -[20,4458,30,Low,False,2023-08-04 02:57:40], 415 - 416 -[362,173,30,Low,False,2023-08-04 02:58:53], 417 - 418 - 419 -**History read from serial port:** 420 - 421 -[[image:image-20230805145056-3.png]] 422 - 423 - 424 -=== 2.3.4 Decode payload in The Things Network === 425 - 426 - 427 -While using TTN network, you can add the payload format to decode the payload. 428 - 429 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 430 - 431 - 432 432 ((( 433 -The payload decoder function for TTN is here: 434 -))) 435 - 436 -((( 437 -DS20L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 438 -))) 439 - 440 - 441 -== 2.4 Show Data in DataCake IoT Server == 442 - 443 - 444 -((( 445 445 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 446 446 ))) 447 447 ... ... @@ -463,7 +463,7 @@ 463 463 464 464 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 465 465 466 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS2 0L and add DevEUI.**409 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 467 467 468 468 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 469 469 ... ... @@ -473,29 +473,34 @@ 473 473 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 474 474 475 475 476 -== 2. 5Datalog Feature ==419 +== 2.6 Datalog Feature == 477 477 478 478 479 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS2 0L will store the reading for future retrieving purposes.422 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 480 480 481 481 482 -=== 2. 5.1 Ways to get datalog via LoRaWAN ===425 +=== 2.6.1 Ways to get datalog via LoRaWAN === 483 483 484 484 485 -Set PNACKMD=1, DS2 0L will wait for ACK for every uplink, when there is no LoRaWAN network,0L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.428 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 486 486 487 487 * ((( 488 -a) DS2 0L will do an ACK check for data records sending to make sure every data arrive server.431 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 489 489 ))) 490 490 * ((( 491 -b) DS2 0L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.434 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 492 492 ))) 493 493 494 - ===2.5.2 UnixTimeStamp ===437 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 495 495 439 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 496 496 497 -DS20L uses Unix TimeStamp format based on 498 498 442 +=== 2.6.2 Unix TimeStamp === 443 + 444 + 445 +LDS12-LB uses Unix TimeStamp format based on 446 + 499 499 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 500 500 501 501 User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : ... ... @@ -508,23 +508,23 @@ 508 508 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 509 509 510 510 511 -=== 2. 5.3 Set Device Time ===459 +=== 2.6.3 Set Device Time === 512 512 513 513 514 514 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 515 515 516 -Once DS2 0L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).464 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 517 517 518 518 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 519 519 520 520 521 -=== 2. 5.4 Poll sensor value ===469 +=== 2.6.4 Poll sensor value === 522 522 523 523 524 524 Users can poll sensor values based on timestamps. Below is the downlink command. 525 525 526 526 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 527 -|(% colspan="4" style="background-color:# 4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**475 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 528 528 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 529 529 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 530 530 ... ... @@ -541,24 +541,112 @@ 541 541 ))) 542 542 543 543 ((( 544 -Uplink Internal =5s,means DS2 0L will send one packet every 5s. range 5~~255s.492 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 545 545 ))) 546 546 547 547 548 -== 2. 6Frequency Plans ==496 +== 2.7 Frequency Plans == 549 549 550 550 551 -The DS2 0L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.499 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 552 552 553 553 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 554 554 555 555 556 - 3.ConfigureDS20L504 +== 2.8 LiDAR ToF Measurement == 557 557 506 +=== 2.8.1 Principle of Distance Measurement === 507 + 508 + 509 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 510 + 511 + 512 +[[image:1654831757579-263.png]] 513 + 514 + 515 +=== 2.8.2 Distance Measurement Characteristics === 516 + 517 + 518 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 519 + 520 +[[image:1654831774373-275.png]] 521 + 522 + 523 +((( 524 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 525 +))) 526 + 527 +((( 528 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 529 +))) 530 + 531 +((( 532 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 533 +))) 534 + 535 + 536 +((( 537 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 538 +))) 539 + 540 + 541 +[[image:1654831797521-720.png]] 542 + 543 + 544 +((( 545 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 546 +))) 547 + 548 +[[image:1654831810009-716.png]] 549 + 550 + 551 +((( 552 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 553 +))) 554 + 555 + 556 +=== 2.8.3 Notice of usage: === 557 + 558 + 559 +Possible invalid /wrong reading for LiDAR ToF tech: 560 + 561 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 562 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 563 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 564 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 565 + 566 +=== 2.8.4 Reflectivity of different objects === 567 + 568 + 569 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 570 +|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity 571 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 572 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 573 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 574 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 575 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 576 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 577 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 578 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 579 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 580 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 581 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 582 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 583 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 584 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 585 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 586 +Unpolished white metal surface 587 +)))|(% style="width:93px" %)130% 588 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 589 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 590 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 591 + 592 += 3. Configure LDS12-LB = 593 + 558 558 == 3.1 Configure Methods == 559 559 560 560 561 -DS2 0L supports below configure method:597 +LDS12-LB supports below configure method: 562 562 563 563 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 564 564 ... ... @@ -566,7 +566,6 @@ 566 566 567 567 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 568 568 569 - 570 570 == 3.2 General Commands == 571 571 572 572 ... ... @@ -581,10 +581,10 @@ 581 581 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 582 582 583 583 584 -== 3.3 Commands special design for DS2 0L ==619 +== 3.3 Commands special design for LDS12-LB == 585 585 586 586 587 -These commands only valid for DS2 0L, as below:622 +These commands only valid for LDS12-LB, as below: 588 588 589 589 590 590 === 3.3.1 Set Transmit Interval Time === ... ... @@ -599,7 +599,7 @@ 599 599 ))) 600 600 601 601 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 602 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**637 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 603 603 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 604 604 30000 605 605 OK ... ... @@ -627,32 +627,25 @@ 627 627 ))) 628 628 * ((( 629 629 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 630 - 631 - 632 - 633 633 ))) 634 634 635 635 === 3.3.2 Set Interrupt Mode === 636 636 637 637 638 -Feature, Set Interrupt mode for pinofGPIO_EXTI.670 +Feature, Set Interrupt mode for PA8 of pin. 639 639 640 -When AT+INTMOD=0 is set, GPIO_EXTIis used as a digital input port.672 +When AT+INTMOD=0 is set, PA8 is used as a digital input port. 641 641 642 642 (% style="color:blue" %)**AT Command: AT+INTMOD** 643 643 644 644 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 645 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**677 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 646 646 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 647 647 0 648 648 OK 649 649 the mode is 0 =Disable Interrupt 650 650 ))) 651 -|(% style="width:154px" %)((( 652 -AT+INTMOD=2 653 - 654 -(default) 655 -)))|(% style="width:196px" %)((( 683 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 656 656 Set Transmit Interval 657 657 0. (Disable Interrupt), 658 658 ~1. (Trigger by rising and falling edge) ... ... @@ -671,10 +671,90 @@ 671 671 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 672 672 673 673 702 + 703 +=== 3.3.3 Get Firmware Version Info === 704 + 705 + 706 +Feature: use downlink to get firmware version. 707 + 708 +(% style="color:#037691" %)**Downlink Command: 0x26** 709 + 710 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %) 711 +|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)** 712 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2 713 + 714 +* Reply to the confirmation package: 26 01 715 +* Reply to non-confirmed packet: 26 00 716 + 717 +Device will send an uplink after got this downlink command. With below payload: 718 + 719 +Configures info payload: 720 + 721 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 722 +|=(% style="background-color:#D9E2F3;color:#0070C0" %)((( 723 +**Size(bytes)** 724 +)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 725 +|**Value**|Software Type|((( 726 +Frequency 727 +Band 728 +)))|Sub-band|((( 729 +Firmware 730 +Version 731 +)))|Sensor Type|Reserve|((( 732 +[[Message Type>>||anchor="H2.3.7A0MessageType"]] 733 +Always 0x02 734 +))) 735 + 736 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12 737 + 738 +(% style="color:#037691" %)**Frequency Band**: 739 + 740 +*0x01: EU868 741 + 742 +*0x02: US915 743 + 744 +*0x03: IN865 745 + 746 +*0x04: AU915 747 + 748 +*0x05: KZ865 749 + 750 +*0x06: RU864 751 + 752 +*0x07: AS923 753 + 754 +*0x08: AS923-1 755 + 756 +*0x09: AS923-2 757 + 758 +*0xa0: AS923-3 759 + 760 + 761 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08 762 + 763 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 764 + 765 +(% style="color:#037691" %)**Sensor Type**: 766 + 767 +0x01: LSE01 768 + 769 +0x02: LDDS75 770 + 771 +0x03: LDDS20 772 + 773 +0x04: LLMS01 774 + 775 +0x05: LSPH01 776 + 777 +0x06: LSNPK01 778 + 779 +0x07: LLDS12 780 + 781 + 674 674 = 4. Battery & Power Consumption = 675 675 676 676 677 -DS2 0L usebuilt-in2400mAhnon-chargeablebatteryfor long-term use upto several years*. See below link for detail information about the battery info and how to replace.785 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 678 678 679 679 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 680 680 ... ... @@ -683,7 +683,7 @@ 683 683 684 684 685 685 (% class="wikigeneratedid" %) 686 -User can change firmware DS2 0L to:794 +User can change firmware LDS12-LB to: 687 687 688 688 * Change Frequency band/ region. 689 689 ... ... @@ -691,7 +691,7 @@ 691 691 692 692 * Fix bugs. 693 693 694 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/ zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**802 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 695 695 696 696 Methods to Update Firmware: 697 697 ... ... @@ -699,13 +699,12 @@ 699 699 700 700 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 701 701 702 - 703 703 = 6. FAQ = 704 704 705 -== 6.1 What is the frequency plan for DS2 0L? ==812 +== 6.1 What is the frequency plan for LDS12-LB? == 706 706 707 707 708 -DS2 0L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]815 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 709 709 710 710 711 711 = 7. Trouble Shooting = ... ... @@ -720,11 +720,11 @@ 720 720 721 721 722 722 ((( 723 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance .(such as glass and water, etc.)830 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 724 724 ))) 725 725 726 726 ((( 727 - (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.834 +Troubleshooting: Please avoid use of this product under such circumstance in practice. 728 728 ))) 729 729 730 730 ... ... @@ -733,7 +733,7 @@ 733 733 ))) 734 734 735 735 ((( 736 - (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.843 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 737 737 ))) 738 738 739 739 ... ... @@ -740,7 +740,7 @@ 740 740 = 8. Order Info = 741 741 742 742 743 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**850 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 744 744 745 745 (% style="color:red" %)**XXX**(%%): **The default frequency band** 746 746 ... ... @@ -760,13 +760,12 @@ 760 760 761 761 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 762 762 763 - 764 764 = 9. Packing Info = 765 765 766 766 767 767 (% style="color:#037691" %)**Package Includes**: 768 768 769 -* DS2 0L LoRaWANSmartDistanceDetector x 1875 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 770 770 771 771 (% style="color:#037691" %)**Dimension and weight**: 772 772 ... ... @@ -778,7 +778,6 @@ 778 778 779 779 * Weight / pcs : g 780 780 781 - 782 782 = 10. Support = 783 783 784 784
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -84.7 KB - Content