Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -52,26 +52,121 @@ 52 52 == 1.3 Specification == 53 53 54 54 55 -(% style="color:#037691" %)** LiDARSensor:**55 +(% style="color:#037691" %)**Common DC Characteristics:** 56 56 57 -* Operation Temperature: -40 ~~ 80 °C 58 -* Operation Humidity: 0~~99.9%RH (no Dew) 59 -* Storage Temperature: -10 ~~ 45°C 57 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 58 +* Operating Temperature: -40 ~~ 85°C 59 + 60 +(% style="color:#037691" %)**Probe Specification:** 61 + 60 60 * Measure Range: 3cm~~200cm @ 90% reflectivity 61 61 * Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 62 62 * ToF FoV: ±9°, Total 18° 63 63 * Light source: VCSEL 64 64 67 +(% style="color:#037691" %)**LoRa Spec:** 65 65 69 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 70 +* Max +22 dBm constant RF output vs. 71 +* RX sensitivity: down to -139 dBm. 72 +* Excellent blocking immunity 73 + 74 +(% style="color:#037691" %)**Battery:** 75 + 76 +* Li/SOCI2 un-chargeable battery 77 +* Capacity: 8500mAh 78 +* Self-Discharge: <1% / Year @ 25°C 79 +* Max continuously current: 130mA 80 +* Max boost current: 2A, 1 second 81 + 82 +(% style="color:#037691" %)**Power Consumption** 83 + 84 +* Sleep Mode: 5uA @ 3.3v 85 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 86 + 87 +== 1.4 Applications == 88 + 89 + 90 +* Horizontal distance measurement 91 +* Parking management system 92 +* Object proximity and presence detection 93 +* Intelligent trash can management system 94 +* Robot obstacle avoidance 95 +* Automatic control 96 +* Sewer 97 + 66 66 (% style="display:none" %) 67 67 100 +== 1.5 Sleep mode and working mode == 68 68 69 -= 2. Configure DS20L to connect to LoRaWAN network = 70 70 103 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 104 + 105 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 106 + 107 + 108 +== 1.6 Button & LEDs == 109 + 110 + 111 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 112 + 113 + 114 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 115 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 116 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 117 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 118 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 119 +))) 120 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 121 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 122 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 123 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 124 +))) 125 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 126 + 127 +== 1.7 BLE connection == 128 + 129 + 130 +LDS12-LB support BLE remote configure. 131 + 132 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 133 + 134 +* Press button to send an uplink 135 +* Press button to active device. 136 +* Device Power on or reset. 137 + 138 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 139 + 140 + 141 +== 1.8 Pin Definitions == 142 + 143 + 144 +[[image:image-20230805144259-1.png||height="413" width="741"]] 145 + 146 +== 1.9 Mechanical == 147 + 148 + 149 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 150 + 151 + 152 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 153 + 154 + 155 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 156 + 157 + 158 +(% style="color:blue" %)**Probe Mechanical:** 159 + 160 + 161 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 162 + 163 + 164 += 2. Configure LDS12-LB to connect to LoRaWAN network = 165 + 71 71 == 2.1 How it works == 72 72 73 73 74 -The DS2 0L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.169 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 75 75 76 76 (% style="display:none" %) (%%) 77 77 ... ... @@ -85,9 +85,9 @@ 85 85 [[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %) 86 86 87 87 88 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS2 0L.183 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 89 89 90 -Each DS2 0L is shipped with a sticker with the default device EUI as below:185 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 91 91 92 92 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 93 93 ... ... @@ -116,10 +116,10 @@ 116 116 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 117 117 118 118 119 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS2 0L214 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 120 120 121 121 122 -Press the button for 5 seconds to activate the DS2 0L.217 +Press the button for 5 seconds to activate the LDS12-LB. 123 123 124 124 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 125 125 ... ... @@ -131,7 +131,7 @@ 131 131 === 2.3.1 Device Status, FPORT~=5 === 132 132 133 133 134 -Users can use the downlink command(**0x26 01**) to ask DS2 0L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.229 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 135 135 136 136 The Payload format is as below. 137 137 ... ... @@ -145,7 +145,7 @@ 145 145 146 146 [[image:image-20230805103904-1.png||height="131" width="711"]] 147 147 148 -(% style="color:blue" %)**Sensor Model**(%%): For DS2 0L, this value is 0x24243 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 149 149 150 150 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 151 151 ... ... @@ -200,7 +200,7 @@ 200 200 201 201 202 202 ((( 203 -DS2 0L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:298 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 204 204 205 205 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 206 206 ... ... @@ -225,7 +225,7 @@ 225 225 ==== (% style="color:blue" %)**Battery Info**(%%) ==== 226 226 227 227 228 -Check the battery voltage for DS2 0L.323 +Check the battery voltage for LDS12-LB. 229 229 230 230 Ex1: 0x0B45 = 2885mV 231 231 ... ... @@ -330,7 +330,7 @@ 330 330 === 2.3.3 Historical measuring distance, FPORT~=3 === 331 331 332 332 333 -DS2 0L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].428 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 334 334 335 335 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 336 336 ... ... @@ -355,7 +355,7 @@ 355 355 ))) 356 356 357 357 * ((( 358 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS2 0L will send max bytes according to the current DR and Frequency bands.453 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 359 359 ))) 360 360 361 361 For example, in the US915 band, the max payload for different DR is: ... ... @@ -368,7 +368,7 @@ 368 368 369 369 **d) DR3:** total payload includes 22 entries of data. 370 370 371 -If DS2 0L doesn't have any data in the polling time. It will uplink 11 bytes of 0466 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 372 372 373 373 374 374 **Downlink:** ... ... @@ -422,7 +422,7 @@ 422 422 ))) 423 423 424 424 ((( 425 -DS2 0L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]520 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 426 426 ))) 427 427 428 428 ... ... @@ -451,7 +451,7 @@ 451 451 452 452 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 453 453 454 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS2 0L and add DevEUI.**549 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 455 455 456 456 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 457 457 ... ... @@ -464,27 +464,30 @@ 464 464 == 2.5 Datalog Feature == 465 465 466 466 467 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS2 0L will store the reading for future retrieving purposes.562 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 468 468 469 469 470 470 === 2.5.1 Ways to get datalog via LoRaWAN === 471 471 472 472 473 -Set PNACKMD=1, DS2 0L will wait for ACK for every uplink, when there is no LoRaWAN network,0L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.568 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 474 474 475 475 * ((( 476 -a) DS2 0L will do an ACK check for data records sending to make sure every data arrive server.571 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 477 477 ))) 478 478 * ((( 479 -b) DS2 0L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.574 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 480 480 ))) 481 481 577 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 482 482 579 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 483 483 581 + 484 484 === 2.5.2 Unix TimeStamp === 485 485 486 486 487 -DS2 0L uses Unix TimeStamp format based on585 +LDS12-LB uses Unix TimeStamp format based on 488 488 489 489 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 490 490 ... ... @@ -503,7 +503,7 @@ 503 503 504 504 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 505 505 506 -Once DS2 0L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).604 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 507 507 508 508 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 509 509 ... ... @@ -531,7 +531,7 @@ 531 531 ))) 532 532 533 533 ((( 534 -Uplink Internal =5s,means DS2 0L will send one packet every 5s. range 5~~255s.632 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 535 535 ))) 536 536 537 537 ... ... @@ -538,17 +538,101 @@ 538 538 == 2.6 Frequency Plans == 539 539 540 540 541 -The DS2 0L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.639 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 542 542 543 543 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 544 544 545 545 546 - 3.ConfigureDS20L644 +== 2.7 LiDAR ToF Measurement == 547 547 646 +=== 2.7.1 Principle of Distance Measurement === 647 + 648 + 649 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 650 + 651 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 652 + 653 + 654 +=== 2.7.2 Distance Measurement Characteristics === 655 + 656 + 657 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 658 + 659 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 660 + 661 + 662 +((( 663 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 664 +))) 665 + 666 +((( 667 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 668 +))) 669 + 670 +((( 671 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 672 +))) 673 + 674 + 675 +((( 676 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 677 +))) 678 + 679 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 680 + 681 +((( 682 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 683 +))) 684 + 685 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 686 + 687 +((( 688 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 689 +))) 690 + 691 + 692 +=== 2.7.3 Notice of usage === 693 + 694 + 695 +Possible invalid /wrong reading for LiDAR ToF tech: 696 + 697 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 698 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 699 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 700 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 701 + 702 +=== 2.7.4 Reflectivity of different objects === 703 + 704 + 705 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 706 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 707 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 708 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 709 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 710 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 711 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 712 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 713 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 714 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 715 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 716 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 717 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 718 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 719 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 720 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 721 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 722 +Unpolished white metal surface 723 +)))|(% style="width:93px" %)130% 724 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 725 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 726 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 727 + 728 += 3. Configure LDS12-LB = 729 + 548 548 == 3.1 Configure Methods == 549 549 550 550 551 -DS2 0L supports below configure method:733 +LDS12-LB supports below configure method: 552 552 553 553 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 554 554 ... ... @@ -570,10 +570,10 @@ 570 570 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 571 571 572 572 573 -== 3.3 Commands special design for DS2 0L ==755 +== 3.3 Commands special design for LDS12-LB == 574 574 575 575 576 -These commands only valid for DS2 0L, as below:758 +These commands only valid for LDS12-LB, as below: 577 577 578 578 579 579 === 3.3.1 Set Transmit Interval Time === ... ... @@ -659,11 +659,39 @@ 659 659 660 660 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 661 661 844 +=== 3.3.3 Set Power Output Duration === 662 662 846 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 847 + 848 +~1. first enable the power output to external sensor, 849 + 850 +2. keep it on as per duration, read sensor value and construct uplink payload 851 + 852 +3. final, close the power output. 853 + 854 +(% style="color:blue" %)**AT Command: AT+3V3T** 855 + 856 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 857 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 858 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 859 +OK 860 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 861 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 862 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 863 + 864 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 865 +Format: Command Code (0x07) followed by 3 bytes. 866 + 867 +The first byte is 01,the second and third bytes are the time to turn on. 868 + 869 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 870 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 871 +* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 872 + 663 663 = 4. Battery & Power Consumption = 664 664 665 665 666 -DS2 0L usebuilt-in2400mAhnon-chargeablebatteryfor long-term use upto several years*. See below link for detail information about the battery info and how to replace.876 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 667 667 668 668 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 669 669 ... ... @@ -672,7 +672,7 @@ 672 672 673 673 674 674 (% class="wikigeneratedid" %) 675 -User can change firmware DS2 0L to:885 +User can change firmware LDS12-LB to: 676 676 677 677 * Change Frequency band/ region. 678 678 ... ... @@ -680,7 +680,7 @@ 680 680 681 681 * Fix bugs. 682 682 683 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/ zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**893 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 684 684 685 685 Methods to Update Firmware: 686 686 ... ... @@ -728,7 +728,7 @@ 728 728 = 8. Order Info = 729 729 730 730 731 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**941 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 732 732 733 733 (% style="color:red" %)**XXX**(%%): **The default frequency band** 734 734 ... ... @@ -753,7 +753,7 @@ 753 753 754 754 (% style="color:#037691" %)**Package Includes**: 755 755 756 -* DS2 0L LoRaWANSmartDistanceDetector x 1966 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 757 757 758 758 (% style="color:#037691" %)**Dimension and weight**: 759 759