Last modified by Mengting Qiu on 2023/12/14 11:15

From version 113.7
edited by Xiaoling
on 2023/11/10 10:22
Change comment: There is no comment for this version
To version 84.3
edited by Xiaoling
on 2023/06/15 16:41
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,213 +19,262 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
34 -DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
32 +LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
35 35  
36 -[[image:image-20231110091506-4.png||height="391" width="768"]]
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 37  
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
38 +[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +
40 +
39 39  == 1.2 ​Features ==
40 40  
41 41  
42 -* LoRaWAN Class A protocol
43 -* LiDAR distance detector, range 3 ~~ 200cm
44 -* Periodically detect or continuously detect mode
44 +* LoRaWAN 1.0.3 Class A
45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 +* Ultra-low power consumption
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
51 +* Support Bluetooth v5.1 and LoRaWAN remote configure
52 +* Support wireless OTA update firmware
45 45  * AT Commands to change parameters
46 -* Remotely configure parameters via LoRaWAN Downlink
47 -* Alarm & Counting mode
48 -* Datalog Feature
49 -* Firmware upgradable via program port or LoRa protocol
50 -* Built-in 2400mAh battery or power by external power source
54 +* Downlink to change configure
55 +* 8500mAh Battery for long term use
51 51  
57 +
58 +
52 52  == 1.3 Specification ==
53 53  
54 54  
55 -(% style="color:#037691" %)**LiDAR Sensor:**
62 +(% style="color:#037691" %)**Common DC Characteristics:**
56 56  
57 -* Operation Temperature: -40 ~~ 80 °C
58 -* Operation Humidity: 0~~99.9%RH (no Dew)
59 -* Storage Temperature: -10 ~~ 45°C
60 -* Measure Range: 3cm~~200cm @ 90% reflectivity
61 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 -* ToF FoV: ±9°, Total 18°
63 -* Light source: VCSEL
64 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
65 +* Operating Temperature: -40 ~~ 85°C
64 64  
67 +(% style="color:#037691" %)**Probe Specification:**
65 65  
66 -(% style="display:none" %)
69 +* Storage temperature:-20℃~~75℃
70 +* Operating temperature : -20℃~~60℃
71 +* Measure Distance:
72 +** 0.1m ~~ 12m @ 90% Reflectivity
73 +** 0.1m ~~ 4m @ 10% Reflectivity
74 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 +* Distance resolution : 5mm
76 +* Ambient light immunity : 70klux
77 +* Enclosure rating : IP65
78 +* Light source : LED
79 +* Central wavelength : 850nm
80 +* FOV : 3.6°
81 +* Material of enclosure : ABS+PC
82 +* Wire length : 25cm
67 67  
84 +(% style="color:#037691" %)**LoRa Spec:**
68 68  
69 -= 2. Configure DS20L to connect to LoRaWAN network =
86 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
87 +* Max +22 dBm constant RF output vs.
88 +* RX sensitivity: down to -139 dBm.
89 +* Excellent blocking immunity
70 70  
71 -== 2.1 How it works ==
91 +(% style="color:#037691" %)**Battery:**
72 72  
93 +* Li/SOCI2 un-chargeable battery
94 +* Capacity: 8500mAh
95 +* Self-Discharge: <1% / Year @ 25°C
96 +* Max continuously current: 130mA
97 +* Max boost current: 2A, 1 second
73 73  
74 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
99 +(% style="color:#037691" %)**Power Consumption**
75 75  
76 -(% style="display:none" %) (%%)
101 +* Sleep Mode: 5uA @ 3.3v
102 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
77 77  
78 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
79 79  
80 80  
81 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
106 +== 1.4 Applications ==
82 82  
83 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
84 84  
85 -[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
109 +* Horizontal distance measurement
110 +* Parking management system
111 +* Object proximity and presence detection
112 +* Intelligent trash can management system
113 +* Robot obstacle avoidance
114 +* Automatic control
115 +* Sewer
86 86  
87 87  
88 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
89 89  
90 -Each DS20L is shipped with a sticker with the default device EUI as below:
119 +(% style="display:none" %)
91 91  
92 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
121 +== 1.5 Sleep mode and working mode ==
93 93  
94 94  
95 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
124 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96 96  
126 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
97 97  
98 -(% style="color:blue" %)**Register the device**
99 99  
100 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
129 +== 1.6 Button & LEDs ==
101 101  
102 102  
103 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
104 104  
105 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
106 106  
135 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
137 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
140 +)))
141 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
142 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
143 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
144 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
145 +)))
146 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107 107  
108 -(% style="color:blue" %)**Add APP EUI in the application**
109 109  
110 110  
111 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
150 +== 1.7 BLE connection ==
112 112  
113 113  
114 -(% style="color:blue" %)**Add APP KEY**
153 +LDS12-LB support BLE remote configure.
115 115  
116 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
155 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
117 117  
157 +* Press button to send an uplink
158 +* Press button to active device.
159 +* Device Power on or reset.
118 118  
119 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
161 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120 120  
121 121  
122 -Press the button for 5 seconds to activate the DS20L.
164 +== 1.8 Pin Definitions ==
123 123  
124 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
166 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
125 125  
126 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
127 127  
169 +== 1.9 Mechanical ==
128 128  
129 -== 2.3 ​Uplink Payload ==
130 130  
131 -=== 2.3.1 Device Status, FPORT~=5 ===
172 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132 132  
133 133  
134 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
175 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135 135  
136 -The Payload format is as below.
137 137  
138 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
139 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
140 -**Size(bytes)**
141 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
142 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
178 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
144 -Example parse in TTNv3
145 145  
146 -[[image:image-20230805103904-1.png||height="131" width="711"]]
181 +(% style="color:blue" %)**Probe Mechanical:**
147 147  
148 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24
149 149  
150 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
184 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
151 151  
152 -(% style="color:blue" %)**Frequency Band**:
153 153  
154 -0x01: EU868
187 += 2. Configure LDS12-LB to connect to LoRaWAN network =
155 155  
156 -0x02: US915
189 +== 2.1 How it works ==
157 157  
158 -0x03: IN865
159 159  
160 -0x04: AU915
192 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 -0x05: KZ865
194 +(% style="display:none" %) (%%)
163 163  
164 -0x06: RU864
196 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
165 165  
166 -0x07: AS923
167 167  
168 -0x08: AS923-1
199 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
169 169  
170 -0x09: AS923-2
201 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
171 171  
172 -0x0a: AS923-3
203 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
173 173  
174 -0x0b: CN470
175 175  
176 -0x0c: EU433
206 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
177 177  
178 -0x0d: KR920
208 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
179 179  
180 -0x0e: MA869
210 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
181 181  
182 -(% style="color:blue" %)**Sub-Band**:
183 183  
184 -AU915 and US915:value 0x00 ~~ 0x08
213 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
185 185  
186 -CN470: value 0x0B ~~ 0x0C
187 187  
188 -Other Bands: Always 0x00
216 +(% style="color:blue" %)**Register the device**
189 189  
190 -(% style="color:blue" %)**Battery Info**:
218 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
191 191  
192 -Check the battery voltage.
193 193  
194 -Ex1: 0x0B45 = 2885mV
221 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
195 195  
196 -Ex2: 0x0B49 = 2889mV
223 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
197 197  
198 198  
199 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
226 +(% style="color:blue" %)**Add APP EUI in the application**
200 200  
201 201  
202 -(((
203 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
229 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
204 204  
205 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
206 206  
207 -Uplink Payload totals 11 bytes.
232 +(% style="color:blue" %)**Add APP KEY**
233 +
234 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
235 +
236 +
237 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
238 +
239 +
240 +Press the button for 5 seconds to activate the LDS12-LB.
241 +
242 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
243 +
244 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
245 +
246 +
247 +== 2.3 ​Uplink Payload ==
248 +
249 +
250 +(((
251 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
208 208  )))
209 209  
254 +(((
255 +Uplink payload includes in total 11 bytes.
256 +)))
257 +
210 210  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
211 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
259 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
212 212  **Size(bytes)**
213 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
214 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
215 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
216 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
217 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
218 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
219 -[[Message Type>>||anchor="HMessageType"]]
261 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
262 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
263 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
264 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
265 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
266 +)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
267 +[[Message Type>>||anchor="H2.3.7MessageType"]]
220 220  )))
221 221  
222 -[[image:image-20230805104104-2.png||height="136" width="754"]]
270 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
223 223  
224 224  
225 -==== (% style="color:blue" %)**Battery Info**(%%) ====
273 +=== 2.3.1 Battery Info ===
226 226  
227 227  
228 -Check the battery voltage for DS20L.
276 +Check the battery voltage for LDS12-LB.
229 229  
230 230  Ex1: 0x0B45 = 2885mV
231 231  
... ... @@ -232,7 +232,7 @@
232 232  Ex2: 0x0B49 = 2889mV
233 233  
234 234  
235 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
283 +=== 2.3.2 DS18B20 Temperature sensor ===
236 236  
237 237  
238 238  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
... ... @@ -245,7 +245,7 @@
245 245  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
246 246  
247 247  
248 -==== (% style="color:blue" %)**Distance**(%%) ====
296 +=== 2.3.3 Distance ===
249 249  
250 250  
251 251  Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
... ... @@ -256,7 +256,7 @@
256 256  If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
257 257  
258 258  
259 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
307 +=== 2.3.4 Distance signal strength ===
260 260  
261 261  
262 262  Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
... ... @@ -269,36 +269,21 @@
269 269  Customers can judge whether they need to adjust the environment based on the signal strength.
270 270  
271 271  
272 -**1) When the sensor detects valid data:**
320 +=== 2.3.5 Interrupt Pin ===
273 273  
274 -[[image:image-20230805155335-1.png||height="145" width="724"]]
275 275  
276 -
277 -**2) When the sensor detects invalid data:**
278 -
279 -[[image:image-20230805155428-2.png||height="139" width="726"]]
280 -
281 -
282 -**3) When the sensor is not connected:**
283 -
284 -[[image:image-20230805155515-3.png||height="143" width="725"]]
285 -
286 -
287 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
288 -
289 -
290 290  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
291 291  
292 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
325 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
293 293  
294 294  **Example:**
295 295  
296 -If byte[0]&0x01=0x00 : Normal uplink packet.
329 +0x00: Normal uplink packet.
297 297  
298 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
331 +0x01: Interrupt Uplink Packet.
299 299  
300 300  
301 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
334 +=== 2.3.6 LiDAR temp ===
302 302  
303 303  
304 304  Characterize the internal temperature value of the sensor.
... ... @@ -308,7 +308,7 @@
308 308  If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
309 309  
310 310  
311 -==== (% style="color:blue" %)**Message Type**(%%) ====
344 +=== 2.3.7 Message Type ===
312 312  
313 313  
314 314  (((
... ... @@ -321,97 +321,14 @@
321 321  
322 322  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
323 323  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
324 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
325 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
357 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
358 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
326 326  
327 -[[image:image-20230805150315-4.png||height="233" width="723"]]
328 328  
329 329  
330 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
362 +=== 2.3.8 Decode payload in The Things Network ===
331 331  
332 332  
333 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
334 -
335 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
336 -
337 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
338 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
339 -**Size(bytes)**
340 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
341 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
342 -Reserve(0xFF)
343 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
344 -LiDAR temp
345 -)))|(% style="width:85px" %)Unix TimeStamp
346 -
347 -**Interrupt flag & Interrupt level:**
348 -
349 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
350 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
351 -**Size(bit)**
352 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
353 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
354 -Interrupt flag
355 -)))
356 -
357 -* (((
358 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
359 -)))
360 -
361 -For example, in the US915 band, the max payload for different DR is:
362 -
363 -**a) DR0:** max is 11 bytes so one entry of data
364 -
365 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
366 -
367 -**c) DR2:** total payload includes 11 entries of data
368 -
369 -**d) DR3:** total payload includes 22 entries of data.
370 -
371 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
372 -
373 -
374 -**Downlink:**
375 -
376 -0x31 64 CC 68 0C 64 CC 69 74 05
377 -
378 -[[image:image-20230805144936-2.png||height="113" width="746"]]
379 -
380 -**Uplink:**
381 -
382 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
383 -
384 -
385 -**Parsed Value:**
386 -
387 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
388 -
389 -
390 -[360,176,30,High,True,2023-08-04 02:53:00],
391 -
392 -[355,168,30,Low,False,2023-08-04 02:53:29],
393 -
394 -[245,211,30,Low,False,2023-08-04 02:54:29],
395 -
396 -[57,700,30,Low,False,2023-08-04 02:55:29],
397 -
398 -[361,164,30,Low,True,2023-08-04 02:56:00],
399 -
400 -[337,184,30,Low,False,2023-08-04 02:56:40],
401 -
402 -[20,4458,30,Low,False,2023-08-04 02:57:40],
403 -
404 -[362,173,30,Low,False,2023-08-04 02:58:53],
405 -
406 -
407 -**History read from serial port:**
408 -
409 -[[image:image-20230805145056-3.png]]
410 -
411 -
412 -=== 2.3.4 Decode payload in The Things Network ===
413 -
414 -
415 415  While using TTN network, you can add the payload format to decode the payload.
416 416  
417 417  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
... ... @@ -422,13 +422,19 @@
422 422  )))
423 423  
424 424  (((
425 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
375 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
426 426  )))
427 427  
428 428  
429 -== 2.4 ​Show Data in DataCake IoT Server ==
379 +== 2.4 Uplink Interval ==
430 430  
431 431  
382 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
383 +
384 +
385 +== 2.5 ​Show Data in DataCake IoT Server ==
386 +
387 +
432 432  (((
433 433  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
434 434  )))
... ... @@ -451,7 +451,7 @@
451 451  
452 452  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
453 453  
454 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
410 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
455 455  
456 456  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
457 457  
... ... @@ -461,31 +461,34 @@
461 461  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
462 462  
463 463  
464 -== 2.5 Datalog Feature ==
420 +== 2.6 Datalog Feature ==
465 465  
466 466  
467 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes.
423 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
468 468  
469 469  
470 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
426 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
471 471  
472 472  
473 -Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
429 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
474 474  
475 475  * (((
476 -a) DS20L will do an ACK check for data records sending to make sure every data arrive server.
432 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
477 477  )))
478 478  * (((
479 -b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.
435 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
480 480  )))
481 481  
438 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
482 482  
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
483 483  
484 -=== 2.5.2 Unix TimeStamp ===
485 485  
443 +=== 2.6.2 Unix TimeStamp ===
486 486  
487 -DS20L uses Unix TimeStamp format based on
488 488  
446 +LDS12-LB uses Unix TimeStamp format based on
447 +
489 489  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
490 490  
491 491  User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
... ... @@ -498,23 +498,23 @@
498 498  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
499 499  
500 500  
501 -=== 2.5.3 Set Device Time ===
460 +=== 2.6.3 Set Device Time ===
502 502  
503 503  
504 504  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
505 505  
506 -Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
465 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
507 507  
508 508  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
509 509  
510 510  
511 -=== 2.5.4 Poll sensor value ===
470 +=== 2.6.4 Poll sensor value ===
512 512  
513 513  
514 514  Users can poll sensor values based on timestamps. Below is the downlink command.
515 515  
516 516  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
517 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
476 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
518 518  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
519 519  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
520 520  
... ... @@ -531,24 +531,112 @@
531 531  )))
532 532  
533 533  (((
534 -Uplink Internal =5s,means DS20L will send one packet every 5s. range 5~~255s.
493 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
535 535  )))
536 536  
537 537  
538 -== 2.6 Frequency Plans ==
497 +== 2.7 Frequency Plans ==
539 539  
540 540  
541 -The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
500 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
542 542  
543 543  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
544 544  
545 545  
546 -3. Configure DS20L
505 +== 2.8 LiDAR ToF Measurement ==
547 547  
507 +=== 2.8.1 Principle of Distance Measurement ===
508 +
509 +
510 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
511 +
512 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
513 +
514 +
515 +=== 2.8.2 Distance Measurement Characteristics ===
516 +
517 +
518 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
519 +
520 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
521 +
522 +
523 +(((
524 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
525 +)))
526 +
527 +(((
528 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
529 +)))
530 +
531 +(((
532 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
533 +)))
534 +
535 +
536 +(((
537 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
538 +)))
539 +
540 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
541 +
542 +(((
543 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
544 +)))
545 +
546 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
547 +
548 +(((
549 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
550 +)))
551 +
552 +
553 +=== 2.8.3 Notice of usage ===
554 +
555 +
556 +Possible invalid /wrong reading for LiDAR ToF tech:
557 +
558 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
559 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
560 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
561 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
562 +
563 +
564 +
565 +=== 2.8.4  Reflectivity of different objects ===
566 +
567 +
568 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
569 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
570 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
571 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
572 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
573 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
574 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
575 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
576 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
577 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
578 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
579 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
580 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
581 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
582 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
583 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
584 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
585 +Unpolished white metal surface
586 +)))|(% style="width:93px" %)130%
587 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
588 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
589 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
590 +
591 +
592 +
593 += 3. Configure LDS12-LB =
594 +
548 548  == 3.1 Configure Methods ==
549 549  
550 550  
551 -DS20L supports below configure method:
598 +LDS12-LB supports below configure method:
552 552  
553 553  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
554 554  
... ... @@ -556,6 +556,8 @@
556 556  
557 557  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
558 558  
606 +
607 +
559 559  == 3.2 General Commands ==
560 560  
561 561  
... ... @@ -570,10 +570,10 @@
570 570  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
571 571  
572 572  
573 -== 3.3 Commands special design for DS20L ==
622 +== 3.3 Commands special design for LDS12-LB ==
574 574  
575 575  
576 -These commands only valid for DS20L, as below:
625 +These commands only valid for LDS12-LB, as below:
577 577  
578 578  
579 579  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -624,9 +624,9 @@
624 624  === 3.3.2 Set Interrupt Mode ===
625 625  
626 626  
627 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
676 +Feature, Set Interrupt mode for PA8 of pin.
628 628  
629 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
678 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
630 630  
631 631  (% style="color:blue" %)**AT Command: AT+INTMOD**
632 632  
... ... @@ -637,11 +637,7 @@
637 637  OK
638 638  the mode is 0 =Disable Interrupt
639 639  )))
640 -|(% style="width:154px" %)(((
641 -AT+INTMOD=2
642 -
643 -(default)
644 -)))|(% style="width:196px" %)(((
689 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
645 645  Set Transmit Interval
646 646  0. (Disable Interrupt),
647 647  ~1. (Trigger by rising and falling edge)
... ... @@ -660,10 +660,88 @@
660 660  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
661 661  
662 662  
708 +
709 +=== 3.3.3 Get Firmware Version Info ===
710 +
711 +
712 +Feature: use downlink to get firmware version.
713 +
714 +(% style="color:blue" %)**Downlink Command: 0x26**
715 +
716 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
717 +|(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)**
718 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
719 +
720 +* Reply to the confirmation package: 26 01
721 +* Reply to non-confirmed packet: 26 00
722 +
723 +Device will send an uplink after got this downlink command. With below payload:
724 +
725 +Configures info payload:
726 +
727 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
728 +|=(% style="background-color:#4F81BD;color:white" %)(((
729 +**Size(bytes)**
730 +)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
731 +|**Value**|Software Type|(((
732 +Frequency Band
733 +)))|Sub-band|(((
734 +Firmware Version
735 +)))|Sensor Type|Reserve|(((
736 +[[Message Type>>||anchor="H2.3.7MessageType"]]
737 +Always 0x02
738 +)))
739 +
740 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
741 +
742 +(% style="color:#037691" %)**Frequency Band**:
743 +
744 +0x01: EU868
745 +
746 +0x02: US915
747 +
748 +0x03: IN865
749 +
750 +0x04: AU915
751 +
752 +0x05: KZ865
753 +
754 +0x06: RU864
755 +
756 +0x07: AS923
757 +
758 +0x08: AS923-1
759 +
760 +0x09: AS923-2
761 +
762 +0xa0: AS923-3
763 +
764 +
765 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
766 +
767 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
768 +
769 +(% style="color:#037691" %)**Sensor Type**:
770 +
771 +0x01: LSE01
772 +
773 +0x02: LDDS75
774 +
775 +0x03: LDDS20
776 +
777 +0x04: LLMS01
778 +
779 +0x05: LSPH01
780 +
781 +0x06: LSNPK01
782 +
783 +0x07: LLDS12
784 +
785 +
663 663  = 4. Battery & Power Consumption =
664 664  
665 665  
666 -DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
789 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
667 667  
668 668  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
669 669  
... ... @@ -672,7 +672,7 @@
672 672  
673 673  
674 674  (% class="wikigeneratedid" %)
675 -User can change firmware DS20L to:
798 +User can change firmware LDS12-LB to:
676 676  
677 677  * Change Frequency band/ region.
678 678  
... ... @@ -680,7 +680,7 @@
680 680  
681 681  * Fix bugs.
682 682  
683 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
806 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
684 684  
685 685  Methods to Update Firmware:
686 686  
... ... @@ -688,6 +688,8 @@
688 688  
689 689  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
690 690  
814 +
815 +
691 691  = 6. FAQ =
692 692  
693 693  == 6.1 What is the frequency plan for LDS12-LB? ==
... ... @@ -728,7 +728,7 @@
728 728  = 8. Order Info =
729 729  
730 730  
731 -Part Number: (% style="color:blue" %)**DS20L-XXX**
856 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
732 732  
733 733  (% style="color:red" %)**XXX**(%%): **The default frequency band**
734 734  
... ... @@ -748,12 +748,14 @@
748 748  
749 749  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
750 750  
876 +
877 +
751 751  = 9. ​Packing Info =
752 752  
753 753  
754 754  (% style="color:#037691" %)**Package Includes**:
755 755  
756 -* DS20L LoRaWAN Smart Distance Detector x 1
883 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
757 757  
758 758  (% style="color:#037691" %)**Dimension and weight**:
759 759  
... ... @@ -765,6 +765,8 @@
765 765  
766 766  * Weight / pcs : g
767 767  
895 +
896 +
768 768  = 10. Support =
769 769  
770 770  
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content