Last modified by Mengting Qiu on 2023/12/14 11:15

From version 113.6
edited by Xiaoling
on 2023/11/10 10:03
Change comment: There is no comment for this version
To version 113.3
edited by Xiaoling
on 2023/11/10 09:28
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -39,39 +39,147 @@
39 39  == 1.2 ​Features ==
40 40  
41 41  
42 -* LoRaWAN Class A protocol
43 -* LiDAR distance detector, range 3 ~~ 200cm
44 -* Periodically detect or continuously detect mode
42 +* LoRaWAN 1.0.3 Class A
43 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
44 +* Ultra-low power consumption
45 +* Laser technology for distance detection
46 +* Measure Distance: 0.1m~~12m
47 +* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
48 +* Monitor Battery Level
49 +* Support Bluetooth v5.1 and LoRaWAN remote configure
50 +* Support wireless OTA update firmware
45 45  * AT Commands to change parameters
46 -* Remotely configure parameters via LoRaWAN Downlink
47 -* Alarm & Counting mode
48 -* Datalog Feature
49 -* Firmware upgradable via program port or LoRa protocol
50 -* Built-in 2400mAh battery or power by external power source
52 +* Downlink to change configure
53 +* 8500mAh Battery for long term use
51 51  
52 52  == 1.3 Specification ==
53 53  
54 54  
55 -(% style="color:#037691" %)**LiDAR Sensor:**
58 +(% style="color:#037691" %)**Common DC Characteristics:**
56 56  
57 -* Operation Temperature: -40 ~~ 80 °C
58 -* Operation Humidity: 0~~99.9%RH (no Dew)
59 -* Storage Temperature: -10 ~~ 45°C
60 -* Measure Range: 3cm~~200cm @ 90% reflectivity
61 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 -* ToF FoV: ±9°, Total 18°
63 -* Light source: VCSEL
60 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
61 +* Operating Temperature: -40 ~~ 85°C
64 64  
63 +(% style="color:#037691" %)**Probe Specification:**
65 65  
65 +* Storage temperature:-20℃~~75℃
66 +* Operating temperature : -20℃~~60℃
67 +* Measure Distance:
68 +** 0.1m ~~ 12m @ 90% Reflectivity
69 +** 0.1m ~~ 4m @ 10% Reflectivity
70 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
71 +* Distance resolution : 1cm
72 +* Ambient light immunity : 70klux
73 +* Enclosure rating : IP65
74 +* Light source : LED
75 +* Central wavelength : 850nm
76 +* FOV : 3.6°
77 +* Material of enclosure : ABS+PC
78 +* Wire length : 25cm
79 +
80 +(% style="color:#037691" %)**LoRa Spec:**
81 +
82 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
83 +* Max +22 dBm constant RF output vs.
84 +* RX sensitivity: down to -139 dBm.
85 +* Excellent blocking immunity
86 +
87 +(% style="color:#037691" %)**Battery:**
88 +
89 +* Li/SOCI2 un-chargeable battery
90 +* Capacity: 8500mAh
91 +* Self-Discharge: <1% / Year @ 25°C
92 +* Max continuously current: 130mA
93 +* Max boost current: 2A, 1 second
94 +
95 +(% style="color:#037691" %)**Power Consumption**
96 +
97 +* Sleep Mode: 5uA @ 3.3v
98 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
99 +
100 +== 1.4 Applications ==
101 +
102 +
103 +* Horizontal distance measurement
104 +* Parking management system
105 +* Object proximity and presence detection
106 +* Intelligent trash can management system
107 +* Robot obstacle avoidance
108 +* Automatic control
109 +* Sewer
110 +
66 66  (% style="display:none" %)
67 67  
113 +== 1.5 Sleep mode and working mode ==
68 68  
69 -= 2. Configure DS20L to connect to LoRaWAN network =
70 70  
116 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
117 +
118 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
119 +
120 +
121 +== 1.6 Button & LEDs ==
122 +
123 +
124 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
125 +
126 +
127 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
128 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
129 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
130 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
131 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
132 +)))
133 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
134 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
135 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
136 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
137 +)))
138 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
139 +
140 +== 1.7 BLE connection ==
141 +
142 +
143 +LDS12-LB support BLE remote configure.
144 +
145 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
146 +
147 +* Press button to send an uplink
148 +* Press button to active device.
149 +* Device Power on or reset.
150 +
151 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
152 +
153 +
154 +== 1.8 Pin Definitions ==
155 +
156 +
157 +[[image:image-20230805144259-1.png||height="413" width="741"]]
158 +
159 +== 1.9 Mechanical ==
160 +
161 +
162 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
163 +
164 +
165 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
166 +
167 +
168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
169 +
170 +
171 +(% style="color:blue" %)**Probe Mechanical:**
172 +
173 +
174 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
175 +
176 +
177 += 2. Configure LDS12-LB to connect to LoRaWAN network =
178 +
71 71  == 2.1 How it works ==
72 72  
73 73  
74 -The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
182 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
75 75  
76 76  (% style="display:none" %) (%%)
77 77  
... ... @@ -85,9 +85,9 @@
85 85  [[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
86 86  
87 87  
88 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
196 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
89 89  
90 -Each DS20L is shipped with a sticker with the default device EUI as below:
198 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
91 91  
92 92  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
93 93  
... ... @@ -116,10 +116,10 @@
116 116  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
117 117  
118 118  
119 -(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
227 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
120 120  
121 121  
122 -Press the button for 5 seconds to activate the DS20L.
230 +Press the button for 5 seconds to activate the LDS12-LB.
123 123  
124 124  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
125 125  
... ... @@ -131,7 +131,7 @@
131 131  === 2.3.1 Device Status, FPORT~=5 ===
132 132  
133 133  
134 -Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
242 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
135 135  
136 136  The Payload format is as below.
137 137  
... ... @@ -145,7 +145,7 @@
145 145  
146 146  [[image:image-20230805103904-1.png||height="131" width="711"]]
147 147  
148 -(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24
256 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
149 149  
150 150  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
151 151  
... ... @@ -200,7 +200,7 @@
200 200  
201 201  
202 202  (((
203 -DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
311 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
204 204  
205 205  periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
206 206  
... ... @@ -225,7 +225,7 @@
225 225  ==== (% style="color:blue" %)**Battery Info**(%%) ====
226 226  
227 227  
228 -Check the battery voltage for DS20L.
336 +Check the battery voltage for LDS12-LB.
229 229  
230 230  Ex1: 0x0B45 = 2885mV
231 231  
... ... @@ -330,7 +330,7 @@
330 330  === 2.3.3 Historical measuring distance, FPORT~=3 ===
331 331  
332 332  
333 -DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
441 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
334 334  
335 335  The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
336 336  
... ... @@ -355,7 +355,7 @@
355 355  )))
356 356  
357 357  * (((
358 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
466 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
359 359  )))
360 360  
361 361  For example, in the US915 band, the max payload for different DR is:
... ... @@ -368,7 +368,7 @@
368 368  
369 369  **d) DR3:** total payload includes 22 entries of data.
370 370  
371 -If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
479 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
372 372  
373 373  
374 374  **Downlink:**
... ... @@ -422,7 +422,7 @@
422 422  )))
423 423  
424 424  (((
425 -DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
533 +LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
426 426  )))
427 427  
428 428  
... ... @@ -451,7 +451,7 @@
451 451  
452 452  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
453 453  
454 -(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
562 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
455 455  
456 456  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
457 457  
... ... @@ -464,27 +464,30 @@
464 464  == 2.5 Datalog Feature ==
465 465  
466 466  
467 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes.
575 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
468 468  
469 469  
470 470  === 2.5.1 Ways to get datalog via LoRaWAN ===
471 471  
472 472  
473 -Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
581 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
474 474  
475 475  * (((
476 -a) DS20L will do an ACK check for data records sending to make sure every data arrive server.
584 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
477 477  )))
478 478  * (((
479 -b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.
587 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
480 480  )))
481 481  
590 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
482 482  
592 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
483 483  
594 +
484 484  === 2.5.2 Unix TimeStamp ===
485 485  
486 486  
487 -DS20L uses Unix TimeStamp format based on
598 +LDS12-LB uses Unix TimeStamp format based on
488 488  
489 489  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
490 490  
... ... @@ -503,7 +503,7 @@
503 503  
504 504  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
505 505  
506 -Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
617 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
507 507  
508 508  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
509 509  
... ... @@ -543,8 +543,92 @@
543 543  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
544 544  
545 545  
546 -(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB
657 +== 2.7 LiDAR ToF Measurement ==
547 547  
659 +=== 2.7.1 Principle of Distance Measurement ===
660 +
661 +
662 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
663 +
664 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
665 +
666 +
667 +=== 2.7.2 Distance Measurement Characteristics ===
668 +
669 +
670 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
671 +
672 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
673 +
674 +
675 +(((
676 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
677 +)))
678 +
679 +(((
680 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
681 +)))
682 +
683 +(((
684 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
685 +)))
686 +
687 +
688 +(((
689 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
690 +)))
691 +
692 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
693 +
694 +(((
695 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
696 +)))
697 +
698 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
699 +
700 +(((
701 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
702 +)))
703 +
704 +
705 +=== 2.7.3 Notice of usage ===
706 +
707 +
708 +Possible invalid /wrong reading for LiDAR ToF tech:
709 +
710 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
711 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
712 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
713 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
714 +
715 +=== 2.7.4  Reflectivity of different objects ===
716 +
717 +
718 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
719 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
720 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
721 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
722 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
723 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
724 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
725 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
726 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
727 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
728 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
729 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
730 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
731 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
732 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
733 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
734 +|(% style="width:53px" %)15|(% style="width:229px" %)(((
735 +Unpolished white metal surface
736 +)))|(% style="width:93px" %)130%
737 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
738 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
739 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
740 +
741 += 3. Configure LDS12-LB =
742 +
548 548  == 3.1 Configure Methods ==
549 549  
550 550  
... ... @@ -659,7 +659,35 @@
659 659  
660 660  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
661 661  
857 +=== 3.3.3  Set Power Output Duration ===
662 662  
859 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
860 +
861 +~1. first enable the power output to external sensor,
862 +
863 +2. keep it on as per duration, read sensor value and construct uplink payload
864 +
865 +3. final, close the power output.
866 +
867 +(% style="color:blue" %)**AT Command: AT+3V3T**
868 +
869 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
870 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
871 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
872 +OK
873 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
874 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
875 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
876 +
877 +(% style="color:blue" %)**Downlink Command: 0x07**(%%)
878 +Format: Command Code (0x07) followed by 3 bytes.
879 +
880 +The first byte is 01,the second and third bytes are the time to turn on.
881 +
882 +* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
883 +* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
884 +* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
885 +
663 663  = 4. Battery & Power Consumption =
664 664  
665 665  
... ... @@ -680,7 +680,7 @@
680 680  
681 681  * Fix bugs.
682 682  
683 -Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
906 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
684 684  
685 685  Methods to Update Firmware:
686 686  
... ... @@ -728,7 +728,7 @@
728 728  = 8. Order Info =
729 729  
730 730  
731 -Part Number: (% style="color:blue" %)**DS20L-XXX**
954 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
732 732  
733 733  (% style="color:red" %)**XXX**(%%): **The default frequency band**
734 734  
... ... @@ -753,7 +753,7 @@
753 753  
754 754  (% style="color:#037691" %)**Package Includes**:
755 755  
756 -* DS20L LoRaWAN Smart Distance Detector x 1
979 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
757 757  
758 758  (% style="color:#037691" %)**Dimension and weight**:
759 759