Last modified by Mengting Qiu on 2023/12/14 11:15

From version 113.5
edited by Xiaoling
on 2023/11/10 09:51
Change comment: There is no comment for this version
To version 82.3
edited by Xiaoling
on 2023/06/14 16:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,416 +19,451 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
34 -DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
32 +LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
35 35  
36 -[[image:image-20231110091506-4.png||height="391" width="768"]]
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 37  
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
39 +
40 +
39 39  == 1.2 ​Features ==
40 40  
41 41  
42 -* LoRaWAN Class A protocol
43 -* LiDAR distance detector, range 3 ~~ 200cm
44 -* Periodically detect or continuously detect mode
44 +* LoRaWAN 1.0.3 Class A
45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 +* Ultra-low power consumption
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
51 +* Support Bluetooth v5.1 and LoRaWAN remote configure
52 +* Support wireless OTA update firmware
45 45  * AT Commands to change parameters
46 -* Remotely configure parameters via LoRaWAN Downlink
47 -* Alarm & Counting mode
48 -* Datalog Feature
49 -* Firmware upgradable via program port or LoRa protocol
50 -* Built-in 2400mAh battery or power by external power source
54 +* Downlink to change configure
55 +* 8500mAh Battery for long term use
51 51  
52 52  == 1.3 Specification ==
53 53  
54 54  
55 -(% style="color:#037691" %)**LiDAR Sensor:**
60 +(% style="color:#037691" %)**Common DC Characteristics:**
56 56  
57 -* Operation Temperature: -40 ~~ 80 °C
58 -* Operation Humidity: 0~~99.9%RH (no Dew)
59 -* Storage Temperature: -10 ~~ 45°C
60 -* Measure Range: 3cm~~200cm @ 90% reflectivity
61 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 -* ToF FoV: ±9°, Total 18°
63 -* Light source: VCSEL
62 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 +* Operating Temperature: -40 ~~ 85°C
64 64  
65 +(% style="color:#037691" %)**Probe Specification:**
65 65  
66 -(% style="display:none" %)
67 +* Storage temperature:-20℃~~75℃
68 +* Operating temperature : -20℃~~60℃
69 +* Measure Distance:
70 +** 0.1m ~~ 12m @ 90% Reflectivity
71 +** 0.1m ~~ 4m @ 10% Reflectivity
72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 +* Distance resolution : 5mm
74 +* Ambient light immunity : 70klux
75 +* Enclosure rating : IP65
76 +* Light source : LED
77 +* Central wavelength : 850nm
78 +* FOV : 3.6°
79 +* Material of enclosure : ABS+PC
80 +* Wire length : 25cm
67 67  
82 +(% style="color:#037691" %)**LoRa Spec:**
68 68  
69 -= 2. Configure DS20L to connect to LoRaWAN network =
84 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 +* Max +22 dBm constant RF output vs.
86 +* RX sensitivity: down to -139 dBm.
87 +* Excellent blocking immunity
70 70  
71 -== 2.1 How it works ==
89 +(% style="color:#037691" %)**Battery:**
72 72  
91 +* Li/SOCI2 un-chargeable battery
92 +* Capacity: 8500mAh
93 +* Self-Discharge: <1% / Year @ 25°C
94 +* Max continuously current: 130mA
95 +* Max boost current: 2A, 1 second
73 73  
74 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
97 +(% style="color:#037691" %)**Power Consumption**
75 75  
76 -(% style="display:none" %) (%%)
99 +* Sleep Mode: 5uA @ 3.3v
100 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
77 77  
78 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
102 +== 1.4 Suitable Container & Liquid ==
79 79  
80 80  
81 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
82 82  
83 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
112 +(% style="display:none" %)
84 84  
85 -[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
114 +== 1.5 Install LDS12-LB ==
86 86  
87 87  
88 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
117 +(% style="color:blue" %)**Step 1**(%%) ** Choose the installation point.**
89 89  
90 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
119 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
91 91  
92 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
121 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
93 93  
94 94  
95 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
124 +(((
125 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
126 +)))
96 96  
128 +(((
129 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
130 +)))
97 97  
98 -(% style="color:blue" %)**Register the device**
132 +[[image:image-20230613143052-5.png]]
99 99  
100 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
101 101  
135 +No polish needed if the container is shine metal surface without paint or non-metal container.
102 102  
103 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
137 +[[image:image-20230613143125-6.png]]
104 104  
105 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
106 106  
140 +(((
141 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
142 +)))
107 107  
108 -(% style="color:blue" %)**Add APP EUI in the application**
144 +(((
145 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
146 +)))
109 109  
148 +(((
149 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level.
150 +)))
110 110  
111 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
152 +(((
153 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
154 +)))
112 112  
113 113  
114 -(% style="color:blue" %)**Add APP KEY**
157 +(((
158 +(% style="color:blue" %)**LED Status:**
159 +)))
115 115  
116 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
161 +* (((
162 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
163 +)))
117 117  
165 +* (((
166 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
167 +)))
168 +* (((
169 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
170 +)))
118 118  
119 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
172 +(((
173 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
174 +)))
120 120  
121 121  
122 -Press the button for 5 seconds to activate the LDS12-LB.
177 +(((
178 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
179 +)))
123 123  
124 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
125 125  
126 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
182 +(((
183 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
184 +)))
127 127  
186 +(((
187 +Prepare Eproxy AB glue.
188 +)))
128 128  
129 -== 2.3 ​Uplink Payload ==
190 +(((
191 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
192 +)))
130 130  
131 -=== 2.3.1 Device Status, FPORT~=5 ===
194 +(((
195 +Reset LDS12-LB and see if the BLUE LED is slowly blinking.
196 +)))
132 132  
198 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
133 133  
134 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
135 135  
136 -The Payload format is as below.
201 +(((
202 +(% style="color:red" %)**Note :**
137 137  
138 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
139 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
140 -**Size(bytes)**
141 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
142 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
204 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
205 +)))
143 143  
144 -Example parse in TTNv3
207 +(((
208 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
209 +)))
145 145  
146 -[[image:image-20230805103904-1.png||height="131" width="711"]]
147 147  
148 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
212 +== 1.6 Applications ==
149 149  
150 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
151 151  
152 -(% style="color:blue" %)**Frequency Band**:
215 +* Smart liquid control solution
153 153  
154 -0x01: EU868
217 +* Smart liquefied gas solution
155 155  
156 -0x02: US915
219 +== 1.7 Precautions ==
157 157  
158 -0x03: IN865
159 159  
160 -0x04: AU915
222 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
161 161  
162 -0x05: KZ865
224 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
163 163  
164 -0x06: RU864
226 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
165 165  
166 -0x07: AS923
228 +(% style="display:none" %)
167 167  
168 -0x08: AS923-1
230 +== 1.8 Sleep mode and working mode ==
169 169  
170 -0x09: AS923-2
171 171  
172 -0x0a: AS923-3
233 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
173 173  
174 -0x0b: CN470
235 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
175 175  
176 -0x0c: EU433
177 177  
178 -0x0d: KR920
238 +== 1.9 Button & LEDs ==
179 179  
180 -0x0e: MA869
181 181  
182 -(% style="color:blue" %)**Sub-Band**:
241 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
183 183  
184 -AU915 and US915:value 0x00 ~~ 0x08
185 185  
186 -CN470: value 0x0B ~~ 0x0C
244 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
245 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
246 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
247 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
248 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
249 +)))
250 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
251 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
252 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
253 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
254 +)))
255 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
187 187  
188 -Other Bands: Always 0x00
257 +== 1.10 BLE connection ==
189 189  
190 -(% style="color:blue" %)**Battery Info**:
191 191  
192 -Check the battery voltage.
260 +LDS12-LB support BLE remote configure.
193 193  
194 -Ex1: 0x0B45 = 2885mV
262 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
195 195  
196 -Ex2: 0x0B49 = 2889mV
264 +* Press button to send an uplink
265 +* Press button to active device.
266 +* Device Power on or reset.
197 197  
268 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
198 198  
199 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
200 200  
271 +== 1.11 Pin Definitions ==
201 201  
202 -(((
203 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
273 +[[image:image-20230523174230-1.png]]
204 204  
205 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
206 206  
207 -Uplink Payload totals 11 bytes.
208 -)))
276 +== 1.12 Mechanical ==
209 209  
210 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
211 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
212 -**Size(bytes)**
213 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
214 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
215 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
216 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
217 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
218 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
219 -[[Message Type>>||anchor="HMessageType"]]
220 -)))
221 221  
222 -[[image:image-20230805104104-2.png||height="136" width="754"]]
279 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
223 223  
224 224  
225 -==== (% style="color:blue" %)**Battery Info**(%%) ====
282 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
226 226  
227 227  
228 -Check the battery voltage for LDS12-LB.
285 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
229 229  
230 -Ex1: 0x0B45 = 2885mV
231 231  
232 -Ex2: 0x0B49 = 2889mV
288 +(% style="color:blue" %)**Probe Mechanical:**
233 233  
234 234  
235 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
236 236  
292 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
237 237  
238 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
239 239  
295 += 2. Configure LDS12-LB to connect to LoRaWAN network =
240 240  
241 -**Example**:
297 +== 2.1 How it works ==
242 242  
243 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
244 244  
245 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
300 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
246 246  
302 +(% style="display:none" %) (%%)
247 247  
248 -==== (% style="color:blue" %)**Distance**(%%) ====
304 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
249 249  
250 250  
251 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
307 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
252 252  
309 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
253 253  
254 -**Example**:
311 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
255 255  
256 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
257 257  
314 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
258 258  
259 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
316 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
260 260  
318 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
261 261  
262 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
263 263  
321 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
264 264  
265 -**Example**:
266 266  
267 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
324 +(% style="color:blue" %)**Register the device**
268 268  
269 -Customers can judge whether they need to adjust the environment based on the signal strength.
326 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
270 270  
271 271  
272 -**1) When the sensor detects valid data:**
329 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
273 273  
274 -[[image:image-20230805155335-1.png||height="145" width="724"]]
331 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
275 275  
276 276  
277 -**2) When the sensor detects invalid data:**
334 +(% style="color:blue" %)**Add APP EUI in the application**
278 278  
279 -[[image:image-20230805155428-2.png||height="139" width="726"]]
280 280  
337 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
281 281  
282 -**3) When the sensor is not connected:**
283 283  
284 -[[image:image-20230805155515-3.png||height="143" width="725"]]
340 +(% style="color:blue" %)**Add APP KEY**
285 285  
342 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
286 286  
287 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
288 288  
345 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
289 289  
290 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
291 291  
292 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
348 +Press the button for 5 seconds to activate the LDS12-LB.
293 293  
294 -**Example:**
350 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
295 295  
296 -If byte[0]&0x01=0x00 : Normal uplink packet.
352 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
297 297  
298 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
299 299  
355 +== 2.3  ​Uplink Payload ==
300 300  
301 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
302 302  
303 -
304 -Characterize the internal temperature value of the sensor.
305 -
306 -**Example: **
307 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
308 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
309 -
310 -
311 -==== (% style="color:blue" %)**Message Type**(%%) ====
312 -
313 -
314 314  (((
315 -For a normal uplink payload, the message type is always 0x01.
359 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
316 316  )))
317 317  
318 318  (((
319 -Valid Message Type:
363 +Uplink payload includes in total 8 bytes.
320 320  )))
321 321  
322 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
323 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
324 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
325 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
366 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
367 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
368 +**Size(bytes)**
369 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
370 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
371 +[[Distance>>||anchor="H2.3.2A0Distance"]]
372 +(unit: mm)
373 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
374 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
375 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
326 326  
327 -[[image:image-20230805150315-4.png||height="233" width="723"]]
377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
328 328  
329 329  
330 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
380 +=== 2.3. Battery Info ===
331 331  
332 332  
333 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
383 +Check the battery voltage for LDS12-LB.
334 334  
335 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
385 +Ex1: 0x0B45 = 2885mV
336 336  
337 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
338 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
339 -**Size(bytes)**
340 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
341 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
342 -Reserve(0xFF)
343 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
344 -LiDAR temp
345 -)))|(% style="width:85px" %)Unix TimeStamp
387 +Ex2: 0x0B49 = 2889mV
346 346  
347 -**Interrupt flag & Interrupt level:**
348 348  
349 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
350 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
351 -**Size(bit)**
352 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
353 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
354 -Interrupt flag
355 -)))
390 +=== 2.3.2  Distance ===
356 356  
357 -* (((
358 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
392 +
393 +(((
394 +Get the distance. Flat object range 20mm - 2000mm.
359 359  )))
360 360  
361 -For example, in the US915 band, the max payload for different DR is:
397 +(((
398 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
362 362  
363 -**a) DR0:** max is 11 bytes so one entry of data
400 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
401 +)))
364 364  
365 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
403 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
366 366  
367 -**c) DR2:** total payload includes 11 entries of data
405 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
368 368  
369 -**d) DR3:** total payload includes 22 entries of data.
407 +=== 2.3.3  Interrupt Pin ===
370 370  
371 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
372 372  
410 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
373 373  
374 -**Downlink:**
412 +**Example:**
375 375  
376 -0x31 64 CC 68 0C 64 CC 69 74 05
414 +0x00: Normal uplink packet.
377 377  
378 -[[image:image-20230805144936-2.png||height="113" width="746"]]
416 +0x01: Interrupt Uplink Packet.
379 379  
380 -**Uplink:**
381 381  
382 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
419 +=== 2.3.4  DS18B20 Temperature sensor ===
383 383  
384 384  
385 -**Parsed Value:**
422 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
386 386  
387 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
424 +**Example**:
388 388  
426 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
389 389  
390 -[360,176,30,High,True,2023-08-04 02:53:00],
428 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
391 391  
392 -[355,168,30,Low,False,2023-08-04 02:53:29],
393 393  
394 -[245,211,30,Low,False,2023-08-04 02:54:29],
431 +=== 2.3.5  Sensor Flag ===
395 395  
396 -[57,700,30,Low,False,2023-08-04 02:55:29],
397 397  
398 -[361,164,30,Low,True,2023-08-04 02:56:00],
434 +(((
435 +0x01: Detect Ultrasonic Sensor
436 +)))
399 399  
400 -[337,184,30,Low,False,2023-08-04 02:56:40],
438 +(((
439 +0x00: No Ultrasonic Sensor
440 +)))
401 401  
402 -[20,4458,30,Low,False,2023-08-04 02:57:40],
403 403  
404 -[362,173,30,Low,False,2023-08-04 02:58:53],
443 +=== 2.3.6  Decode payload in The Things Network ===
405 405  
406 406  
407 -**History read from serial port:**
408 -
409 -[[image:image-20230805145056-3.png]]
410 -
411 -
412 -=== 2.3.4 Decode payload in The Things Network ===
413 -
414 -
415 415  While using TTN network, you can add the payload format to decode the payload.
416 416  
417 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
418 418  
450 +The payload decoder function for TTN V3 is here:
419 419  
420 420  (((
421 -The payload decoder function for TTN is here:
453 +LDS12-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
422 422  )))
423 423  
424 -(((
425 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
426 -)))
427 427  
457 +== 2.4  Uplink Interval ==
428 428  
429 -== 2.4 ​Show Data in DataCake IoT Server ==
430 430  
460 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
431 431  
462 +
463 +== 2.5  ​Show Data in DataCake IoT Server ==
464 +
465 +
432 432  (((
433 433  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
434 434  )))
... ... @@ -461,13 +461,13 @@
461 461  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
462 462  
463 463  
464 -== 2.5 Datalog Feature ==
498 +== 2.6 Datalog Feature ==
465 465  
466 466  
467 467  Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
468 468  
469 469  
470 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
504 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
471 471  
472 472  
473 473  Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
... ... @@ -479,11 +479,14 @@
479 479  b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
480 480  )))
481 481  
516 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
482 482  
518 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
483 483  
484 -=== 2.5.2 Unix TimeStamp ===
485 485  
521 +=== 2.6.2 Unix TimeStamp ===
486 486  
523 +
487 487  LDS12-LB uses Unix TimeStamp format based on
488 488  
489 489  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
... ... @@ -498,7 +498,7 @@
498 498  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
499 499  
500 500  
501 -=== 2.5.3 Set Device Time ===
538 +=== 2.6.3 Set Device Time ===
502 502  
503 503  
504 504  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
... ... @@ -508,13 +508,13 @@
508 508  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
509 509  
510 510  
511 -=== 2.5.4 Poll sensor value ===
548 +=== 2.6.4 Poll sensor value ===
512 512  
513 513  
514 514  Users can poll sensor values based on timestamps. Below is the downlink command.
515 515  
516 516  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
517 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
554 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
518 518  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
519 519  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
520 520  
... ... @@ -535,7 +535,7 @@
535 535  )))
536 536  
537 537  
538 -== 2.6 Frequency Plans ==
575 +== 2.7 Frequency Plans ==
539 539  
540 540  
541 541  The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
... ... @@ -543,7 +543,7 @@
543 543  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
544 544  
545 545  
546 -(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB
583 += 3. Configure LDS12-LB =
547 547  
548 548  == 3.1 Configure Methods ==
549 549  
... ... @@ -588,7 +588,7 @@
588 588  )))
589 589  
590 590  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
591 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
628 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
592 592  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
593 593  30000
594 594  OK
... ... @@ -624,24 +624,20 @@
624 624  === 3.3.2 Set Interrupt Mode ===
625 625  
626 626  
627 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
664 +Feature, Set Interrupt mode for PA8 of pin.
628 628  
629 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
666 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
630 630  
631 631  (% style="color:blue" %)**AT Command: AT+INTMOD**
632 632  
633 633  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
634 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
671 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
635 635  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
636 636  0
637 637  OK
638 638  the mode is 0 =Disable Interrupt
639 639  )))
640 -|(% style="width:154px" %)(((
641 -AT+INTMOD=2
642 -
643 -(default)
644 -)))|(% style="width:196px" %)(((
677 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
645 645  Set Transmit Interval
646 646  0. (Disable Interrupt),
647 647  ~1. (Trigger by rising and falling edge)
... ... @@ -659,7 +659,6 @@
659 659  
660 660  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
661 661  
662 -
663 663  = 4. Battery & Power Consumption =
664 664  
665 665  
... ... @@ -680,7 +680,7 @@
680 680  
681 681  * Fix bugs.
682 682  
683 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
715 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
684 684  
685 685  Methods to Update Firmware:
686 686  
... ... @@ -708,11 +708,11 @@
708 708  
709 709  
710 710  (((
711 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
743 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
712 712  )))
713 713  
714 714  (((
715 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
747 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
716 716  )))
717 717  
718 718  
... ... @@ -721,7 +721,7 @@
721 721  )))
722 722  
723 723  (((
724 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
756 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
725 725  )))
726 726  
727 727  
... ... @@ -728,7 +728,7 @@
728 728  = 8. Order Info =
729 729  
730 730  
731 -Part Number: (% style="color:blue" %)**DS20L-XXX**
763 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
732 732  
733 733  (% style="color:red" %)**XXX**(%%): **The default frequency band**
734 734  
... ... @@ -753,7 +753,7 @@
753 753  
754 754  (% style="color:#037691" %)**Package Includes**:
755 755  
756 -* DS20L LoRaWAN Smart Distance Detector x 1
788 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
757 757  
758 758  (% style="color:#037691" %)**Dimension and weight**:
759 759  
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content