Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 13 removed)
- image-20230805103904-1.png
- image-20230805104104-2.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -DS2 0L -- LoRaWANSmartDistanceDetector User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-202311 10085342-2.png||height="481" width="481"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,213 +19,262 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 34 -DS2 0Lsupports(% style="color:blue" %)**Datalogfeature**(%%).Itwill record thedatawhen thereis no network coverageand userscanretrieve the sensorvaluelatertoensure no miss forevery sensor reading.32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 35 35 36 - [[image:image-20231110091506-4.png||height="391"width="768"]]34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 37 36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 38 38 38 +[[image:image-20230615152941-1.png||height="459" width="800"]] 39 + 40 + 39 39 == 1.2 Features == 40 40 41 41 42 -* LoRaWAN Class A protocol 43 -* LiDAR distance detector, range 3 ~~ 200cm 44 -* Periodically detect or continuously detect mode 44 +* LoRaWAN 1.0.3 Class A 45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 +* Ultra-low power consumption 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 51 +* Support Bluetooth v5.1 and LoRaWAN remote configure 52 +* Support wireless OTA update firmware 45 45 * AT Commands to change parameters 46 -* Remotely configure parameters via LoRaWAN Downlink 47 -* Alarm & Counting mode 48 -* Datalog Feature 49 -* Firmware upgradable via program port or LoRa protocol 50 -* Built-in 2400mAh battery or power by external power source 54 +* Downlink to change configure 55 +* 8500mAh Battery for long term use 51 51 57 + 58 + 52 52 == 1.3 Specification == 53 53 54 54 55 -(% style="color:#037691" %)** LiDARSensor:**62 +(% style="color:#037691" %)**Common DC Characteristics:** 56 56 57 -* Operation Temperature: -40 ~~ 80 °C 58 -* Operation Humidity: 0~~99.9%RH (no Dew) 59 -* Storage Temperature: -10 ~~ 45°C 60 -* Measure Range: 3cm~~200cm @ 90% reflectivity 61 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 62 -* ToF FoV: ±9°, Total 18° 63 -* Light source: VCSEL 64 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 65 +* Operating Temperature: -40 ~~ 85°C 64 64 67 +(% style="color:#037691" %)**Probe Specification:** 65 65 66 -(% style="display:none" %) 69 +* Storage temperature:-20℃~~75℃ 70 +* Operating temperature : -20℃~~60℃ 71 +* Measure Distance: 72 +** 0.1m ~~ 12m @ 90% Reflectivity 73 +** 0.1m ~~ 4m @ 10% Reflectivity 74 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 75 +* Distance resolution : 5mm 76 +* Ambient light immunity : 70klux 77 +* Enclosure rating : IP65 78 +* Light source : LED 79 +* Central wavelength : 850nm 80 +* FOV : 3.6° 81 +* Material of enclosure : ABS+PC 82 +* Wire length : 25cm 67 67 84 +(% style="color:#037691" %)**LoRa Spec:** 68 68 69 -= 2. Configure DS20L to connect to LoRaWAN network = 86 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 87 +* Max +22 dBm constant RF output vs. 88 +* RX sensitivity: down to -139 dBm. 89 +* Excellent blocking immunity 70 70 71 - ==2.1 How itworks==91 +(% style="color:#037691" %)**Battery:** 72 72 93 +* Li/SOCI2 un-chargeable battery 94 +* Capacity: 8500mAh 95 +* Self-Discharge: <1% / Year @ 25°C 96 +* Max continuously current: 130mA 97 +* Max boost current: 2A, 1 second 73 73 74 - The DS20L is configured as(% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network,youneed to input the OTAA keysin the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically jointhe network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.99 +(% style="color:#037691" %)**Power Consumption** 75 75 76 -(% style="display:none" %) (%%) 101 +* Sleep Mode: 5uA @ 3.3v 102 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 77 77 78 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 79 79 80 80 81 - Followingisan example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway inthisexample.106 +== 1.4 Applications == 82 82 83 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 84 84 85 -[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %) 109 +* Horizontal distance measurement 110 +* Parking management system 111 +* Object proximity and presence detection 112 +* Intelligent trash can management system 113 +* Robot obstacle avoidance 114 +* Automatic control 115 +* Sewer 86 86 87 87 88 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 89 89 90 - EachDS20L isshippedwith asticker with the default deviceEUIas below:119 +(% style="display:none" %) 91 91 92 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png"height="233"width="502"]]121 +== 1.5 Sleep mode and working mode == 93 93 94 94 95 - Youcanenterthis keyin the LoRaWANServer portal.BelowisTTNscreen shot:124 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 96 96 126 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 97 97 98 -(% style="color:blue" %)**Register the device** 99 99 100 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]129 +== 1.6 Button & LEDs == 101 101 102 102 103 - (%style="color:blue"%)**AddAPPEUI and DEV EUI**132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 104 104 105 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 106 106 135 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 136 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 137 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 138 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 139 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 140 +))) 141 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 142 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 143 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 144 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 145 +))) 146 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 107 107 108 -(% style="color:blue" %)**Add APP EUI in the application** 109 109 110 110 111 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]150 +== 1.7 BLE connection == 112 112 113 113 114 - (%style="color:blue" %)**Add APP KEY**153 +LDS12-LB support BLE remote configure. 115 115 116 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]155 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 117 117 157 +* Press button to send an uplink 158 +* Press button to active device. 159 +* Device Power on or reset. 118 118 119 - (%style="color:blue"%)**Step2:**(%%)Activate onDS20L161 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 120 120 121 121 122 - Pressthebutton for 5 secondsto activate the DS20L.164 +== 1.8 Pin Definitions == 123 123 124 - (% style="color:green" %)**Green led**(%%)will fast blink5 times,devicewill enter (% style="color:blue" %)**OTA mode**(%%)for3 seconds.Andthenstart to JOINLoRaWANtwork. (%style="color:green" %)**Greenled**(%%) will solidly turn on for 5secondsafter joinedinnetwork.166 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 125 125 126 -After join success, it will start to upload messages to TTN and you can see the messages in the panel. 127 127 169 +== 1.9 Mechanical == 128 128 129 -== 2.3 Uplink Payload == 130 130 131 - === 2.3.1 DeviceStatus,FPORT~=5===172 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 132 132 133 133 134 -User scansethe downlinkcommand(**0x2601**) toaskDS20Ltosend device configure detail, includedevice configurestatus. DS20L will uplinkapayload via FPort=5 to server.175 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 135 135 136 -The Payload format is as below. 137 137 138 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 139 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 140 -**Size(bytes)** 141 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 142 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 178 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 143 143 144 -Example parse in TTNv3 145 145 146 - [[image:image-20230805103904-1.png||height="131"width="711"]]181 +(% style="color:blue" %)**Probe Mechanical:** 147 147 148 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24 149 149 150 - (% style="color:blue"%)**FirmwareVersion**(%%):0x0100, Means:v1.0.0 version184 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 151 151 152 -(% style="color:blue" %)**Frequency Band**: 153 153 154 - 0x01:EU868187 += 2. Configure LDS12-LB to connect to LoRaWAN network = 155 155 156 - 0x02:US915189 +== 2.1 How it works == 157 157 158 -0x03: IN865 159 159 160 - 0x04: AU915192 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 161 161 162 - 0x05:KZ865194 +(% style="display:none" %) (%%) 163 163 164 - 0x06:RU864196 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 165 165 166 -0x07: AS923 167 167 168 - 0x08:AS923-1199 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 169 169 170 - 0x09:AS923-2201 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 171 171 172 - 0x0a:AS923-3203 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 173 173 174 -0x0b: CN470 175 175 176 - 0x0c:EU433206 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 177 177 178 - 0x0d:KR920208 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 179 179 180 - 0x0e:MA869210 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 181 181 182 -(% style="color:blue" %)**Sub-Band**: 183 183 184 - AU915andUS915:value0x00~~0x08213 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 185 185 186 -CN470: value 0x0B ~~ 0x0C 187 187 188 - OtherBands:Always0x00216 +(% style="color:blue" %)**Register the device** 189 189 190 - (% style="color:blue"%)**Battery Info**:218 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 191 191 192 -Check the battery voltage. 193 193 194 - Ex1:0x0B45=2885mV221 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 195 195 196 - Ex2:0x0B49=89mV223 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 197 197 198 198 199 -= ==2.3.2UplinkPayload, FPORT~=2 ===226 +(% style="color:blue" %)**Add APP EUI in the application** 200 200 201 201 202 -((( 203 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will: 229 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 204 204 205 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 206 206 207 -Uplink Payload totals 11 bytes. 232 +(% style="color:blue" %)**Add APP KEY** 233 + 234 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 235 + 236 + 237 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 238 + 239 + 240 +Press the button for 5 seconds to activate the LDS12-LB. 241 + 242 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 243 + 244 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 245 + 246 + 247 +== 2.3 Uplink Payload == 248 + 249 + 250 +((( 251 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 208 208 ))) 209 209 254 +((( 255 +Uplink payload includes in total 11 bytes. 256 +))) 257 + 210 210 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 211 -|=(% style="width: 6 0px;background-color:#4F81BD;color:white" %)(((259 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 212 212 **Size(bytes)** 213 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color:; width: 70px;" %)**1**|=(% style="background-color:; width: 70px;" %)**1**214 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 215 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 216 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|( % style="width:122px" %)(((217 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]218 -)))| (% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((219 -[[Message Type>>||anchor="HMessageType"]] 261 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1** 262 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)((( 263 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 264 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|((( 265 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]] 266 +)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|((( 267 +[[Message Type>>||anchor="H2.3.7MessageType"]] 220 220 ))) 221 221 222 -[[image:i mage-20230805104104-2.png||height="136" width="754"]]270 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 223 223 224 224 225 -=== =(%style="color:blue" %)**Battery Info**(%%)====273 +=== 2.3.1 Battery Info === 226 226 227 227 228 -Check the battery voltage for DS2 0L.276 +Check the battery voltage for LDS12-LB. 229 229 230 230 Ex1: 0x0B45 = 2885mV 231 231 ... ... @@ -232,7 +232,7 @@ 232 232 Ex2: 0x0B49 = 2889mV 233 233 234 234 235 -=== =(%style="color:blue" %)**DS18B20 Temperature sensor**(%%)====283 +=== 2.3.2 DS18B20 Temperature sensor === 236 236 237 237 238 238 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. ... ... @@ -245,7 +245,7 @@ 245 245 If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 246 246 247 247 248 -=== =(%style="color:blue" %)**Distance**(%%)====296 +=== 2.3.3 Distance === 249 249 250 250 251 251 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. ... ... @@ -256,7 +256,7 @@ 256 256 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 257 257 258 258 259 -=== =(%style="color:blue" %)**Distance signal strength**(%%)====307 +=== 2.3.4 Distance signal strength === 260 260 261 261 262 262 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. ... ... @@ -269,36 +269,21 @@ 269 269 Customers can judge whether they need to adjust the environment based on the signal strength. 270 270 271 271 272 - **1)Whenthesensordetectsvaliddata:**320 +=== 2.3.5 Interrupt Pin === 273 273 274 -[[image:image-20230805155335-1.png||height="145" width="724"]] 275 275 276 - 277 -**2) When the sensor detects invalid data:** 278 - 279 -[[image:image-20230805155428-2.png||height="139" width="726"]] 280 - 281 - 282 -**3) When the sensor is not connected:** 283 - 284 -[[image:image-20230805155515-3.png||height="143" width="725"]] 285 - 286 - 287 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 288 - 289 - 290 290 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 291 291 292 -Note: The Internet Pin is a separate pin in the screw terminal. See of GPIO_EXTI.325 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 293 293 294 294 **Example:** 295 295 296 - If byte[0]&0x01=0x00: Normal uplink packet.329 +0x00: Normal uplink packet. 297 297 298 - If byte[0]&0x01=0x01: Interrupt Uplink Packet.331 +0x01: Interrupt Uplink Packet. 299 299 300 300 301 -=== =(%style="color:blue" %)**LiDAR temp**(%%)====334 +=== 2.3.6 LiDAR temp === 302 302 303 303 304 304 Characterize the internal temperature value of the sensor. ... ... @@ -308,7 +308,7 @@ 308 308 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 309 309 310 310 311 -=== =(%style="color:blue" %)**Message Type**(%%)====344 +=== 2.3.7 Message Type === 312 312 313 313 314 314 ((( ... ... @@ -321,97 +321,14 @@ 321 321 322 322 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 323 323 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 324 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 325 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 357 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 358 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 326 326 327 -[[image:image-20230805150315-4.png||height="233" width="723"]] 328 328 329 329 330 -=== 2.3. 3 Historicalmeasuringdistance,FPORT~=3===362 +=== 2.3.8 Decode payload in The Things Network === 331 331 332 332 333 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 334 - 335 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 336 - 337 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 338 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 339 -**Size(bytes)** 340 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 341 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 342 -Reserve(0xFF) 343 -)))|Distance|Distance signal strength|(% style="width:88px" %)((( 344 -LiDAR temp 345 -)))|(% style="width:85px" %)Unix TimeStamp 346 - 347 -**Interrupt flag & Interrupt level:** 348 - 349 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 350 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 351 -**Size(bit)** 352 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 353 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 354 -Interrupt flag 355 -))) 356 - 357 -* ((( 358 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands. 359 -))) 360 - 361 -For example, in the US915 band, the max payload for different DR is: 362 - 363 -**a) DR0:** max is 11 bytes so one entry of data 364 - 365 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 366 - 367 -**c) DR2:** total payload includes 11 entries of data 368 - 369 -**d) DR3:** total payload includes 22 entries of data. 370 - 371 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0 372 - 373 - 374 -**Downlink:** 375 - 376 -0x31 64 CC 68 0C 64 CC 69 74 05 377 - 378 -[[image:image-20230805144936-2.png||height="113" width="746"]] 379 - 380 -**Uplink:** 381 - 382 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 383 - 384 - 385 -**Parsed Value:** 386 - 387 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 388 - 389 - 390 -[360,176,30,High,True,2023-08-04 02:53:00], 391 - 392 -[355,168,30,Low,False,2023-08-04 02:53:29], 393 - 394 -[245,211,30,Low,False,2023-08-04 02:54:29], 395 - 396 -[57,700,30,Low,False,2023-08-04 02:55:29], 397 - 398 -[361,164,30,Low,True,2023-08-04 02:56:00], 399 - 400 -[337,184,30,Low,False,2023-08-04 02:56:40], 401 - 402 -[20,4458,30,Low,False,2023-08-04 02:57:40], 403 - 404 -[362,173,30,Low,False,2023-08-04 02:58:53], 405 - 406 - 407 -**History read from serial port:** 408 - 409 -[[image:image-20230805145056-3.png]] 410 - 411 - 412 -=== 2.3.4 Decode payload in The Things Network === 413 - 414 - 415 415 While using TTN network, you can add the payload format to decode the payload. 416 416 417 417 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] ... ... @@ -422,13 +422,19 @@ 422 422 ))) 423 423 424 424 ((( 425 -DS2 0L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]375 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 426 426 ))) 427 427 428 428 429 -== 2.4 Show DatainDataCakeIoT Server==379 +== 2.4 Uplink Interval == 430 430 431 431 382 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 383 + 384 + 385 +== 2.5 Show Data in DataCake IoT Server == 386 + 387 + 432 432 ((( 433 433 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 434 434 ))) ... ... @@ -451,7 +451,7 @@ 451 451 452 452 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 453 453 454 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS2 0L and add DevEUI.**410 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 455 455 456 456 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 457 457 ... ... @@ -461,31 +461,34 @@ 461 461 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 462 462 463 463 464 -== 2. 5Datalog Feature ==420 +== 2.6 Datalog Feature == 465 465 466 466 467 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS2 0L will store the reading for future retrieving purposes.423 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 468 468 469 469 470 -=== 2. 5.1 Ways to get datalog via LoRaWAN ===426 +=== 2.6.1 Ways to get datalog via LoRaWAN === 471 471 472 472 473 -Set PNACKMD=1, DS2 0L will wait for ACK for every uplink, when there is no LoRaWAN network,0L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.429 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 474 474 475 475 * ((( 476 -a) DS2 0L will do an ACK check for data records sending to make sure every data arrive server.432 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 477 477 ))) 478 478 * ((( 479 -b) DS2 0L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.435 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 480 480 ))) 481 481 438 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 482 482 440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 483 483 484 -=== 2.5.2 Unix TimeStamp === 485 485 443 +=== 2.6.2 Unix TimeStamp === 486 486 487 -DS20L uses Unix TimeStamp format based on 488 488 446 +LDS12-LB uses Unix TimeStamp format based on 447 + 489 489 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 490 490 491 491 User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : ... ... @@ -498,23 +498,23 @@ 498 498 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 499 499 500 500 501 -=== 2. 5.3 Set Device Time ===460 +=== 2.6.3 Set Device Time === 502 502 503 503 504 504 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 505 505 506 -Once DS2 0L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).465 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 507 507 508 508 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 509 509 510 510 511 -=== 2. 5.4 Poll sensor value ===470 +=== 2.6.4 Poll sensor value === 512 512 513 513 514 514 Users can poll sensor values based on timestamps. Below is the downlink command. 515 515 516 516 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 517 -|(% colspan="4" style="background-color:# 4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**476 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 518 518 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 519 519 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 520 520 ... ... @@ -535,7 +535,7 @@ 535 535 ))) 536 536 537 537 538 -== 2. 6Frequency Plans ==497 +== 2.7 Frequency Plans == 539 539 540 540 541 541 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. ... ... @@ -543,8 +543,96 @@ 543 543 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 544 544 545 545 546 - (% style="color:inherit;font-family:inherit; font-size:29px"%)3. Configure LDS12-LB505 +== 2.8 LiDAR ToF Measurement == 547 547 507 +=== 2.8.1 Principle of Distance Measurement === 508 + 509 + 510 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 511 + 512 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 513 + 514 + 515 +=== 2.8.2 Distance Measurement Characteristics === 516 + 517 + 518 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 519 + 520 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 521 + 522 + 523 +((( 524 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 525 +))) 526 + 527 +((( 528 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 529 +))) 530 + 531 +((( 532 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 533 +))) 534 + 535 + 536 +((( 537 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 538 +))) 539 + 540 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 541 + 542 +((( 543 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 544 +))) 545 + 546 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 547 + 548 +((( 549 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 550 +))) 551 + 552 + 553 +=== 2.8.3 Notice of usage === 554 + 555 + 556 +Possible invalid /wrong reading for LiDAR ToF tech: 557 + 558 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 559 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 560 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 561 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 562 + 563 + 564 + 565 +=== 2.8.4 Reflectivity of different objects === 566 + 567 + 568 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 569 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 570 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 571 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 572 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 573 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 574 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 575 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 576 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 577 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 578 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 579 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 580 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 581 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 582 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 583 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 584 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 585 +Unpolished white metal surface 586 +)))|(% style="width:93px" %)130% 587 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 588 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 589 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 590 + 591 + 592 + 593 += 3. Configure LDS12-LB = 594 + 548 548 == 3.1 Configure Methods == 549 549 550 550 ... ... @@ -556,6 +556,8 @@ 556 556 557 557 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 558 558 606 + 607 + 559 559 == 3.2 General Commands == 560 560 561 561 ... ... @@ -624,9 +624,9 @@ 624 624 === 3.3.2 Set Interrupt Mode === 625 625 626 626 627 -Feature, Set Interrupt mode for pinofGPIO_EXTI.676 +Feature, Set Interrupt mode for PA8 of pin. 628 628 629 -When AT+INTMOD=0 is set, GPIO_EXTIis used as a digital input port.678 +When AT+INTMOD=0 is set, PA8 is used as a digital input port. 630 630 631 631 (% style="color:blue" %)**AT Command: AT+INTMOD** 632 632 ... ... @@ -637,11 +637,7 @@ 637 637 OK 638 638 the mode is 0 =Disable Interrupt 639 639 ))) 640 -|(% style="width:154px" %)((( 641 -AT+INTMOD=2 642 - 643 -(default) 644 -)))|(% style="width:196px" %)((( 689 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 645 645 Set Transmit Interval 646 646 0. (Disable Interrupt), 647 647 ~1. (Trigger by rising and falling edge) ... ... @@ -660,6 +660,84 @@ 660 660 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 661 661 662 662 708 + 709 +=== 3.3.3 Get Firmware Version Info === 710 + 711 + 712 +Feature: use downlink to get firmware version. 713 + 714 +(% style="color:blue" %)**Downlink Command: 0x26** 715 + 716 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %) 717 +|(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)** 718 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2 719 + 720 +* Reply to the confirmation package: 26 01 721 +* Reply to non-confirmed packet: 26 00 722 + 723 +Device will send an uplink after got this downlink command. With below payload: 724 + 725 +Configures info payload: 726 + 727 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 728 +|=(% style="background-color:#4F81BD;color:white" %)((( 729 +**Size(bytes)** 730 +)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1** 731 +|**Value**|Software Type|((( 732 +Frequency Band 733 +)))|Sub-band|((( 734 +Firmware Version 735 +)))|Sensor Type|Reserve|((( 736 +[[Message Type>>||anchor="H2.3.7MessageType"]] 737 +Always 0x02 738 +))) 739 + 740 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12 741 + 742 +(% style="color:#037691" %)**Frequency Band**: 743 + 744 +0x01: EU868 745 + 746 +0x02: US915 747 + 748 +0x03: IN865 749 + 750 +0x04: AU915 751 + 752 +0x05: KZ865 753 + 754 +0x06: RU864 755 + 756 +0x07: AS923 757 + 758 +0x08: AS923-1 759 + 760 +0x09: AS923-2 761 + 762 +0xa0: AS923-3 763 + 764 + 765 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08 766 + 767 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 768 + 769 +(% style="color:#037691" %)**Sensor Type**: 770 + 771 +0x01: LSE01 772 + 773 +0x02: LDDS75 774 + 775 +0x03: LDDS20 776 + 777 +0x04: LLMS01 778 + 779 +0x05: LSPH01 780 + 781 +0x06: LSNPK01 782 + 783 +0x07: LLDS12 784 + 785 + 663 663 = 4. Battery & Power Consumption = 664 664 665 665 ... ... @@ -680,7 +680,7 @@ 680 680 681 681 * Fix bugs. 682 682 683 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/ zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**806 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 684 684 685 685 Methods to Update Firmware: 686 686 ... ... @@ -688,6 +688,8 @@ 688 688 689 689 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 690 690 814 + 815 + 691 691 = 6. FAQ = 692 692 693 693 == 6.1 What is the frequency plan for LDS12-LB? == ... ... @@ -728,7 +728,7 @@ 728 728 = 8. Order Info = 729 729 730 730 731 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**856 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 732 732 733 733 (% style="color:red" %)**XXX**(%%): **The default frequency band** 734 734 ... ... @@ -748,12 +748,14 @@ 748 748 749 749 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 750 750 876 + 877 + 751 751 = 9. Packing Info = 752 752 753 753 754 754 (% style="color:#037691" %)**Package Includes**: 755 755 756 -* DS2 0L LoRaWANSmartDistanceDetector x 1883 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 757 757 758 758 (% style="color:#037691" %)**Dimension and weight**: 759 759 ... ... @@ -765,6 +765,8 @@ 765 765 766 766 * Weight / pcs : g 767 767 895 + 896 + 768 768 = 10. Support = 769 769 770 770
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content